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Abstract

Quasiperiodic patterns (QPPs) as reported by Majeed et al., 2011 are prominent features of the 

brain’s intrinsic activity that involve important large-scale networks (default mode, DMN; task 

positive, TPN) and are likely to be major contributors to widely used measures of functional 

connectivity. We examined the variability of these patterns in 470 individuals from the Human 

Connectome Project resting state functional MRI dataset. The QPPs from individuals can be 

coarsely categorized into two types: one where strong anti-correlation between the DMN and TPN 

is present, and another where most areas are strongly correlated. QPP type could be predicted by 

an individual’s global signal, with lower global signal corresponding to QPPs with strong anti-

correlation. After regression of global signal, all QPPs showed strong anti-correlation between 

DMN and TPN. QPP occurrence and type was similar between a subgroup of individuals with 

extremely low motion and the rest of the sample, which shows that motion is not a major 

contributor to the QPPs. After regression of estimates of slow respiratory and cardiac induced 

signal fluctuations, more QPPs showed strong anti-correlation between DMN and TPN, an 

indication that while physiological noise influences the QPP type, it is not the primary source of 

the QPP itself. QPPs were more similar for the same subjects scanned on different days than for 

different subjects. These results provide the first assessment of the variability in individual QPPs 

and their relationship to physiological parameters.
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Introduction

Spontaneous fluctuations in the blood oxygenation level dependent (BOLD) MRI signal 

attributed to intrinsic brain activity exhibit varied dynamic patterns that have been described 

as time-varying correlation (Chang and Glover 2010; Allen et al., 2012; Keilholz et al., 

2013), sparse patterns of localized spontaneous activations (Petridou et al., 2013; Caballero 

Gaudes et al., 2013), or co-occurring activity (Liu and Duyn 2013; Chen et al., 2015), and 

repeated spatiotemporal patterns (Majeed et al., 2011; Kiviniemi et al. 2016; also see Preti et 

al., 2016 for a recent review on varied dynamic patterns). Quasi-periodic patterns (QPPs) fall 

into the last category and consist of a reproducible pattern of spatial changes that repeat over 

time, exhibiting alternation of high and low activity in particular areas and propagation of 

activity along the cortex. QPPs were first observed in anesthetized rats as a bilateral 

propagation of high activity from lateral to medial cortical areas, followed by an echoing 

propagation of low activity (Majeed et al., 2009). Majeed and colleagues (2011) 

subsequently developed a pattern-finding algorithm to identify QPPs in humans, which 

involved alternating high and low activity in default mode (DMN) and task positive (TPN) 

networks. Animal and human studies have shown that QPPs are linked to infra-slow 

(<0.1Hz) electrical activity (Pan et al., 2013; Thompson et al., 2014a, 2014b, 2015; Keilholz 

2014; Grooms et al., 2017) and represent a different type of activity than the higher 

frequency activity tied to time-varying BOLD correlation between areas (Thompson et al., 

2015; Keilholz et al., 2016). Although the infra-slow electrical signals themselves are still 

poorly understood, possibly arising from coordinated interactions between neurons, glia, and 

the vasculature (Keilholz et al., 2016; Thompson et al., 2014a), nevertheless, infra-slow 

activity is one of the best candidates for the coordinating mechanisms within and between 

brain’s large-scale networks (see discussion in Thompson et al., 2014a, 2014b for literature 

review). Hence BOLD QPPs may also reflect aspects of such mechanisms. Like traditional 

BOLD-based networks of functional connectivity, QPPs have been observed in mice (Belloy 

et al., 2017), rats (Pan et al., 2013; Thompson et al., 2014a, 2014b; Magnuson et al., 2010), 

monkeys (Abbas et al., 2016a), and humans (Majeed et al., 2011; Kiviniemi et al., 2016), in 

states ranging from deeply anesthetized to awake, again suggesting that they represent a 

fundamental aspect of the brain’s functional organization.

The QPP algorithm is a correlation-based iterative algorithm that identifies a recurring 

spatiotemporal template during a functional MRI scan (Majeed et al., 2011). First, a segment 

of a preset number of image volumes at consecutive timepoints is selected based on a 

random starting point (Fig. S1). Pearson correlation of this segment with the functional scan 

is calculated in a sliding window, with the window advanced by 1 timepoint each time. At 

times when the template is similar to the windowed functional scan, correlation is high. 

Portions of the scan that are similar to the selected segment can then be identified as local 

maxima in the sliding correlation timecourse. Hence, local maxima that are above a preset 

threshold are selected, and segments of the scan starting at those timepoints are averaged 

together with the original segment to create a template. The sliding correlation is then 

repeated with the template in place of the initial random segment and the process repeats 

until the template exhibits negligible change between iterations. Thus far, the QPP method 

has been used with multiple randomly selected starting timepoints followed by a hierarchical 
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clustering to select the most representative QPP. It has typically been applied to 

concatenated scans from all subjects, meaning that a single template is derived for the entire 

group, with variable levels of contribution across subjects.

