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Abstract

The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-

borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to

different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat

infected individuals, some treated patients do not respond to antibiotics and experience persistent, long-term arthritis. Thus,

there is a need to investigate alternative therapeutics against Lyme disease. The spirochete bacterium colonization is partly

attributed to the binding of the bacterial outer-surface proteins to the glycosaminoglycan (GAG) chains of host proteoglycans.

Blocking the binding of these proteins to GAGs is a potential strategy to prevent infection. In this review, we have

summarized the recent reports of B. burgdorferi sensu lato GAG-binding proteins and discussed the potential use of synthetic

and semi-synthetic compounds, including GAG analogues, to block pathogen interaction with GAGs. Such information should

motivate the discovery and development of novel GAG analogues as new therapeutics for Lyme disease. New therapeutic

approaches should eventually reduce the burden of Lyme disease and improve human health.

INTRODUCTION TO LYME DISEASE

Lyme disease, which is caused by the spirochete Borrelia

burgdorferi sensu lato and transmitted by Ixodes ticks, is
the most common vector-borne disease in North America
and Europe [1]. Three prominent species, B. burgdorferi,
B. afzelii and B. garinii, are the causative agents of Lyme
disease in Europe, whereas B. burgdorferi sensu stricto is
the major species causing Lyme disease in North America
[2]. Approximately 30 000 new Lyme disease cases are
reported in the United States each year (mainly in the
northeastern or midwestern United States), justifying the
classification of Lyme disease borreliae as an ‘emerging
pathogen’ [1]. Following the tick bite, the spirochete estab-
lishes infection by colonizing the bite site in the skin,
resulting in the erythema migrans skin rash that is charac-
teristic of the early acute phase of infection [1, 3]. If left
untreated, Lyme disease borreliae is able to spread through
the bloodstream to different tissues and organs, including
the joints, heart and nervous system, leading to multiple

disease manifestations, including arthritis, carditis and
neuroborreliosis in the late chronic phase of infection [1].

Unfortunately, no effective prophylactic agents to protect
humans from Lyme disease are currently available [1].
Whereas antibiotics are commonly used to treat Lyme dis-
ease patients in the early acute and late stages of infection
[4], some antibiotic-treated individuals continue to demon-
strate joint swelling and longstanding arthritis, known as
antibiotic-refractory arthritis [5]. Therefore, there is a criti-
cal need to investigate other approaches as complementary
methods for limiting disease progression and persistence.
Lyme disease borreliae requires glycosaminoglycan (GAG)-
binding activity to colonize and disseminate to tissues [6, 7].
GAG analogues may thus represent potential therapeutics
to block Lyme disease infection. In fact, several kinds of
such compounds (e.g. fucoidan, suramin and heparosan)
have demonstrated the ability to inhibit the attachment of
other pathogens to mammalian cells and reduce infectivity
[8–12]. In addition, various GAG-based inhibitors have
been examined for their safety in humans and are currently
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used in patients for different diseases [13], and this could
potentially reduce the time required to develop such drugs
as treatment for human Lyme disease. In this review, we
have summarized the current findings on B. burgdorferi
GAG-binding proteins and their ability to facilitate Lyme
disease infection. We have also discussed the potential for
developing GAG analogues as new therapeutic agents for
the treatment of Lyme disease Borreliae to stop the progres-
sion of infection-induced manifestations.

