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Abstract

Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently 

developed to predict individual differences in traits and behaviors, including fluid intelligence 

(Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain 

connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the 

predictive power of three different measures of FC (Pearson’s correlation, accordance, and 

discordance) and two different prediction algorithms (linear and partial least square [PLS] 

regression) for attention function. Accordance and discordance are recently proposed FC measures 

that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 

2016). We defined connectome-based models using task-based or resting-state FC data, and tested 

the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on 

individualized attention predictions. Models were internally validated in a training dataset using 

leave-one-subject-out cross-validation, and externally validated with three independent datasets. 

The training dataset included fMRI data collected while participants performed a sustained 

attention task and rested (N=25; Rosenberg et al., 2016a). The validation datasets included: 1) data 

collected during performance of a stop-signal task and at rest (N=83, including 19 participants 

who were administered methylphenidate prior to scanning; Rosenberg et al., 2016b; f al., 2014a), 

2) data collected during Attention Network Task performance and rest (N=41, Rosenberg et al., in 

press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium 

(N=113; Rosenberg et al., 2016a). Models defined using all combinations of functional 
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connectivity measure (Pearson’s correlation, accordance, and discordance) and prediction 

algorithm (linear and PLS regression) predicted attentional abilities, with correlations between 

predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for 

external validation (all p’s < 0.05). Models trained on task data outperformed models trained on 

rest data. Pearson’s correlation and accordance features generally showed a small numerical 

advantage over discordance features, while PLS regression models were usually better than linear 

regression models. Overall, in addition to correlation features combined with linear models 

(Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
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Introduction

Since the concept of functional brain connectivity was introduced, studies in the field have 

primarily focused on revealing group-wise organizational patterns or differences with brain 

disorders (Fox and Raichle, 2007), while individual variance was considered to be noisy and 

unreliable. Recent studies, however, have shown that individual variance is informative, and 

functional connectivity research is moving towards personalized analyses (Dubois and 

Adolphs, 2016). It is now evident that functional connectivity patterns are unique for 

individuals (Finn et al., 2015) and stable across sessions and cognitive states such as task 

performance and rest (Cole et al., 2014; Finn et al., 2015, 2017; Noble et al., 2017a). 

Furthermore, individuals’ unique patterns of functional brain connectivity contain 

information about traits, behaviors, and clinical diagnoses (Arbabshirani et al., 2017; 

Rosenberg et al., 2016a, b). Thus, functional connectivity patterns measured during task 

performance and rest can provide reliable measures of individual differences in behavior.

Connectome-based predictive modeling (CPM) was recently developed to predict cognitive 

functions in novel individuals (Finn et al., 2015; Rosenberg et al., 2016a; Shen et al., 2017). 

Briefly, CPM takes as input whole-brain functional connectivity data, and selects relevant 

functional connections to predict a behavior or trait that varies across individuals. We 

demonstrated that this intuitive method can accurately predict individual cognitive and 

attention function (Finn et al., 2015; Rosenberg et al., 2016a, b). Rosenberg et al. (2016a) 

showed that a predictive model defined with CPM successfully predicts individuals’ 

sustained attention task performance, a proxy for their overall ability to maintain focus 

(Rosenberg et al., 2016a). Importantly, this model, the sustained attention connectome-based 

predictive model or saCPM, predicted other measures of attention in three completely 

independent data sets. First, the saCPM generalized to predict children’s and adolescents’ 

ADHD symptom severity, suggesting that a common functional mechanism underlies 

performance on lab-based attention tasks and real-world attention function across 

development (Rosenberg et al., 2016a). In addition, the saCPM generalized to predict 

performance on a stop-signal task (Rosenberg et al., 2016b) and Attention Network Task 

(ANT) (Rosenberg et al., in press), both of which require attention for successful 

performance. The saCPM also characterizes differences in functional connectivity and 
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behavior that arise due to administration of methylphenidate, a common ADHD treatment 

that enhances focused attention (Rosenberg et al., 2016b).

In CPM, features are functional connections, or edges, between every pair of regions, or 

nodes, in the brain. From all possible edges in the brain, a subset is selected for model 

building based on their relationship with a behavioral measure of interest. In our previous 

work, we applied a significance threshold (e.g., p < 0.01) to select edges that were positively 

and negatively related to behavior across subjects. We then calculated a summary statistic, 

“network strength”, by summing all selected edges. Finally, we constructed a linear 

regression model with this statistic to predict a behavioral score.

There are several ways to define functional connectivity. The most popular measure is 

Pearson’s correlation, which quantifies the linear interaction between brain regions. Our 

group has used this definition for all CPM studies to date (reviewed in Rosenberg et al., 

2017; Shen et al., 2017). Pearson’s correlation, however, can be highly affected by small 

fluctuations that might not be meaningful in fMRI given the low contrast-to-noise ratio. 

Additionally, Pearson’s r cannot quantify non-stationary fluctuations (Fox and Greicius, 

2010; Hutchison et al., 2013; Meskaldji et al., 2016a; Welvaert et al., 2013). A recent study 

introduced new measures of functional connectivity – accordance and discordance – which 

quantify in-phase synchronization and out-of-phase anti-correlation separately, and are 

calculated based on extreme values in time-series, ignoring low amplitude fluctuations 

(Meskaldji et al., 2015). Accordance measures the degree to which two signals are co-

activated and co-deactivated over the threshold (in-phase synchronization). In contrast, 

discordance measures the degree to which two signals are oppositely activated or deactivated 

(out-of-phase anti-correlation), capturing instances when one signal is activated and another 

is deactivated at the same time. Meskaldji and colleagues proposed that these measures, 

which are able to capture non-stationary interactions, are more reliable measures of 

functional connectivity than Pearson’s correlation and more sensitive to detecting 

differences between groups.