To examine variability in the QPPs at the individual level, we made three modifications to 

the QPP method that increased its robustness: 1) segments starting at all timepoints of each 

scan are used to create templates rather than using a limited number of random timepoints, 

2) a customized criterion for the selection of the most representative QPP is introduced 

based on maximizing the template’s correlation with functional scan and the template’s 

periodicity, 3) a method for phase-adjusting a QPP is introduced in order to correctly 

compare QPPs of the same subject in different days or QPPs of different subjects. The 

modified algorithm was applied to resting state functional MRI data from the Human 

Connectome Project (HCP) (Van Essen et al., 2013; Glasser et al., 2016a) at the individual 

level. To examine the effects of motion, analysis was performed on a subgroup of 40 

individuals with the lowest motion and compared to 470 subjects with more moderate levels.

Large-scale patterns such as QPPs are likely to contribute to the global signal, so analysis 

was performed before and after global signal regression. Slow variations in respiration depth 

and rate and heart rate have been shown to correlate with variations in the global signal 

(Power et al., 2017; Liu et al., 2017; Keilholz et al., 2016) and with variations in the default 

mode network (Birn et al., 2006 and 2008; Chang and Glover 2009; Change et al., 2009), so 

the relationship between respiration and heart rate variation and QPPs was also examined. 

To compare the levels of variability within individuals to variability across individuals, the 

HCP resting state scans acquired over two subsequent days were analyzed separately. This 

report provides the first examination of individual variability in QPPs and provides further 

support that the patterns reflect neural activity rather than physiological noise or motion. 

Because QPPs contribute substantially to functional connectivity, especially in the default 

mode network, a better understanding of their properties and sources can provide insight into 

the connectivity differences underlying different behavioral states and traits and connectivity 

changes associated with neurological and psychiatric disorders.

Method

Data and preprocessing

Minimally preprocessed grayordinate and FIX de-noised resting state scans were 

downloaded from the Human Connectome Project S900 release (Glasser et al., 2013; 

Glasser et al., 2016a). To minimize potential contributions from motion, the head motion 

data from the 820 HCP subjects with four complete resting state scans was inspected and 40 

subjects with mean frame-wise displacement (FD; Power et al., 2014) less than 0.12mm per 

scan for all four scans were selected for initial analysis, designated “low movers” in the text. 

After QPPs proved detectable and robust at the individual level in this group of high quality 

data, the selection criterion was relaxed to include 470 subjects with temporal ratio of 

FD>0.2mm less than 0.4, or equivalently FD-spikes < %40, per scan for all the four scans, 

designated the “low-moderate movers” in the text (mean FD < 0.2mm; see Fig. S2a). Note 

that all low movers were included among the low-moderate movers. Previous work that has 

specifically examined motion in the HCP dataset used spikes in temporal Derivative then 
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rms VARiance over elements (DVARS or DV) in addition to FD to identify high motion 

timepoints (Burgess et al., 2016; Siegel et al. 2016). Therefore, we examined DV as well 

(Fig. S2a and S2b). In the initial analysis of the 40 low movers, QPP detection was 

performed using the timeseries of all ~92K cortical vertices and subcortical voxels. To 

maintain practical computation times for the larger group of low-moderate movers with our 

modified approach to QPP detection, the spatial dimension was reduced to 360 cortical 

parcels (Glasser et al., 2016b) by averaging vertices’ timeseries across each parcel and 

normalizing the z-scores of each parcel’s timeseries.

The timeseries of each vertex/voxel per scan underwent the following processing steps: 1) 

demeaning 2) band pass filtering (Butterworth, fourth order, 1dB cutoff frequencies: 0.01 

and 0.1Hz, using Matlab fdesign and filtfilt functions, 424 zeros pads were inserted at both 

ends of each 1200-timepoint scans before filtering and were removed afterwards to 

minimize transient effects), and 3) normalization by their own standard deviations. For the 

initial analysis, no global signal regression was performed.

Modified QPP detection method

The original approach described by Majeed et al., to identify QPPs involved choosing a 

limited number of randomly selected starting timepoints, running the main algorithm and 

finding the templates corresponding to those starting timepoints, using hierarchical 

clustering on those templates, and finally selecting the template that has the maximum 

average correlation with the rest of the templates in the biggest cluster. However, some 

starting timepoints result in a template that has a low correlation with the functional scan or 

does not occur often. Other starting timepoints may pick up the same template but at 

different phases. To examine the full potential of the main algorithm, a computationally 

efficient Matlab script was developed to inspect the templates resulting from all the 

timepoints. It exactly replicated the main algorithm, keeping all free parameters the same: 

correlation threshold of 0.1 for the first 3 iterations and 0.2 for the rest, maximum iteration 

of 20. QPPs in humans are approximately 20s long (Majeed et al., 2011); for this study, the 

window length, or template duration, was set to 30 timepoints (21.6s). Four scans were 

concatenated for each subject and the new QPP script inspected every timepoint, giving 4×

(1200-30+1)=4684 time points.

