Skip to main content
. 2018 Mar 6;12:18. doi: 10.3389/fncir.2018.00018
Function Phase Description Equation
Gaussian Models Monophasic One spatial Gaussian with one temporal lobe RF=As*exp(-x2σx2-y2σy2)*exp(-(t-τ)2σt2)
Biphasic Two spatial Gaussians each with one temporal lobe RF=As1*exp(-x2σx12-y2σy12)*exp(-(t1-τ)2σt12)+As2*exp(-x2σx22-y2σy22)*exp(-(t2-τ)2σt22)
One spatial Gaussian with two temporal lobes RF=As*exp(-x2σx2-y2σy2)*(At*exp(-(t1-τ)2σt12)-exp(-(t2-τ)2σt22))
Gabor Models Monophasic One spatial Gabor with one temporal lobe RF=As*exp(-x2σx2-y2σy2)* cos (2πxλ+ϕ)*exp(-(t-τ)2σt2)
One spatial Gabor with two cosine and one temporal lobe RF=As*exp(-x2σx2-y2σy2)* cos (2πxλ1+ϕ1)* cos (2πyλ2+ϕ2)*exp(-(t-τ)2σt2)
Biphasic One spatial Gabor with two temporal lobes RF=As*exp(-x2σx2-y2σy2)* cos (2πxλ+ϕ)*(At*exp(-(t1-τ)2σt12)-exp(-(t2-τ)2σt22))
One spatial Gabor and one spatial Gaussian each with a temporal lobe RF=As*exp(-x2σx12-y2σy12)* cos (2πxλ+ϕ)*exp(-(t1-τ)2σt12)+exp(-x2σx22-y2σy22)*exp(-(t2-τ)2σt22)