In their work using accordance and discordance to predict individual differences in memory, 

Meskaldji and colleagues also employed a different method than CPM for feature selection 

and prediction: partial least square (PLS) regression. PLS regression is a statistical method 

related to principal component analysis (PCA) and multiple linear regression (Wold et al., 

1984), and works by finding a linear relationship between predictor and response variables. 

This is particularly useful when the number of predictor variables (in this case, edges) is 

much higher than the number of observations (in this case, participants). PLS regression is 

based on the same technique used by PCA, representing the predictor variables with a fewer 

number of latent components. However, in PLS regression, the predictor variables are 

projected to a new space of components with regard to response variables. Thus, one major 

strength of PLS regression is that fewer components are required to adequately explain 

variance in response variables (Mahesh et al., 2015; Wentzell and Vega Montoto, 2003). In 

Meskaldji et al. (2016a), the PLS regression models using accordance and discordance 

successfully predicted individual performance on a memory task. The study concluded that 

discordance, a measure of anti-correlation, contains key information about memory and 

other cognitive functions (Meskaldji et al., 2016a, b).
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An open question is how different connectivity features and feature-selection/prediction 

algorithms contribute to the success of predictive network models. Investigating the ability 

of different combinations of features and algorithms to predict behavior will provide insight 

into the degree to which measures such as accordance and discordance relate to cognitive 

abilities beyond memory, and inform future work using functional connectivity patterns to 

make individualized behavioral predictions.

Thus, in the current study, we compare all combinations of three measures of functional 

connectivity (Pearson’s correlation, accordance and discordance) and two feature selection 

and prediction algorithms (linear and PLS regression) in behavioral predictions, using 

attentional abilities (measured by ADHD symptom severity and performance on three 

attention tasks) as a case study. In previous work we demonstrated that linear regression-

based CPM is a straightforward but powerful method for accurately predicting an 

individual’s ability to sustain attention. Here, we seek to answer two questions with broad 

implications for connectome-based predictions: 1) Are accordance and discordance better 

predictors of attention than Pearson’s correlation? 2) Is PLS regression a better predictive 

algorithm than linear regression for attention? In addressing these questions in the context of 

attention, we hope to identify broad trends in the performance of different connectome-

based predictive modeling approaches that may extend to other abilities and behaviors. In 

addition, we advocate the importance of considering both internal and external validity. 

Internal validity refers to the ability of a model to generalize to unseen subjects within a 

single data set, tested, for example, with leave-one-out cross-validation (LOOCV). Although 

internal validation is a common standard, it does not ensure that models generalize to new 

datasets. Testing models’ external validity by applying them to completely independent 

samples ensures that they generalize beyond a single group of participants and minimizes 

concerns of overfitting (Gabrieli et al., 2015). Further, testing whether models generalize 

across populations, clinical states, imaging acquisition systems, etc., is important for 

establishing both theoretical significance and translational utility.

Methods

Internal validation: gradual-onset continuous performance task (task-based fMRI and 
resting-state fMRI)

Participants—Thirty-one participants were recruited from Yale University and the 

surrounding community. Participants performed a sustained attention task, the gradual-onset 

continuous performance task (gradCPT, Esterman et al., 2013; Rosenberg et al., 2013), 

during fMRI scanning. Data from six individuals were excluded from analysis due to 

excessive head motion during fMRI. All participants gave written informed consent in 

accordance with the Yale University Human Subjects Committee. Detailed information on 

participants and exclusion criteria can be found in our previous work (Rosenberg et al., 

2016a).

Experimental paradigm—In the gradCPT, stimuli were grayscale images of city and 

mountain scenes presented at the center of the screen. On each trial, an image gradually 

transitioned from one to the next over the course of 800 ms. Participants were instructed to 
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press a button to city scenes, which randomly occurred 90% of the time, and to withhold 

response to mountain scenes.

Task runs consisted of four three-minute blocks of the gradCPT interleaved with three 30-

second break periods during which a fixation circle appeared in the center of the screen. 

After each rest break, a dot replaced the circle for two seconds to indicate that the task was 

about to begin again. Each task run began with eight seconds of fixation, which were 

excluded from analyses. A total of three task runs (twelve blocks of gradCPT) were 

administered. During breaks and two rest runs, participants were instructed to attend to the 

fixation circle in the center of the screen.

Sensitivity (d′) was used to measure task performance. For each task block, d′ was 

calculated as z(hit rate) − z(false alarm rate). An overall d′ value was calculated for each 

participant by averaging d′ across blocks.

Image parameters and preprocessing—MRI data were collected at the Yale Magnetic 

Resonance Research Center (3T Siemens Trio TIM system equipped with a 32 channel head 

coil). Resting and task fMRI data were acquired using multiband echo-planar imaging (EPI) 

with the following parameters: repetition time (TR) = 1,000 ms, echo time (TE) = 30 ms, 

flip angle = 62°, acquisition matrix = 84 × 84, in-plane resolution = 2.5 mm2, 51 axial-

oblique slices parallel to the anterior commissure–posterior commissure (AC–PC) line, slice 

thickness = 2.5 mm, multiband 3, acceleration factor = 2. MPRAGE parameters were as 

follows: TR = 2530 ms, TE = 2.77 ms, flip angle = 7°, acquisition matrix = 256 × 256, in-

plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 176 sagittal slices. Two 6-min resting 

scans were acquired before and after the three task runs. Each task run was 13:44 min long. 

Volumes collected during rest breaks and the 6 s following them were excluded from 

analysis. The 2D T1-weighted structural image was acquired with the same slice 

prescription as the EPI images.

FMRI data were preprocessed using BioImage Suite and custom MATLAB (Mathworks) 

scripts. Images were motion-corrected using Statistical Parametric Mapping 8 (SPM8, http://

www.fil. ion.ucl.ac.uk/spm/software/spm8/). Then, several covariates of no interest were 

regressed from the data, including linear and quadratic drift, cerebrospinal fluid (CSF) 

signal, white matter (WM) signal, global signal, and a 24-parameter motion model (6 motion 

parameters, 6 temporal derivatives, and their squares). Data were temporally smoothed with 

a zero mean unit variance Gaussian filter.