Fig. 1 demonstrates the use of all timepoints to identify all possible templates: in Fig. 1a, the 

time course of sliding correlation for a template corresponding to a single starting timepoint 

is shown for one individual. In Fig. 1b, timepoints corresponding to supra-threshold local 

maxima of such correlation are plotted in the vertical axis for each starting time point, and 

the value of correlation is indicated by color. When all timepoints are considered as starting 

timepoints, considerable redundancy results. Sequential starting timepoints or those ~30 

timepoints apart are essentially the same template. Also, templates from some timepoints 

exhibit low correlation or periodicity. Hence, for the template resulting from each timepoint, 

values of its sliding correlation at local maxima that were above the threshold of 0.2 at the 

final iteration were summed and the template with the highest sum was designated as the 

most representative QPP. Selected in this way, the most representative QPP is guaranteed to 

have high correlation and large numbers of occurrences relative to other templates.
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Characterizing the spatial extent of the anti-correlation within the duration of a QPP

One of the most prominent features previously noted in the QPP is that patterns of activity 

are 180 degrees out of phase, i.e., anti-correlated, for regions of the DMN and TPN. For this 

analysis, we first reduced the dimensionality of the low-mover’s templates by averaging 

voxels in each parcel to obtain a 360×30 representation of the templates comparable to the 

parcel-wise templates of the low-moderate movers. To test for and characterize anti-

correlation between DMN and TPN, each of 14 parcels in left posterior cingulate cortex 

(LPCC) was taken as a seed, one at a time, and the histogram of Pearson correlation values 

between the 30-timepoint template timeseries of each seed with all 360 parcels was 

calculated with bin centers −0.9:0.2:0.9 (see Fig. S3 for a complete description of the 

procedure). The histogram with maximum number of parcels in the first bin was selected for 

each subject. In the case of zero count for the first bin for all seeds, the timeseries of all 

seeds were averaged and again a histogram of Pearson correlation values with 360 parcels 

was calculated with the same bin centers. Not all parcels in Glasser’s PCC region are 

strongly task negative (Glasser et al., 2016b), which argued against using the average of all 

seeds for everyone. The seed that maximized the spatial extent of anti-correlation was 

different across individuals, in line with Chen et al. 2017.

Relationship between QPPs and global signal

Because large, spatially coherent patterns such as the QPP may contribute to the global 

signal, the relationship between QPPs and the global signal was explored as one of the 

central pillars of the current work. For the low movers, we used the average of the timeseries 

of cortical vertices and subcortical voxels (cortical vertices and subcortical signal) as an 

approximation for the global signal, since previous studies have shown the global signal 

originates primarily in the gray matter (Glasser et al., 2016a; Power et al., 2017). For the 470 

low-moderate movers, we used the average of the timeseries of cortical vertices (cortical 

signal) since their QPP analysis was performed using only cortical parcel-wise timeseries. 

The total cortical and subcortical signal is highly correlated with the cortical signal (r=0.99; 

Fig. S4). Throughout this article, we have used the term global signal in general statements 

in place of cortical and subcortical signal or cortical signal.

The following approaches were taken to explore the relationship between QPPs and the 

global signal:

1. The values of the first and the last bins of the correlation histograms described 

above, which reveal the spatial extent of strong negative and strong positive 

correlation in the QPPs, were plotted against the root mean square (rms) of the 

global signal. Suggested by a clear visual division in the values of the last bin, 

QPPs were clustered into two groups using Kmeans, with the values of the last 

bin being the input. The rms of the global signals were compared between 

groups using an unpaired t-test.

2. Global signal was regressed and the QPP analysis was repeated. For global signal 

regression, the timeseries of each vertex underwent only the first two steps of the 

preprocessing, then global signal was calculated by averaging across all vertices. 

General linear modeling (GLM) was performed with the global signal as the 
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regressor. The residual timeseries were averaged across each parcel, the parcels’ 

timeseries were z-scored and the QPP analysis was repeated. The correlation 

histograms were then calculated again to determine the effect on the spatial 

extent of strong positive and negative correlation.

3. The QPP template of each subject was convolved with its corresponding 

correlation time course (QPP⊗C) and the result was cross-correlated with the 

global signal (see Fig. S5 for procedure). Throughout this work, all cross 

correlation time lags are allowed to range from −20 to 20 timepoints, and, the 

maximum of the absolute value of cross-correlation and the corresponding lag 

are reported. The goal of this procedure was to determine whether QPP 

occurrence coincided with timepoint-by-timepoint fluctuations of the global 

signal. The temporal pattern of the QPP is different for each parcel (or voxel), so 

for each subject, we selected the parcel whose raw timeseries had the highest 

correlation with the global signal (ROIGS). To build a null distribution for cross-

correlation values, phase-randomized timeseries were made out of QPP⊗C at 

ROIGS and the global signal as described in Majeed et al., 2011 for each subject. 

The phase randomized time series were then cross-correlated, and the 

Kolmogorov-Smirnov (KS) test was adopted to compare the distributions from 

the real and phase-randomized data.

Relationship between QPPs and slow physiological variations

Slow variations (<0.1Hz) in respiration rate and depth and cardiac rate are known to 

correlate with fluctuations of the global signal (Power et al., 2017; Liu et al., 2017; Keilholz 

et al., 2016) and with BOLD fluctuations in the DMN (Birn et al., 2006 ; Chang and Glover 

2009; Change et al., 2009). To examine the relation between QPPs and slow respiratory- and 

cardiac-induced BOLD fluctuations, the respiratory belt and cardiac traces of the 470 low-

moderate movers: were despiked using Matlab medfilt1, amplitude clipped to −2.5 to +3.5 

standard deviation from mean to remove outliers not fixed by despiking, band pass filtered 

with a fourth order Butterworth with 3dB cutoff frequencies of 0.01 and 1Hz for respiratory 

traces and 0.6 and 3Hz for cardiac traces, using Matlab fdesign and filtfilt functions (zeros 

pads were inserted at both ends before filtering and were removed afterwards to minimize 

transient effects), and amplitude rescaled to 0–100(Fig. S6a). For manual quality control, 

histograms of the preprocessed traces in time (Kasper et al., 2017) and their frequency 

spectra were visually inspected (Fig. S6b). The number of subjects with acceptable quality 

respiration and cardiac data for all four scans were 422 and 326, respectively.