PROTEOGLYCANS AND

GLYCOSMINOGLYCANS, AND THE ABILITY OF

LYME DISEASE BORRELIAE TO BIND TO

THESE LIGANDS

The capacity of Lyme disease borreliae to cause disease
manifestations is correlated with its ability to colonize tis-
sues or organs [14]. Tissue colonization is partly attribut-
able to bacterial binding to the extracellular matrix (ECM)
on the host cell surface [14]. Proteoglycans (PGs) are ECM
molecules composed of a core protein, from which extend
long, linear, and negatively charged polysaccharide chains

called GAGs [15]. These PGs, including decorin, biglycan,
aggrecan, syndecan, glypican and perlecan, are either
inserted into the cell membrane or localized to the cell sur-
face ECM (Fig. 1a) [15]. These GAGs are classified based
on the structure and composition of their disaccharide
repeating units [15]. For example, within the chondroitin
sulfate family (indicated by the red dashed lines) of GAGs,
there are multiple members with different disaccharide
repeating units (Fig. 1b). The most common units are
chondroitin-4-sulfate (type-A), dermatan sulfate (type-B)
and chondroitin-6-sulfate (type-C) (Fig. 1b) [15]. Heparin,
while not found on the cell surface, is structurally similar to
other GAGs (Fig. 1b) and has been used as an important
model compound for in vitro studies examining the GAG-
binding activity of Lyme disease borreliae and their pro-
teins [16–23].

Lyme disease borreliae bind to different PGs, including
decorin, biglycan and aggrecan (Fig. 1a) [24–26]. Decorin-
deficient mice are more resistant to spirochete colonization
in different tissues, suggesting that decorin-mediated spiro-
chete binding promotes tissue colonization during Lyme

Fig. 1. Various proteoglycans (PG) produced on mammalian cell surfaces and the structure of disaccharide units of GAG proved to

bind to Lyme disease borreliae. (a) Schematic diagram showing the composition of decorin, biglycan, aggrecan, the syndecan family,

the glypican family, and perlecan PGs localized on mammalian cell surfaces. Note that there are different types of syndecans and gly-

picans, and these PGs differ in the numbers and types of GAG chains they carry. The syndecan and glypican depicted in the figure are

representative structures. (b) The structure of the major disaccharide units of chondroitin sulfate A (chondoritin-4-sulfate), chondroitin

sulfate B (dermatan sulfate, similar to chondroitin sulfate A except that it has an iduronic acid in place of the glucuronic acid residue),

chondroitin sulfate C (chondroitin-6-sulfate), heparin, and heparan sulfate [while the major disaccharide of heparan sulfate primarily

contains glucuronic acid acid (in place of the iduronic acid prominent in heparin) and is non-sulfated, this GAG can contain many minor

sulfated disaccharides with sulfo groups occupying all the same sites found within heparin]. All of these GAGs have structural variabil-

ity (in molecular weight and the positioning of sulfo groups) and are documented to bind to Lyme disease borreliae.
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infection [27]. B. burgdorferi binds less efficiently to the vas-
cular endothelial cells in the absence of biglycan, suggesting
that the biglycan-binding activity of spirochetes promotes
the bacterial attachment to this cell type [25]. B. burgdorferi
binding to aggrecan results in the degradation of aggrecan
and other ECM components, which suggests that the aggre-
can-mediated binding may promote the detachment of spi-
rochetes from the initial infection site to disseminate to
distal tissues [26, 28].

These PG-mediated binding activities of B. burgdorferi are
probably associated with the ability of spirochetes to interact
specifically with the GAG chains on these PGs. B. burgdorferi
binds to different GAGs, including chondroitin sulfate, der-
matan sulfate and heparan sulfate (Fig. 1b) [17, 29]. This
binding activity of GAGs such as heparan sulfate, dermatan
sulfate, and chondroitin sulfate mediates spirochete attach-
ment to mammalian cells (e.g. epithelial Vero cells) [17]. Fur-
ther, the ability of these GAGs to promote spirochete binding
to cells correlates positively with the length of these GAG
chains [16]. This finding suggests that the charge–charge
interactions contribute to GAG-binding by B. burgdorferi.