FMRI runs with excessive head motion, defined a priori as > 2 mm translation or > 3° 

rotation, were excluded from analysis. As a result, one resting run from two participants and 

one task run from 5 participants were excluded.

External validation 1: Methylphenidate and stop-signal task (task-based fMRI and resting-
state fMRI)

Participants—We used a dataset of healthy adults originally collected by Farr and 

colleagues (Farr et al., 2014a, b) and analyzed in our previous work (Rosenberg et al., 

2016b). These data included 24 drug-treated participants and 70 unmedicated controls. The 
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drug-treated subjects were given a single 45 mg dose of methylphenidate about 40 minutes 

before fMRI scanning and were notified prior to the study that a drug or a placebo would be 

given. The control subjects did not receive any drug and were not given any drug-related 

instructions. Detailed participant information can be found in previous studies (Farr et al., 

2014a, b). Data exclusion was performed as described in Rosenberg et al., 2016b.

Experimental paradigm—Subjects performed a stop-signal task in the scanner (Farr et 

al., 2014a). Each task trial began with the appearance of a dot in the center of a screen. After 

a random interval of one to five seconds, the dot changed to a circle, representing a “go” 

signal. Participants were instructed to press a button as quickly as possible when this go 

signal appeared. Once the button was pressed, or after one second if no response was 

detected, the circle disappeared. Trials were separated by 2-second intervals.

About 25% of trials were stop trials. In stop trials, an “X,” the stop signal, replaced the go 

signal after it appeared. Participants were instructed to withhold response whenever they saw 

a stop signal. The stop-signal delay (time between the go and stop-signal onsets) was stair-

cased within-subject so that each participant was able to withhold response on 

approximately half of stop trials. As described previously (Rosenberg et al., 2016b), task 

performance was assessed with go rate, the percent of the time a subject correctly responded 

to a go signal.

Image parameters and preprocessing—MRI data were collected at the Yale Magnetic 

Resonance Research Center using the same model as that in the internal validation. Images 

were acquired using an EPI sequence with the following parameters: TR = 2,000 ms, TE = 

25 ms, flip angle = 85°, field of view (FOV) = 220 × 220 mm, acquisition matrix = 64 × 64, 

32 axial slices parallel to the AC–PC line; slice thickness = 4 mm (no gap). Four 9:50-min 

task runs and one resting scan of the same length were acquired. A high-resolution T1-

weighted structural gradient echo scan was acquired with the following parameters: TR = 

2530 ms, TE = 3.66 ms, flip angle = 7°, FOV = 256 × 256 mm, acquisition matrix = 256 × 

256, 176 slices parallel to the AC–PC line, slice thickness = 1 mm.

FMRI data were preprocessed as described in the gradCPT section above. FMRI runs with 

excessive head motion, defined a priori as > 2 mm translation, > 3° rotation, or > 0.15 mm 

mean frame-to-frame displacement (FD) were excluded from analysis. When an fMRI run 

had excessive motion near the start or end of the run, volumes were removed as described in 

Rosenberg et al. 2016b. A total of 88 participants (65 controls) remained after exclusion. Of 

these, 76 (56 controls) had a rest run and 86 (64 controls) had at least one task run.

External validation 2: Attention Network Task (task-based fMRI and resting-state fMRI)

Participants—Fifty-six subjects participated in an fMRI experiment in which they were 

instructed to rest then perform ANT (Rosenberg et al., in press). Eight subjects were 

excluded because of excessive head motion in three or more task runs (defined a priori as > 

2 mm translation, > 3° rotation, or > 0.15 mm mean FD) and four were excluded for missing 

data from three or more task runs. Three were excluded from further analysis because they 

had previously participated in the gradCPT study. The remaining 41 participants were right-

handed and had normal or corrected to normal vision (29 females, mean age 23.9 years 
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[range 18–37]). All participants were paid for participating and gave written informed 

consent in accordance with the Yale University Human Subjects Committee.

Experimental paradigm—Subjects completed the ANT during scanning. Experimental 

procedures, described in previous work (Rosenberg et al., in press), exactly replicated Fan et 

al. (2005) except for increased inter-trial intervals (ITIs) (Fan et al., 2005). ANT trials began 

with a 200-ms cue period. Trials were equally divided between center-cue, spatial-cue, and 

no-cue trials. On central-cue trials, an asterisk appeared in the center of the screen to alert 

subjects to an upcoming target. On spatial-cue trials, an asterisk appeared above or below the 

center fixation cross to indicate with 100% validity where on the screen the upcoming target 

would appear. On no-cue trials, no cue appeared at all. After a variable period of time (0.3–

11.8 seconds; mean = 2.8 seconds), five horizontal arrows appeared above or below the 

central fixation cross. Participants were instructed to press a button indicating whether the 

center arrow pointed to the left or to the right.

In half of trials (congruent trials), the central target arrow pointed in the same direction as 

the flanking distractor arrows. In the other half of trials (incongruent trials), the target 

pointed in the opposite direction. After a button press (or after two seconds if no response 

was detected), the arrows disappeared and a variable ITI (5–17 seconds; mean = 8 seconds) 

began.

Each of the six ANT runs consisted of two buffer trials followed by 36 task trials. Each run 

included six examples of the six trial types (3 Cue Types: central-cue vs. spatial-cue vs. no-

cue × 2 Target Types: congruent vs. incongruent). Trial order was counterbalanced within 

and across runs. ANT performance was measured with the variability of correct-trial RTs 

(Rosenberg et al., in press).

Image parameters and preprocessing—MRI data were collected at the Yale Magnetic 

Resonance Research Center on the same system as the gradCPT dataset. Experimental 

sessions began with a high-resolution anatomical scan, followed by two 6-min resting scans 

and six 7:05-min ANT runs. Participants were instructed to fixate on a cross, presented in 

the center of the screen during rest runs, and to respond to stimuli quickly and accurately 

during task runs. Rest runs included 360 whole-brain volumes and task runs included 425 

volumes. Functional and structural MRI scans were acquired with the same parameters as 

the gradCPT dataset.