Respiratory Variation (RV), defined as the standard deviation of the respiratory trace in a 

sliding window of 7.2s, which equals ~two respiratory cycles, centered around each fMRI 

scan timepoint (Chang et al., 2009), was then calculated for each scan. HCP respiration data 

often has short lapses causing spikes in RV; therefore, based on the histogram of the 

standard deviation of RV (std RV), only subjects whose std RV for all scans were within 

three standard deviations above the median were included (404 subjects; Fig. S6c). Heart 

rate Variation (HV), defined as the average of time between successive peaks of cardiac trace 

in a sliding window of 7.2s centered around each fMRI scan timepoint (Chang et al., 2009) 

was also calculated. For peak detection, the Matlab findpeaks function was used with the 
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minimum peak distance set to a value that corresponded to two-thirds of the largest peak in 

frequency domain (Fig. S6a showcases the effectiveness of this simple method). Based on 

the histogram of the standard deviation of HV (std HV), only subjects whose std HV for all 

scans were within three standard deviations above the median were included (315 subjects; 

Fig. S6c). 292 subjects had both high quality respiration and cardiac data for further 

physiological related analyses.

The values of the first and the last bin of the correlation histogram of each QPP, 

corresponding to the spatial extent of strong negative and positive correlations, were plotted 

against the average of std RV and std HV across four scans. The average of std RVs and std 

HVs across four scans was compared between groups with the two QPP types using an 

unpaired t-test. In addition, physiological noise was regressed and QPP analysis was 

repeated. In order to regress physiological noise, the Respiratory Response Function (RRF) 

and Cardiac Response Function (CRF), whose analytical forms are introduced in Birn et al., 

2008 and Chang et al., 2009 (see Fig. S7), were convolved with RV (RRF⊗RV) and HV 

(CRF⊗HV), respectively, to build the estimate of respiratory- and cardiac-induced signal 

fluctuations. RRF⊗RV and CRF⊗HV were separately cross-correlated with parcel-wise raw 

timeseries to identify the optimal lag that resulted in the maximum correlation per parcel. 

GLM was performed, per parcel, with a 2-column regressor built from RRF⊗RV and 

CRF⊗HV, each shifted by their optimal lag for that parcel. Residual timeseries were z-

scored, QPP analysis was repeated, and the correlation histograms were again calculated to 

determine the effect of physiological noise regression on the spatial extent of strong positive 

and negative correlation.

Metrics for QPP correlation and periodicity

To obtain a single value that describes the overall strength of the QPP during a scan, we used 

the median of QPP correlation with the scan at supra-threshold local maxima (Fig. 1). 

Similarly, the median of the time between successive supra-threshold local maxima indicates 

how often a QPP occurs throughout the functional scan. Hence, these metrics were 

calculated for 470 low-moderate movers. The frequency characteristics of the QPP 

correlation timecourse were also examined using the Fourier Transform.

Comparing QPPs between sessions

The four HCP resting state scans were acquired over two subsequent days with two ~15min 

back-to-back scans per day, providing an opportunity to examine the relationship between 

QPPs in the same individual on separate days. QPP analysis was performed separately on 

the concatenated scans from each day. QPPs were identified based on the modified method 

introduced earlier, and histograms of correlation with LPCC were calculated for each QPP. 

As before, the values of the last bin were used as the input to cluster the QPPs of all subjects 

of both days using Kmeans. QPP type, its median correlation and its periodicity were 

compared between the two days.

Calculating the correlation between the most representative QPPs of separate days requires 

both templates to have the same phase; for instance, both start around zero at timepoint 1 

and reach their maximum during the first half of their cycle rather than one reaching its 
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minimum in the first half and maximum in the second half. In order to phase-adjust a 

representative QPP, its correlation time course was cross-correlated with that of all other 

templates corresponding to all other inspected starting timepoints (see Fig. S8a). Templates 

with values greater than 0.9 were kept since they are similar to the most representative QPP 

though they can have different phases. These templates were sorted, in descending order, 

based on their sum of correlation at supra-threshold local maxima, the same metric we have 

previously used to identify the most representative QPP. The first template whose left early 

visual area (parcel 184) had the following conditions was designated as the phase-adjusted 

QPP: 1. near-zero value at timepoint 1,2. average of the first three timepoints is positive, 3. 

maximum occurring before timepoint 15 and before its minimum, 4. value of the maximum 

greater than the value of the minimum. If no such template was found, conditions 1 and 2 

were discarded and only 3 and 4 were enforced. This method found a phase-adjusted QPP 

for 465 individuals before GSR, and 467 individuals after GSR. Furthermore, when 

comparing two QPPs, we performed a fine phase-matching (see Fig. S8b and S8c), by time-

shifting one of them from −7 to 7 timepoints and taking the maximum Pearson correlation 

across different time-shifts. For the within subject comparisons, QPPs from each day were 

compared. For between subject comparisons, QPP of both days from each subject were 

compared to those of all other subjects, -resulting in 465×464×4 comparisons (467×466×4 

after GSR).