GAG- AND PG-BINDING OF LYME DISEASE

BORRELIAE: DbpA AND DbpB

Several outer-surface proteins have been shown to confer
spirochete binding to GAGs or PGs (see the summary in
Table 1). DbpA and DbpB are the first two PG-binding
proteins that have been identified as binding to decorin
and biglycan [25, 30]. These proteins were later found to
bind to the core protein of decorin with higher affinity and
the dermatan sulfate of this PG with slightly lower affinity,
suggesting that both core protein and dermatan sulfate
modulate the decorin-binding activity of DbpA and DbpB
[20, 24]. DbpA and DbpB promote spirochete attachment
to different mammalian cell types [21, 25, 31, 32] and are
required for spirochete colonization during Lyme infection
[33–35]. Whereas DbpB is highly conserved, DbpA is poly-
morphic, with less than 58% amino acid identity between
Lyme disease borreliae variants [36]. Consistent with this
polymorphism, DbpA variants promote different allelic
ability for binding to decorin, biglycan, dermatan sulfate
and mammalian cells under either static or flow conditions
[25, 31, 32]. Similarly, these variants also confer the dis-
tinct tissue tropism associated with Lyme infection [6].
The strain to strain variations of the in vitro and in vivo
phenotypes promoted by DbpA have been attributed to the
decorin- and dermatan sulfate-binding activity of this pro-
tein. DbpA mutant proteins that are specifically defective
in binding to these ligands are incapable of promoting spi-
rochete attachment to mammalian cells and the coloniza-
tion of mouse tissues [6, 31, 37].

BBK32

The B. burgdorferi outer-surface protein BBK32 was ini-
tially reported to bind to an ECM protein fibronectin and
was later identified to also bind to dermatan sulfate [22,
38]. Inoculating mice with a low dose of a bbk32-deficient

B. burgdorferi results in reduced colonization at the inocu-
lation site (skin) and joints at early stages of infection,
indicating the essential role of BBK32 in promoting opti-
mal infectivity [39, 40]. In addition, ectopically producing
BBK32 in a non-infectious and non-adherent B. burgdor-
feri (gain-of-function strain) leads to spirochete attach-
ment to mammalian cells in vitro and localization at joints
in vivo during short-term intravenous inoculation [7, 22].
Using intra-vital microscopy, this BBK32-producing strain
has also been demonstrated to attach to vasculature by
promoting transient interaction, including tethering and
dragging of spirochetes [41, 42]. A bbk32-deficient
B. burgdorferi displays decreased levels of binding, specifi-
cally to joint vasculature, indicating that BBK32 is a vascu-
lar adhesin [43].

The dermatan sulfate- and fibronectin-binding activities of
BBK32 have been localized at amino acids 45–68 and 158–
182, respectively [7]. The gain-of-function B. burgdorferi
producing BBK32 with internal deletion at amino acids 45–
68 (BBK32D45–68) or 158–182 (BBK32D158–182) is inca-
pable of binding to mammalian cells, but the cell types that
each of these strains are unable to bind vary [7]. Compared
to the strain producing BBK32D158–182, the gain-of-func-
tion strain producing BBK32D45–68 displays reduced drag-
ging interactions with the vasculature, indicating that
BBK32-mediated GAG binding contributes to vascular
interaction [43]. In addition, the BBK32D45–68 producing
strain binds to joints less efficiently than a wild-type
BBK32-producing strain during short-term intravenous
inoculation [7]. Consistent with this observation, a bbk32-
deficient B. burgdorferi producing BBK32D45–68 colonizes
mouse joints less than the gain-of-function strain producing
wild-type BBK32 [7]. These results indicate that dermatan
sulfate binding of BBK32 confers spirochete localization
and colonization specifically at joints.