FMRI data were preprocessed as described in internal validation. In the final set of 41 

participants, runs with excessive head motion, defined a priori as > 2 mm translation, > 3° 

rotation, or > 0.15 mm mean FD (Rosenberg et al., 2016a, b), were excluded from analysis. 

As a result, one task run was excluded from three participants, and two task runs were 

excluded from one participant. Due to technical issues or insufficient scan time, two 

additional participants were missing 205 and 81 volumes from one task run, five participants 

were missing one task run, one participant was missing two task runs, and one participant 

was missing three task runs. All participants had two rest runs with acceptable levels of 

motion.
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After calculating connectivity matrices (described in the Network construction section 

below), we excluded any edge (measured with Pearson’s correlation) in the task or rest 

matrices correlated with motion across subjects (p < 0.05). This edge exclusion step was 

performed because head motion can confound connectivity analyses and affect prediction 

results, and some motion parameters were correlated with ANT performance across subjects. 

This step resulted in the removal of 9,772 out of 35,778 edges (Rosenberg et al., in press).

External validation 3: ADHD-200 (resting-state fMRI)

Participants—As described previously (Rosenberg et al., 2016a), we used a publically 

available dataset provided by the ADHD-200 Consortium (Consortium, 2012). This dataset 

includes resting-state fMRI data from children and adolescents with and without ADHD 

from eight sites. We used data acquired from Peking University because of the large number 

of subjects and low head motion. The Research Ethics Review Board of the Peking 

University Institute of Mental Health approved data collection; all participants agreed to 

participate and parents or guardians of every participant gave informed consent. Detailed 

information of inclusion criteria, imaging parameters, and procedures are available online 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). After exclusion for motion, 113 

participants (age 8–16) remained (Rosenberg et al., 2016a).

Image parameters and preprocessing—FMRI data were corrected for slice-time and 

motion using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) then iteratively 

smoothed until the smoothness of any image had a full width half maximum of 

approximately 6 mm. All further preprocessing steps were performed using BioImage Suite. 

Nuisance covariates including linear and quadratic drift, CSF signal, WM signal, global 

signal, and 6 rigid-body motion parameters, were regressed from the data. Global signal 

regression is necessary to maximize the prediction, according to prior works (Finn et al., 

2015; Rosenberg et al., 2016a; Shen et al; 2017) and additional analysis here. Data were 

temporally smoothed with a zero mean unit variance Gaussian filter. Due to a lack of full 

coverage, 32 nodes were excluded from the 268-node functional atlas as described 

previously (Rosenberg et al., 2016a).

Comparisons of connectome-based predictive models

Twelve variations of CPM were compared in this study. Models used one of three 

connectivity definitions (Pearson’s correlation, accordance, or discordance), one of two 

features selection and predictive algorithms (linear or PLS regression), and one of two 

training datasets (gradCPT-based fMRI or resting-state fMRI). All models were validated 

using LOOCV in the gradCPT dataset and applied to the three external datasets. Of the 

twelve models, we previously published the model using Pearson’s correlation, gradCPT-

based fMRI, and linear regression (Rosenberg et al., 2016a, b). Results from that model 

were replicated in this study for comparison.

We additionally investigated whether a predictive model can be improved by combining 

features or data. Predictive models were trained with all 3 connectivity features concatenated 

or with 2 fMRI datasets (task-based and resting-state) combined. To build and validate a 

model with combining task-based and resting-state fMRI data, we used three datasets 

Yoo et al. Page 8

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/


excluding ADHD data (External 3, which only had resting-state data). We found that models 

with combined features or data did not outperform the task-based model’s performance on 

task-based data (See Supplementary Table S1, S2).

Network construction—Nodes were defined using the Shen 268-node functional brain 

atlas, which covers the cortex, subcortex and cerebellum (Shen et al., 2013). This atlas was 

transformed from MNI space to individual space with transformations calculated using 

intensity-based registration algorithms in BioImage Suite. Average time-series were 

extracted for each node from preprocessed data. For subjects with more than two usable 

runs, data were concatenated to obtain one set of time-series. Time-series were normalized 

to zero mean and unit variance. Then, functional connectivity, defined as the relationship 

between the time-series of every pair of nodes in the Shen atlas, was computed. Three 

different functional connectivity measures were estimated and separately used for further 

prediction analysis: Pearson’s correlation, as used in previous studies, and accordance and 

discordance, which were suggested in recent literature (Meskaldji et al., 2015).

To calculate accordance and discordance, time-series were first thresholded with a 

predefined quantile of q = 0.9 to retain only significant signals and exclude noise. This q-

value means that only ~ (1 − q) * 100 % of the highest and of lowest signals in time-series 

would remain (see details in Meskaldji et al., 2015). We tested with a range of threshold and 

found similar results across different thresholds (See Supplementary Table S3, S4). For each 

normalized time-series z, positively thresholded vector zu and negatively thresholded vector 

zl are defined such that

where Φ−1 is the inverse cumulative distribution function of the Gaussian distribution. zu and 

zl represent activation and deactivation time, respectively. Accordance aij and discordance dij 

between nodes i and j were given by,

where 

Construction of a predictive model using linear or PLS regression—We 

previously demonstrated that CPM (Shen et al., 2017) predicts sustained attentional abilities 

in novel individuals and datasets (Rosenberg et al., 2016a, b). In these studies, Fisher’s z-

Yoo et al. Page 9

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transformed Pearson’s correlation coefficients were used to measure functional connectivity. 

Feature selection was performed by relating the strength of each edge to a measure of 

attention across subjects with linear regression. Summary statistics (network strengths) were 

calculated by summing edges related to behavior at a statistical threshold (e.g., p < .01), and 

the statistics were entered into another linear regression predictive model with the sustained 

attentional ability.