Basic demographics

Out of 470 low-moderate movers, 241 are female (out of 820 HCP with four complete 

resting state scans, 453 are female). There are 124 twins,62 pair, 31 monozygotic, 196 two-

sibling individuals,98 pair, twin or not, 105 three-sibling and 20 four-sibling individuals, two 

of 3 or 4 siblings might be twin; only 149 individuals have no siblings. The 470 low-

moderate movers’ median age is 28 with standard deviation of 3.6 and range of 22–36 

(median age of all 820 subjects is 29, standard deviation of 3.7 and range: 22–37).

Results

Despite the use of the modified method for identifying QPPs, the overall spatial and 

temporal distribution of activity was similar to that described in Majeed et al., 2011. In all 

cases, activation and deactivation of areas belonging to the DMN occurred. For some 

individuals, the TPN exhibited anti-correlation with the DMN, while for other individuals, 

positively correlated activity was observed in most areas. After global signal regression, 

however, the QPPS become more similar in that anti-correlation between the DMN and TPN 

was observed for all individuals. Core regions of DMN include posterior cingulate, 

precuneus, medial prefrontal, ventral anterior cingulate, lateral parietal, inferior temporal, 

and parahippocampal areas and core regions of TPN include dorsolateral prefrontal, 

supramarginal gyrus, posterior parietal, insula, premotor and supplementary motor areas. 

While all analysis was performed on the individual basis for this manuscript, the resulting 

spatiotemporal patterns were in good agreement with previous work that calculated QPPs on 

a group basis (Majeed et al., 2011; Kiviniemi et al. 2016).
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Fig. 2a shows QPPs from two representative subjects out of the 40 low movers before global 

signal regression; Videos 1 and 2 show all 30 timepoints and Fig. 2b shows the parcel-wise 

format. The QPP from the first subject exhibits clear anti-correlation between the activity 

levels in the DMN and TPN (anti-correlated type of QPP). In the second subject, however, 

most of the brain activates, with only a few time points showing anti-correlation (most-

correlated type of QPP). The histograms of correlations with the LPCC for the two QPPs 

from the same subjects are plotted in Fig. 3a. Within subject 1’s QPP, ~40% of ROIs are 

anti-correlated with LPCC between −1 and −0.8 while within subject 7’s QPP, no ROI is 

anti-correlated with LPCC and %75 of the ROIs have a correlation value greater than 0.8. 

This difference is clearly demonstrated in the correlation maps in Fig. S9a. Note, although a 

few timepoints are showing anti-correlation within Subject 7’s QPP, including all of their 30 

timepoint timeseries in calculating the Pearson correlation with LPCC renders a positive but 

weak correlation. This can be seen by comparing Fig. 2a, timepoint 15 with Fig. S9a and is 

also qualitatively suggested by the parcel-wise format of QPP in Fig. 2b. Fig. S9b shows 

histograms of correlations within the QPPs for all 40 low movers. It is notable that for some 

individuals, strong anti-correlated activity appears, while for others, most areas are strongly 

correlated. Fig. 3b, in which 40 low movers are sorted based on the percentage of ROIs 

correlated<−0.8 with the LPCC (left) or sorted based on the percentage of ROIs 

correlated>0.8 with LPCC (right), summarizes this feature. The clear separation into two 

groups of data-points in the right part of Fig. 3b provides further evidence that QPPs should 

be coarsely categorized into two types. Color indicates QPP type and the dashed line 

indicates where zero is reached. It can be seen that strong anti-correlation exists in some of 

the individuals categorized as having the most-correlated QPP type in a very small portion of 

areas. Furthermore, not all individuals categorized as having the anti-correlated type of QPP 

exhibit broad strong anti-correlations. These findings both point back to the fact that 

categorization is coarse.

The widespread involvement of brain areas in the QPPs encouraged us to seek a relationship 

with the global signal. We plotted the percentage of ROIs with strong negative and positive 

correlations against the root mean square (rms) of the global signal in Fig. 3c. The lower the 

rms of the global signal, the larger the spatial extent of strong anti-correlations within a QPP, 

and the higher the rms of global signal, the larger the spatial extent of strong positive 

correlations within a QPP. The rms of global signal is significantly different between the two 

QPP types (medians: 0.16 and 0.22, p:2e-4; see whisker plot in Fig. S9c).

Similar results, summarized in Fig. 3d and 3e, were seen after the pool of subjects was 

expanded to include individuals with low to moderate levels of motion and analysis was 

performed on a parcel-wise rather than voxel-wise basis. The rms of the global signal is 

significantly different between two groups (medians: 0.21 and 0.27, p:7.3e-22, Fig. S9d). 