OspF family proteins

By inoculating mice with phages producing peptides derived
from different B. burgdorferi proteins (known as in vivo

phage display), ErpK, ErpL, ErpG and BB2.10 have been
identified as adhesins that promote the phages binding to
the joints, bladders and hearts of mice [44]. These proteins
are in the OspF protein family, a sub-family of the Erp pro-
teins (OspEF-related proteins) [45–47]. All OspF family
proteins bind to heparan sulfate [23]. ErpG promotes spiro-
chete binding to C6 glial cells, but not other cell types [23],
and an ErpG mutant that is defective in heparan sulfate-
binding activity is incapable of conferring spirochete attach-
ment to C6 glial cells [23]. B. burgdorferi mutant strains
with transposons inserted in erpK display a survival disad-
vantage in colonizing mouse ears, hearts, joints and inocula-
tion sites [48]. These results suggest that OspF family
proteins contribute to mammalian cell attachment and spi-
rochete colonization during infection, likely by their hep-
aran sulfate-binding activity.
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Lmp1

In vivo phage display also reveals B. burgdorferi outer-sur-
face protein Lmp1 as an adhesin [44]. Consistent with this
finding, an lmp1-deficient spirochete binds to chondroitin-
6-sulfate and mammalian cells at decreased levels compared
to the wild-type parental strain [49]. The cell- and chon-
droitin-6-sulfate-binding activities are specifically promoted
by the middle region of Lmp1 (Lmp1M), which houses
unique repeating sequences of 54 amino acids and folds to
an a-helix rich structure [49–51]. In addition, spirochetes
that lack Lmp1 production are non-infectious in mice via
subcutaneous needle infection [50]. Producing Lmp1M in
the lmp1-deficient strain background restores the coloniza-
tion defects, raising the possibility that the chondroitin-6-
sulfate-binding activity of this protein confers infectivity
[49].

BbHtrA

B. burgdorferi BbHtrA belongs to the family of high-temper-
ature-requiring proteases, acting as a protease or chaperone
to stabilize proteins and regulate signalling processes [52,
53]. This protein was first identified as an aggrecan-binding
protein [26] and was then demonstrated to be capable of
digesting B. burgdorferi surface proteins, as well as host
aggrecan and other ECM molecules, including fibronectin,
decorin, and biglycan [28, 54, 55]. The finding that BbHtrA
degrades ECM molecules raises the possibility that this pro-
tein, by digesting the B. burgdorferi-ECM interactions, facil-
itates spirochete detachment from the initial infection
tissues and dissemination during Lyme infection. Consistent
with this, BbHtrA-deficient B. burgdorferi is unable to colo-
nize the inoculation site, heart and bladder during murine
infection [56]. However, the protease activity of BbHtrA
also targets other adhesion-irrelevant spirochete proteins
that are required for bacterial survival [26, 56]. The rele-
vance of the ability of this protein to digest ECM compo-
nents and contribute to spirochete dissemination still needs
to be determined.

As described above, B. burgdorferi produces numerous
GAG- and PG-binding proteins that are essential for host
colonization and tissue dissemination during infection. The
production of these proteins at different stages of infection
may reflect the requirement for multiple GAG-binding pro-
teins in B. burgdorferi. Therefore, developing structurally
similar molecules (e.g. GAG analogues) as inhibitors and
inoculating these inhibitors during infection to block the
spirochete attachment to GAGs or PGs of host cells may
represent an effective strategy to treat infection with Lyme
disease borreliae.

THE POTENTIAL FOR USING SYNTHETIC OR

SEMISYNTHETIC GAGS AS NEW

TREATMENTS AGAINST LYME DISEASE

Numerous pathogens, including Lyme disease borreliae,
bind to GAG via surface proteins, which promote coloniza-
tion and dissemination to tissues and organs [57, 58].

Blocking GAG–pathogen interactions has thus been consid-
ered to be an efficient mean of eliminating such infections.
One strategy to prevent pathogen–GAG interactions is to
identify the GAG-binding proteins of pathogens and then
design small-molecule analogues to mimic the motif directly
contributing to the GAG-binding activity of these proteins.
Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) was
initially developed as an excipient during insulin produc-
tion. The ability of this small molecule to neutralize the
function of heparin motivated further research that identi-
fied surfen as an inhibitor for heparan sulfate-mediated cell
attachment of herpes simplex virus [59, 60].