In this study, we investigated whether alternative connectivity definitions, accordance and 

discordance, and an alternative feature selection and predictive algorithm, PLS regression, 

could predict attention as well or better than the previous linear regression CPM.

PLS regression is a statistical regression method related to principal component regression 

(PCR) and multiple linear regression. It is used to find the relationship between variables to 

make predictions. Compared to multiple linear regression, PLS regression is particularly 

useful when the number of predictor variables is much higher than the number of 

observations. PLS regression utilizes a similar concept as PCR, representing the input 

variables with fewer components. However, it is considered to be more cost-effective 

(requiring fewer number of components for prediction) compared to PCR while achieving 

equal if not better results (Wentzell and Vega Montoto, 2003). The general form of PLS 

regression is

where T and U are projections of X and Y respectively, P and Q are loadings, and E and F 

are the residual errors. In this study, X corresponds to the set of connectivity matrices and Y 

corresponds to the measures of attention. X and Y are decomposed so as to have the 

maximized covariance between T and U. We used SIMPLS algorithm to solve PLS 

regression as implemented in MATLAB R2016b (de Jong, 1993).

Validations of the predictive models: internal and external validations

Predictive models were constructed and tested in the internal dataset using LOOCV and 

validated in three independent datasets. For internal validation, a predictive model was 

trained on data from 24 gradCPT subjects and tested with the left-out 25th subject. This was 

done iteratively for all 25 subjects. Predictive models trained in the entire gradCPT dataset 

were applied to each external validation dataset.

Prediction performance was assessed by correlating predicted and observed behavioral 

scores. To measure attention, we used d′ (gradCPT/internal validation), go response rate 

(stop-signal task with methylphenidate/external validation 1), RT variability (ANT/external 

validation 2), and ADHD symptom severity (ADHD-200/external validation 3). Correlations 

between predicted and observed scores in external validation 2 and 3 were expected to be 

negative because of the behavioral/clinical scores used.
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Similarity among measures of functional connectivity

To investigate whether Pearson’s correlation, accordance, and discordance provide similar 

measures of functional brain organization, we compared whole-brain connectivity patterns 

computed with each measure. That is, for every subject in the gradCPT dataset, we 

generated six functional connectivity matrices: A task and rest matrix computed using 

Pearson’s correlation, accordance, and discordance. Similarity was then quantified as the 

Pearson’s spatial correlation between each pair of task matrices, each pair of rest matrices, 

and each pair of matrices computed from the same measure (e.g., task-based and resting-

state accordance matrices).

Anatomical distribution of edges with significant PLS regression coefficient

Instead of only including certain features in prediction, PLS regression includes all features 

but assigns each a different weight. We performed 106 permutations to find the edges with 

statistically significant weights in PLS regression. In each permutation, behavioral scores (d
′) were randomly shuffled across subjects and PLS regression was performed. PLS 

regression beta coefficients for every edge were obtained from each permutation. For each 

edge, significance was determined by whether its real beta value differed (two-tailed p < 

0.05) from the empirical distribution acquired from 106 permutations. Significance testing 

was performed separately for each measure of functional connectivity (Pearson’s 

correlation, accordance, and discordance). This analysis was performed using task-based 

data from the gradCPT dataset.

Comparison between edges in PLS regression and edges in linear regression models

We investigated the relationship between important edges in the PLS predictive model and 

those in the saCPM’s high-attention network (HAN) and low-attention network (LAN), 

defined in previous work (Rosenberg et al., 2016a). As a first approach, we compared PLS 

beta weights of edges that appeared in the HAN, LAN, or neither. As a second approach, we 

calculated the overlap between the important edges in a PLS predictive model and those in 

the HAN or LAN.

Results

Each model’s prediction performance was assessed by correlating predicted and observed 

behavioral scores (e.g., d′ for gradCPT) across individuals.

Internal validation

Predictions from task-based fMRI—Twelve models (3 functional connectivity 

measures [Pearson’s correlation vs. accordance vs. discordance] × 2 prediction algorithms 

[linear vs. PLS regression] × 2 types of data [task-based or resting-state]) were trained using 

24 gradCPT subjects’ task data and tested on the left-out 25th subject. Of models tested on 

the left-out subject’s task data, PLS regression models trained on gradCPT-based fMRI 

provided numerically higher predictions. Predictions were significant for PLS regression 

models using all three connectivity measures (Pearson’s r = 0.884, p = 4.86 × 10−9; 

accordance r = 0.908, p = 3.54 × 10−10; discordance: r = 0.893, p = 1.93 × 10−9). All three 

correlations were significant at p < 10−6 and larger than the largest value from the null 
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distribution obtained from 106 permutations (Figure 1 top and Table 1). The predictive 

power of all twelve models can be found in Figure 1 and Table 1.

Predictions from resting-state fMRI—Models trained on gradCPT task data 

significantly predicted attention from functional connectivity observed at rest (Pearson’s r = 

0.527, parametric p = 6.78 × 10−3 [empirical p = 1.36 × 10−3]; accordance: r = 0.509, p = 

9.29 × 10−3 [p = 1.46 × 10−3]; discordance r = 0.554, p = 4.05 × 10−3 [p = 5.67 × 10−4]; 

empirical p values were based on 106 permutations). The performance of all twelve models 

can be found in Figure 1 and Table 1.

External validations

Prediction performances of all 12 models for all three external validations are also 

represented in Figure 1 and Table 1. To summarize the performance of all models, six PLS 

regression predictive models achieved accurate predictions in all external validations (p < 

0.05, Table 1). On average, PLS models trained on resting-state fMRI provided the best 

prediction when testing on external resting datasets (Figure 2D). Similarly, PLS models 

trained on task-based fMRI provided numerically higher prediction accuracy than other 

models when tested on external task-based fMRI.