The number of subjects with strong negative and positive correlations for each ROI are 

plotted in Fig. 3g. As expected, most ROIs with strong anti-correlation belong to non-DMN 

networks and most ROIs with strong correlation belong to the DMN. Furthermore, in line 

with Chen et al., 2017, the seed that maximized the spatial extent of anti-correlations across 

the majority of subjects is inferior and ventral in LPCC (See Fig. S10).
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The spatial extent of strong negative and positive correlations within a QPP were plotted 

versus motion metrics for low movers (Fig. S11a) and low-moderate movers (Fig. S11b and 

S11c). Neither of the FD metrics was significantly different between groups with different 

QPP types; however, the DV metric was slightly although significantly higher in individuals 

with the most-correlated type of QPP (medians: %8 versus %9, p:3e-4. These findings show 

that low to moderate levels of motion have minimal impact on the QPP. While higher levels 

of global signal reduce the amount of anti-correlation observed between the DMN and TPN, 

the relationship between the global signal and the QPP is not tied to motion but rather to 

some other aspect of the global signal.

After global signal regression, all 470 subjects showed strong anti-correlations within their 

QPPs (Fig. 3f) in areas belonging to non-DMN networks (Fig. 3h). Fig. 2c shows QPPs of 

the same two subjects in Fig. 2a, but after global signal regression (Videos 3 and 4 show all 

30 timepoints and Fig. 2d shows the parcel-wise format). Anti-correlated activity still exists 

in subject 1 and is now observed in subject 7. Global signal regression makes the detected 

QPPs more homogeneous across subjects in terms of the spatial extent of strong negative 

and positive correlation.

To determine whether the occurrence of QPPs coincides with global signal fluctuations in a 

timepoint-by-timepoint manner, we convolved the QPP of each of the 470 low-moderate 

movers with its template correlation timecourse. Because the strength of the QPP varies 

across parcels, for each subject, we considered QPP⊗C at the parcel whose raw timeseries 

had the highest correlation with the global signal (ROIGS). We cross-correlated this 

timeseries with the global signal (allowed lag: −20 to 20 timepoints). Fig. S12a shows the 

distribution of the results. The median is 0.79 and it is significantly higher than the null, 

indicating that the QPP does often coincide with the global signal fluctuations in a 

timepoint-by-timepoint manner with small time-shifts. Moreover, the higher the rms of the 

global signal, the stronger this coincidence. Fig. S12b shows the number of subjects 

exhibiting the highest correlation with the global signal for each parcel; as expected, primary 

and early visual, somato-motor and auditory areas are the most correlated with the global 

signal in agreement with (Glasser et al., 2016) and (Power et al., 2017). In addition to taking 

QPP⊗C at ROIGS, three alternatives were tested: (i) selecting parcel 184, Left Early Visual 

Area, for all subjects, since this was the parcel with the highest correlation with the global 

signal overall (Fig. S12d), (ii) selecting the parcel at which cross-correlation of QPP⊗C and 

the global signal was maximum (Fig. S12f), and (iii) averaging QPP⊗C across parcels and 

cross-correlating that with the global signal (Fig. S12e). Results were similar for all three 

approaches.

Fig. 4a shows the rms of the global signal plotted against the standard deviation of 

respiratory variation (RV) and heart rate variation (HV). Fluctuations in the global signal are 

positively correlated with respiratory and heart rate variations, in line with Power et al., 2017 

where at low motion timepoints, global signal and RV correlation was shown to be ~0.5. RV 

and HV are themselves correlated (Fig. S13a). The spatial extent of strong negative or 

positive correlations within a QPP is solidly predicted by rms of the global signal; hence, 

they should also be related to respiratory variations. As expected, individuals with the anti-
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correlated QPP type have slightly, but significantly, lower RV and HV variation compared to 

those with most-correlated QPP type (Fig. S13b).

To further examine the relation between QPPs and slow physiological variations, estimates 

of slow respiratory- and cardiac-induced BOLD signal fluctuations were regressed from the 

data and the residuals were reanalyzed. Fig. 4b shows that more subjects now exhibit the 

anti-correlated QPP type. Out of 292 subjects whose physiological noise estimates were 

regressed, 156 had the anti-correlated type of QPP, and after regression this number 

increased to 225. Moreover, the spatial extent of strong anti-correlations has increased 

overall (compare Fig. 4b with Fig. 3d) in areas that belong to non-DMN networks (Fig. 

S14). The beta value obtained from regression, the cross-correlation values and their 

corresponding lags that preceded regression stage to determine the optimal lag per parcel are 

provided in Fig. S15. Overall, in our dataset, the BOLD signal correlated more with the 

respiration variation, in more widespread areas, compared to cardiac variations. Primary 

areas of visual, auditory, and somato-motor cortex had the highest correlation with 

respiratory and cardiac variation, but the correlation in default mode areas was not 

prominent and was less than in neighboring areas.

How correlated is the QPP with the functional scan and how often does it occur? The answer 

can be obtained by inspecting the correlation time course for the QPP and the scan. Fig. 5a 

shows such time courses for the two representative subjects in Fig. 2. Subject1’s QPP (anti-

correlated type), correlates less with subject1’s functional scan as opposed to subject7’s QPP 

(most-correlated type). Also, subject1’s QPP occurs less often, with more variability relative 

to that of Subject7’s. For all 470 subjects, the median of QPP correlation at the supra-

threshold maxima was 0.35 and the median of the time between successive maxima was 26s 

(Fig. 5b).

Fig. 5c shows values of Fig. 5b versus rms of global signal, the predictor of strong negative 

or positive correlations within a QPP. High rms of the global signal corresponds to high 

correlation and periodicity, meaning most-correlated type QPP correlates relatively more 

with the functional scan and occurs more often. Low rms of global signal corresponds to low 

correlation and periodicity, meaning, anti-correlated type QPP correlates relatively less with 

functional scan and occurs relatively less often. After global signal regression, where all 

QPPs have strong anti-correlation within them, correlations and periodicities decrease (Fig. 