The other strategy to block pathogen–GAG interactions is
to use GAG analogues, which bind to GAG-binding pro-
teins on the pathogens to prevent their attachment to and
colonization of host cells. Several heparin and heparan sul-
fate-analogues (as known as heparinoids) have been shown
to reduce microbial infections, likely due to their ability to
block the pathogen–heparan sulfate interaction. The hepa-
rinoid ‘fucoidan’, extracted from brown macroalgae, has
been demonstrated to decrease infections caused by various
viruses, parasites and bacteria [8, 9]. The documented abil-
ity of the synthetic heparinoid ‘suramin’ to inhibit viral and
parasite infection resulted in the use of this compound as a
treatment for African trypanosomiasis and dengue fever
[10]. Another heparinoid, ‘heparosan’, derived from the
capsule of some pathogenic bacteria, inhibits bacterial
attachment to mammalian cells [11, 12]. These findings
raise the possibility of developing GAG analogues as a ther-
apeutic agent to treat Lyme disease infection by blocking the
GAG-binding protein-mediated spirochete attachment.

GAGs, including heparin, mediate multiple host functions
such as anticoagulation, signal transduction of organ devel-
opment, host inflammatory response and cell migration
[61]. Therefore, one of the documented side-effects of
GAG-based therapeutic agents is internal bleeding or
thrombocytopenia, caused by the potent anticoagulant
activity of these agents [62]. However, periodate oxidation
has been applied to these heparin-based compounds to cut
through the glucuronic acid in the active site causing the
anticoagulant ability while retaining the other biological
activities of heparin, generating non-anticoagulant heparins
[62, 63]. In addition, unfractionated heparin is usually iso-
lated from porcine skin or bovine lung, with an average
molecular weight of approximately 14 000Da. The hetero-
geneity and high molecular weight of these molecules make
their efficient absorption difficult in humans [64]. The
recent development of chemoenzymatic synthesis has been
utilized to prepare more specific low and ultra-low molecu-
lar weight heparins with improved bioavailability and
pharmacodynamics [65, 66] A low-molecular-weight non-
anticoagulant heparin (NACH) has been synthesized with
low toxicity in vivo and enhanced efficacy for inhibiting
tumour metastasis [67–70]. Thus, NACH may have the
potential to be developed as a therapeutic against Lyme dis-
ease-causing bacteria. Testing of the efficacy of this
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compound as an anti-B. burgdorferi prophylactic agent is
currently ongoing in our laboratory. Further, a previous
observation that B. burgdorferi treated with Dalteparin (a
low-molecular-weight heparin) displays a >75% reduction
of vascular interaction compared to untreated spirochetes
[42]. This result suggests the possibility of employing GAG
analogues as new prophylaxes and treatments for Lyme dis-
ease by blocking the haematogenous dissemination and tis-
sue colonization of Lyme disease borreliae.

CONCLUSION AND FUTURE WORK

GAG-binding activity has been demonstrated to mediate
the colonization and dissemination of Lyme disease borre-
liae. Thus, blocking spirochete attachment to host cells may
inhibit disease progression and eventually eradicate these
bacteria from humans. GAGs and GAG analogues have
been examined for their ability to inhibit the attachment of
other pathogens to mammalian cells or tissues. Some of
these compounds also display a robust capacity for eliminat-
ing pathogen infections. These observations suggest the
potential use of GAG analogues as therapeutic agents to
treat Lyme disease. Several spirochete GAG-binding pro-
teins have been identified as promoting disease manifesta-
tions, which may further facilitate the development of
drugs acting against Lyme disease by targeting the binding
of these proteins to GAGs. In this review, we have discussed
and summarized previous findings concerning spirochete
proteins mediating the GAG-binding activity of Lyme dis-
ease-causing bacteria, as well as the development of GAG
analogues as therapeutics. Such information will provide
new directions for the use of GAG analogues as treatments
for Lyme disease patients to improve the health of people
suffering from Lyme infection.
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