Similarity among different functional connectivity feature calculations

We assessed similarities among the three ways of calculating functional connectivity 

features: Pearson’s correlation, accordance, and discordance. The patterns of the three 

measures were very similar (mean similarity > 0.7 from task fMRI and > 0.6 from resting 

fMRI, Figure 3). Pearson’s correlation and accordance were the most similar (~ 0.9, 1st & 

4th pairs in Figure 3), and accordance and discordance were the least similar (~ 0.7, 3rd & 6th 

pairs in Figure 3). Each measure was also shown to be consistent (similarity over 0.5) 

between task and resting-state (7~9th pairs in Figure 3).

Anatomical distribution of edges with significant PLS regression coefficients

The following results are based on the three PLS predictive models trained on gradCPT-

based fMRI and using Pearson’s correlation, accordance, and discordance.

We investigated the anatomical distribution of edges with significant PLS regression 

coefficient weights (two-tailed p < 0.05 based on 106 permutations; Figure 4A & Figure 5). 

Interestingly, many edges with negative weights (i.e., edges whose strength contributes to 

predictions of worse attention) were found to be inter-hemispheric, especially bilateral 

temporal and bilateral cerebellar edges (Figure 4A). In the left hemisphere, intra-temporal 

and intra-cerebellar connectivity also consistently had significant weights (Figure 4B). In 

contrast, edges with significant positive weights were generally distributed across the brain 

(Figure 4A), and connectivity within the right occipital lobe and between right motor and 

left occipital cortex consistently predicted better attention (Figure 4B).

We then directly investigated the number of edges that had significant PLS regression 

coefficients in models using different connectivity definitions (Figure 4B, C). We found 

eight common edges with significant positive weights and six common edges with 
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significant negative weights. Six positive-weight edges constituted a connected set through 

left occipital area, right cerebellum and right motor area. In contrast, the six negative-weight 

edges were distributed and included connections within bilateral temporal areas, within left 

the cerebellum and between left prefrontal and right parietal cortex. Two or more edges 

within the same pair of lobes were merged into one line (Figure 4B).

Comparison between edges in the PLS regression model and edges in the 
linear regression model—We next investigated the relationship between the saCPM 

(identified using linear regression in Rosenberg et al., 2016a) and the networks identified 

using PLS regression (Figure 6). First, we compared the PLS weights of edges present in the 

saCPM’s high-attention network (HAN; 757 edges whose strength predicts better attention) 

and low-attention network (LAN; 630 edges whose strength predicts worse attention) with 

the weights of edges not included in either network (Figure 6A). Next, we counted the 

number of edges with significant PLS weights that also appeared in the HAN or LAN 

(Figure 6B). We found that the PLS regression model using Pearson’s correlation included 

51 edges with significant positive weights and 28 edges with significant negative weights. 

All 51 positive edges were included in the HAN, and all 28 edges were included in the LAN. 

For PLS models based on accordance, 46 of 47 edges with significant positive weights were 

included in the HAN, and 75 of 79 edges with significant negative weights were included in 

the LAN. For PLS models based on discordance, 57 of 59 edges with significant positive 

weights were included in the HAN, and 21 of 25 edges with significant negative weights 

were included in the LAN.

Discussion

Every person has a unique pattern of functional brain connectivity that contains information 

about their cognitive abilities (Finn et al., 2015; Rosenberg et al., 2016a). A recent model 

based on these unique connectivity patterns, the sustained attention connectome-based 

predictive model (saCPM), used linear regression and functional connectivity matrices 

created using Pearson’s correlation and yielded strong predictions of people’s ability to 

attend in multiple contexts, and generalized across multiple independent datasets (reviewed 

in Rosenberg et al., 2017).

The current study tested ways to improve CPM performance across multiple data sets and 

cognitive states. Accordingly, we built models using two feature-selection/prediction 

algorithms (linear and PLS regression) using three functional connectivity measures 

(Pearson’s correlation, accordance, and discordance) observed during two cognitive states 

(task engagement and quiet rest) to predict attention. We assessed model performance using 

LOOCV as well as cross-dataset validation. In general, results suggest that CPM can be 

improved with more sensitive connectivity measures and more complicated predictive 

algorithms.

Comparisons of models built with linear or PLS regression indicate that for our attention 

data, PLS regression-based models offered a slight numerical advantage. Especially, PLS 

regression models trained on rest data outperformed linear regression models when applied 

to rest data. Although linear and PLS regression models differ in several respects, feature 
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selection is one salient distinction. While PLS regression models assign every functional 

connection a weight for prediction, linear regression models select a subset of functional 

connections for prediction. If some selected features are not reliable (for example, across 

sessions or subjects), this method might not be robust. To predict behavior in independent 

datasets, which differ along many dimensions that can affect functional connectivity, such as 

demographics, cognitive state, clinical state, and MRI-related factors (Choe et al., 2015; 

Chou et al., 2012; Zuo and Xing, 2014), it is important to minimize unreliable features. 

Thus, PLS regression models may be advantageous for cross-dataset prediction. Not tested 

here, canonical correlation analysis is another method to investigate relationships between 

two sets of variables (Smith et al., 2015).

Accordance and discordance are recently developed measures of functional connectivity, and 

have been applied to predict long-term memory function in patients with mild cognitive 

impairment (Meskaldji et al., 2016a). Meskaldji and colleagues demonstrated an advantage 

for discordance features in predicting MCI, but in the current study the discordance-based 

predictive model did not outperform the other two connectivity measures in predicting 

attention. Instead, accordance and Pearson’s correlation generally provided more accurate 

predictions. For linear regression models defined with task fMRI, accordance was most 

predictive of attention in four out of the seven tested datasets (gradCPT task and rest, stop-

signal rest, and ADHD-200 rest). This may indicate that synchronized interaction among 

brain regions plays a key role in attention (Buschman and Miller, 2007; Fair et al., 2010; 

Gregoriou et al., 2009; Just et al., 2004; Killory et al., 2011; Konrad and Eickhoff, 2010; 

Rosenberg et al., 2017). However, because different behavioral measures may be more 

closely related to different functional connectivity features, we recommend that future CPM 

studies consider Pearson’s correlation, accordance, and discordance.