5d, medians:0.31 and 32s). This behavior was expected since after GSR all QPPs become 

similar to the anti-correlated QPP type before GSR.

To demonstrate the quasi-periodic nature of the QPPs, we plotted the average Fourier 

transform of all individuals’ QPP correlation time courses in the frequency domain as shown 

in Fig. 6. A broad peak at ~0.03Hz (~30s) provides evidence of the quasiperiodic nature of 

the pattern.

To examine the relationship between QPPs of the same individual on subsequent days, QPP 

analysis was performed separately on the concatenated scans of each day. Out of the 245 

individuals with the anti-correlated type QPP on day 1, 178 (~%73) exhibit the same type on 

day 2, and out of the 225 individuals with most-correlated type QPP on day 1, 130 (~%58) 
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exhibit the same type on day 2 (Fig. 7a); this suggests individuals with anti-correlated type 

QPP are more stable in their QPP type. The rms of the global signal, which predicts QPP 

type, is highly correlated between days (r=0.79, Fig. 7b), suggesting a very interesting point 

that global signal fluctuation can be regarded as a trait, in addition to reflecting brain states 

(Wong et al., 2013). Also note that the standard deviation of Respiration and Heart rate 

Variation which is correlated with global signal (r=0.58 and 0.42, Fig. 4a) is reasonably 

correlated between days (r=0.56 and 0.58, Fig. S16a), which is in line with Birn et al., 2014. 

QPP correlation and periodicity are collectively reflected in the sum of QPP correlation at 

supra-threshold local maxima which is reasonably correlated between days (r=0.61, Fig. 7c). 

Both the median of QPP correlation at supra-threshold maxima and the median of the time 

between successive maxima remain correlated between days (r=0.43 and 0.44, Fig. S16b). 

QPP correlation and periodicity are still correlated across days after global signal regression 

(Fig. S16c) although the correlation values decrease, suggesting that these metrics could 

potentially be recognized as traits independent of the global signal. Fig. 7d shows that phase-

adjusted QPPs, derived based on the procedure explained in the methods section, are 

significantly more correlated between days within subjects (median:0.78) than between 

subjects (median of 0.65; pKStest:1.4e-88). This finding is unchanged by global signal 

regression, although medians are reduced (Fig. S16d, within subject: 0.63, between subject:

0.42, pKStest:1.4e-88).

Out of 233 individuals with anti-correlated type QPP, 148 are female (~%63.5) and out of 

those with most-correlated type QPP, %60.8 are male. Out of 31 monozygotic twins, 20 have 

the same QPP type (%64.5); this percentage is %61.3 for 31 non-monozygotic twins. Out of 

196 two-siblings individuals (twin or not) %46 have the same QPP type; this percentage is 

%29 for 105 three-sibling individuals and %20 for 20 four-sibling individuals (two of 3 or 4 

might be twins). There is no age difference between group of individuals with two different 

QPP types (both medians are 28, p=0.85).

Discussion

Summary

In order to perform the first examination of the variability in QPPs across individuals, we 

developed a robust version of the pattern-finding method that does not depend upon a 

randomly-chosen starting point. Applying this method to ~500 individuals, we found that 

QPPs fall into two coarse categories prior to global signal correction and that these 

categories are closely linked to the overall level of global signal. After global signal 

regression, QPPs become remarkably similar in their spatial extent of strong positive or 

negative correlation, strength and timing across individuals. The QPPs do not appear to 

result from motion or physiological signal fluctuations, suggesting a neuronal source. 

Between subsequent days, QPP type, strength and periodicity are reasonably correlated and 

the pattern itself is somewhat individual-specific.

Potential significance of QPPs

The involvement of the DMN and TPN suggests that QPPs may be linked to attention or 

vigilance. The DMN is defined by (i) deactivation during tasks requiring attention to the 
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external environment, and (ii) activation during internally focused and self-referential tasks 

(Buckner et al., 2008). The TPN is defined as areas that co-activate during tasks requiring 

externally focused attention. It follows that the DMN and TPN tend to be anti-correlated 

(Fox et al., 2005; Murphy and Fox 2016). One can further speculate, based on the definitions 

of the two networks, that the activity levels in each network prior to a task could influence 

subsequent activity when a task commences, hence predicting measures of behavioral-level 

performance. Numerous works support this hypothesis (see Rosenberg et al., 2016; Tavor et 

al., 2016; Smith et al., 2015; Cole et al., 2014; Schultz and Cole 2016; Sadaghiani et al. 

2015, 2010, 2009). In addition to predicting cognitive traits, a preliminary QPP analysis 

during a psychomotor vigilance task shows that the phase of the QPP predicts reaction time 

and can therefore reflect varying cognitive states even within an individual (Abbas et al., 

2016b).

Moreover, because numerous neurological and psychiatric disorders exhibit alterations in the 

DMN in particular (see Broyd et al., 2008 for a comprehensive review), it is plausible that 

some of these changes may be reflected in alterations in the QPP. By revealing the course of 

activation and deactivation of DMN, QPP has the potential to add to our basic cognitive 

science or improve diagnosis and treatment assessment in mental disorders and neuro-

pathological diseases.