In comparing the similarity of functional connectivity patterns measured with Pearson’s 

correlation, accordance, and discordance, we found that correlation- and accordance-based 

connectivity patterns were highly similar (mean r > 0.9 within individuals in task-states). 

Further, the majority of edges with significant PLS weights in models trained on Pearson’s 

correlation matrices also had significant weights in models trained on accordance matrices. 

This is consistent with reports that Pearson’s correlation is primarily driven by a few critical 

points in time-series (Karahanoğlu and Van De Ville, 2015; Liu and Duyn, 2013; Scheinost 

et al., 2016; Tagliazucchi et al., 2012). These critical points are generally the points used in 

calculating accordance. Hence, both Pearson’s correlation and accordance rely on similar 

time points, explaining the high similarity between correlation-based and accordance-based 

connectivity patterns. In sum, Pearson’s correlation and accordance may reflect common 

characteristics of the relationship between activity in spatially distinct brain regions, whereas 

discordance may reflect relatively a unique aspect of these relationships.

The anatomy of predictive networks parallels previously published results (Rosenberg et al., 

2016a, b; in press) and underscores the importance of connections distributed across cortical, 

subcortical, and cerebellar regions in predicting individual differences in attention. To 

highlight several broad trends, functional connections between occipital, motor, and 

cerebellar regions were consistently related to stronger attentional abilities, perhaps 

reflecting efficiency in a circuit necessary for executing motor responses during visual 
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attention tasks. Intra-temporal, intra-cerebellar, and temporal-cerebellar functional 

connections, on the other hand, were consistently implicated in poor attention function. In 

conjunction with frequent observations of altered cerebellar structure and function in ADHD 

(Castellanos et al., 2002; Castellanos and Proal, 2012; Krain and Castellanos, 2006; 

Mostofsky et al., 1998), these results provide evidence for an important role of the 

cerebellum in attention.

Examining the contribution of resting-state networks traditionally implicated in attention - 

the frontoparietal and default mode networks (Corbetta and Shulman, 2002; Mason et al., 

2007; Spreng et al., 2010) - further illuminates the distributed nature of attention process 

across the brain. Previous work used a “computational lesioning” approach to investigate the 

importance the frontoparietal and default mode network edges to predict individual 

differences in attention using the CPM approach. Results showed that removing edges with 

at least one node in either network had small but non-significant effects of predictive power 

(Rosenberg et al., 2016a). Furthermore, the frontoparietal and default mode networks were 

not over-represented in the predictive networks defined here. Although 23.81% of all 

possible edges in the Shen brain atlas (Finn et al., 2015) involve frontoparietal network 

nodes, only 4 of the 51 Pearson’s correlation-based edges with a significant positive PLS 

regression coefficient (7.84%), and only 3 of the 28 edges with a significant negative 

coefficient (10.71%), involved frontoparietal nodes (leftmost column of Figure 4A). Edges 

involving default mode network nodes make up 14.39% of all possible Shen atlas edges, but 

only 3.92% of the edges with significant positive and 10.71% of the edges with significant 

negative PLS regression components. No within-frontoparietal or within-default mode 

network connections had significant PLS regression coefficients. Incomplete overlap 

between the current network models and classic network-based models of attention may 

arise in part from differences in methodology, namely, our relatively new functional 

connectivity approach based on individual differences, compared to the conventional 

functional connectivity and task-activation approach based on group averages. Our work 

does not conflict with prior work, but rather shows that frontoparietal and default mode 

network activity contribute to attentional performance in concert with a more broadly 

distributed network across the whole brain. Different insights from each analysis method 

should inform future research on the distributed nature of functional brain organizational 

patterns underlying complex cognitive processes such as attention (Rosenberg et al., 2017).

Regardless of connectivity measure or prediction algorithm, models tested on task-based 

connectivity patterns performed about twice as well as models tested on resting-state 

connectivity patterns. One reason that models may not generalize from task to rest as well as 

they do from one task state to another (e.g., from gradCPT to ANT) is that attention 

reorganizes brain network topology and functional connection strength (Buschman and 

Miller, 2007; Cole et al., 2013; Gießing et al., 2013; Mainero et al., 2004; Meehan et al., 

2017; Saproo and Serences, 2014). This is evident in our own work, as the correlation 

between a subject’s functional connectivity patterns observed during gradCPT performance 

and rest was, at maximum, 0.7 (Figure 3). Another recent study using data from the Human 

Connectome Project found the within-subject similarity of functional connectivity patterns 

between different brain states was generally lower than 0.7 (Finn et al., 2017).
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A second reason that models may not generalize as well to rest is that resting-state data may 

be less reliable than task data due to the unconstrained nature of rest runs or simply the fact 

that researchers tend to collect less resting-state than task data. For example, our gradCPT, 

ANT, and stop-signal datasets included more than three times as many task as rest volumes. 

It is evident that a reliability of functional connectivity is dependent on data-length (Finn et 

al., 2015; Laumann et al., 2015; Noble et al., 2017b; Pannunzi et al., 2017). Recent work 

investigating the reliability of resting-state functional connectivity showed similarity of 0.55 

between connectivity patterns calculated from two ~4 minute long runs obtained on different 

days, but higher similarity can be obtained with longer resting-state runs (Finn et al., 2017). 

To eliminate the effect of data-length on the predictive power in the current study, we 

performed the additional analysis with matching task and rest data-length in two datasets 

(gradCPT: Internal1 and ANT: External 2) that were collected with the same MR acquisition 

parameters, including 1 sec TR. We built 12 CPMs using the first 350 volumes of task-based 

or resting-state fMRI from gradCPT dataset, and tested the models in gradCPT and ANT 

datasets (See Supplementary Table S5). Overall performance was, as one may expect, lower 

than the original models which were trained with more data (See Supplementary Table S5). 

However, task-based models continue to outperform the rest models. Another recent study 

on multisite reliability reported that the similarity between imaging sessions/sites was lower 

than 0.75 (Noble et al., 2017a). Other works have reported reproducibility lower than 80% 

(Havel et al., 2006; Meindl et al., 2009; van de Ven et al., 2004). Thus, most studies have 

concluded that resting fMRI is significantly reliable, but with considerable variability. 

Finally, it is important to note that the predictive power of all connectome-based models is 

constrained by the reliability of the behavioral measure of interest and of fMRI itself, and 

hence prediction accuracy is limited both theoretically and practically.

Although the CPM variants tested here were constructed in a highly data-driven manner, 

models did have two adjustable parameters: one for generating connectivity features and the 

other for constructing PLS regression models. The first parameter, necessary for calculating 

accordance and discordance, is the threshold for binarizing time-series by ignoring low 

amplitudes considered as noise in fluctuations. Meskaldji and colleagues (2016a) selected 

this threshold (q = 0.8) based on previous work that reported that correlation results were 

stable under a wide range of a parameter values (Tagliazucchi et al., 2012). In this study, we 

used a stricter threshold, q = 0.9, meaning that we calculated accordance and discordance 

from approximately 5% of the highest and of lowest signals in the time-series.

The second free parameter was the number of latent components in our PLS regression 

model (Li et al., 2002). Because PLS regression works through dimensional reduction, 

prediction results depend on the number of components used. Components in PLS 

regression are ordered according to the decreasing amount of variance explained. In this 

study, we used the first component, which explains the most of variance. Although including 

additional components should explain more variance, according to additional analyses not 

included here, it did not produce higher prediction accuracy or better generalizability, while 

increasing the risk of overfitting to the training sample or fitting to noise. Thus, future work 

may explore the optimal selection of components for building generalizable connectome-

based PLS regression models of behavior.
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In conclusion, we compared how well models based on different measures of functional 

connectivity and different feature-selection/prediction algorithms predicted attention. Based 

on our findings, we recommend that future connectome-based models be defined over task 

data when possible, since individual differences in behaviorally relevant circuits and 

networks are likely magnified by ongoing task performance. These models can then be 

applied to resting-state data, which is all that is available in many large scale studies. For 

predicting attention, our meta-analysis did not reveal significant advantages for accordance 

or discordance features over Pearson correlation features, but it would still be useful to 

compare these different features in a broader range of cognitive tasks. For feature selection, 

although the differences were small, PLS regression could be a better choice over linear 

regression for models applied to resting-state data. Finally, we reiterate the value of 

validating all predictive models across independent data sets.
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Figure 1. Performance of 12 Connectome-based Predictive Models (CPMs)
CPM performance was assessed by correlating predicted and observed individual scores. 

The twelve models varied according to: definition of functional connectivity (Pearson’s 

correlation, accordance, or discordance), feature selection and predictive algorithms (linear 

or PLS regression), and data type on which the model was trained (gradCPT-based fMRI or 

resting-state fMRI). All predictive models were validated within the gradCPT dataset and 

applied to three independent datasets (stop-signal task, ANT, and ADHD). Except external 

dataset 3, which contains only resting-state fMRI, all datasets include both task-based fMRI 

and resting-state fMRI. Dark red bars and dotted lines represent results from our previously 

published model (Rosenberg et al., 2016a, b).
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Figure 2. Average performance of twelve connectome-based predictive models (CPMs) in 
internal and external datasets
(A) Mean performance of all models trained on gradCPT task vs. gradCPT rest data. (B) 
Mean performance of all linear vs. all PLS regression models. (C) Mean performance of all 

Pearson’s correlations vs. accordance vs. discordance models. (D) For the internal validation 

columns, bars represent predictive power averaged across connectivity measures. For the 

external validation columns, bars represent predictive power averaged across connectivity 

measures and datasets. For example, the “task external” group came from averaging the 

results from testing on stop-signal task-based fMRI and testing on ANT-based fMRI. The 

“rest external” group was obtained from averaging the results from testing on resting-state 

fMRI from the three external datasets.
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Figure 3. Similarity among connectivity measures and between sessions
The first three pairs represent similarities between 1) correlation and accordance, 2) 

correlation and discordance, and 3) accordance and discordance, all calculated from 

gradCPT-based fMRI. Pairs 4–6 represent the same pairs as 1–3, but calculated from resting-

state fMRI. Pairs 7–9 represent similarities between task fMRI and resting fMRI of 7) 

correlation, 8) accordance, and 9) discordance.
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Figure 3. Edges with significant weights shared across PLS CPMs using different functional 
connectivity features
This figure shows edges with a significant beta coefficient in the three PLS prediction 

models using the three different connectivity measures. (A) Anatomical distribution of 

significant edges in each model; color saturation represents proportion relative to total 

number of possible edges between each pair of anatomical regions. (B) Edges that had 

significant weights in all three models. (C) Significant edges are shown in yellow for each 

model, and common edges across models are aligned vertically. 106 edges (of a possible 

35,778) had significant positive weights, and 95 edges had significant negative weights in at 

least one connectivity measure (two-tailed p < 0.05 based on 106 permutations).
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Figure 5. Edges with significant weights in the model using PLS regression to predict attention 
from Pearson’s correlation coefficients
Bar plots show the number of edges with at least one node in each lobe. Occipital, temporal, 

and cerebellar regions had the highest number of edges with significant positive weights. 

Temporal and cerebellar regions also had the highest number of edges with significant 

negative weights. Every edge is represented twice in this figure – for example, a prefrontal-

temporal connection is counted in both the prefrontal and temporal bars.
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Figure 6. Comparison between significant edges from PLS and linear regression
(A) PLS regression beta weights in the saCPM’s high-attention network (HAN), low-

attention network (LAN), and in neither. (B) Edges with significant PLS weights that are 

also included in the HAN or LAN are shown in blue; edges with significant PLS weights 

that are not included in the HAN or LAN are shown in yellow.
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