QPPs and physiological rhythms

Physiological noise is known to contribute spatially-structured noise into functional 

connectivity measurements and could conceivably contribute to the large-scale, repetitive 

patterns observed in the QPPs. Slow variations in respiration depth and rate give rise to 

fluctuations in the arterial level of CO2, a potent vasodilator, causing variations in cerebral 

blood flow and oxygenation hence variations in the BOLD signal (Birn et al., 2006; Chang 

et al., 2009). Heart beat (rate and contractility) is tightly coupled with respiration (rate and 

depth) in both fast and slow varying regimes (Power et al., 2017; Chang et al., 2009). 

However, our findings suggest physiological variations impact the type of QPP, but they do 

not account for its presence, which makes it more likely that the QPP is of neuronal origin. 

Furthermore, Kiviniemi et al., 2016 utilized the QPP algorithm to examine processes 

explicitly associated with cardiac pulsation and respiration in Magnetic Resonance 

Encephalography (MREG) data with very high temporal resolution (100ms), and the 

spatiotemporal patterns that they obtained are much different in spatial extent and timing 

than the QPPs reported here.

In Power et al. 2017, Respiration Volume per unit Time (RVT), introduced by Birn et al., 

2006, explained more variation of the global signal compared to RV, so we calculated RVT 

as well (procedure described in Fig. S17a). RV and RVT are correlated (Fig. S17b) and both 

capture respiration variation in rate and depth. The rms of global signal is correlated with 

standard deviation of RVT (r:0.47, Fig. S17c), but the correlation is lower than for RV (r:

0.58), hence, we did not pursue further analyses based on RVT.
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Global Signal

Global signal regression is a controversial topic (Power et al., 2017; Murphy and Fox 2016; 

Caballero-Gaudes and Reynolds 2017). Sustained motion-induced and respiratory-induced 

signal fluctuations are largely and simply removed by global signal regression, but it may 

also remove possible widespread neuronal co-activations, increase the spatial extent and 

strength of anti-correlations, and distort the variation structure (Saad et al., 2012). In this 

work, we have solely quantified individual differences in the fluctuation level of the global 

signal, partially explained by differences in the fluctuation levels of physiological rhythms, 

and observed that global signal regression leads to more homogenous spatial extent of strong 

negative and positive correlations within the QPPs of individuals. Note that the QPP 

algorithm is a correlation-based approach and using it on the whole brain is likely to identify 

the pattern with the strongest activity and largest spatial extent. Without GSR, our results 

show the QPP algorithm is biased toward global fluctuations which are strong and extensive 

in those individuals who exhibit such fluctuations and unsurprisingly, their QPPs turn out to 

be the most-correlated type. After GSR, our results suggest that the next largely extended 

activation pattern throughout the whole brain is the anti-correlated activity of DMN and 

TPN and therefore the QPPs turn out to be the anti-correlated type.

A feature of the global signal is worth highlighting: its distribution is bimodal (Fig. S18a) 

and the borderline between two modes approximately matches the borderlines in Fig. 3e that 

separate mostly correlated QPPs from QPPs with strong anti-correlations, providing 

additional evidence that QPPs, which identify the global patterns, should be coarsely 

categorized into two types.

Lastly note the rms values of global signal reported here are based on the average of the 

timeseries with our three additional preprocessing steps applied. These rms values are highly 

correlated (r:0.95) with rms values without any additional preprocessing steps named MGT 

(mean of grayordinate timeseries) in the HCP dataset (Fig. S18b).

Motion

Motion has complex effects on the MRI signal that are only partially compensated with 

correction strategies. While it seemed unlikely that the repetitive patterns detected with the 

QPP algorithm could arise from head motion, we used a subject group with very low motion 

in our original analysis. The results were similar to previous studies of QPPs and suggest 

that motion is not a major contributor to the QPP. After this original analysis, the subject 

pool was expanded to include a much larger number of subjects with more typical levels of 

motion. The 470 subjects of this study were chosen based on an arbitrary threshold on FD 

(Fig. S2a) and neither of two FD metrics were significantly higher in individuals with the 

most-correlated QPP type relative to those with the anti-correlated type (Fig. S11). 

Moreover, we performed a supplemental analysis of the 40 highest movers and found that 

the results were very similar to the low-moderate movers (Fig. S19). Based on these 

findings, motion does not appear to be a major issue for our future work on QPPs using the 

HCP dataset. Nevertheless, motion should be considered when evaluating differences in QPP 

metrics across groups.

Yousefi et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Limitation and Future work

The QPP algorithm was initially developed to capture repeated large scale patterns of brain 

activity. Work in rodents that limits the algorithm to small sections of the brain (e.g., the 

subcortical grey matter) suggests that other, less prominent patterns may coexist with the 

QPP described in this manuscript (Majeed et al., 2011), an avenue that should be explored in 

future work. The current work focuses on characterizing the most representative QPP and 

how it varies across individuals. Subcortical regions were included only in the group of 40 

low movers where analysis was performed on a voxel-wise basis because the parcellation 

scheme that we used for larger groups is limited to the cortex. However, based on the voxel-

wise analysis (Fig. 2), subcortical areas exhibit potentially interesting patterns of activation 

and deactivation during the QPP, and we intend to investigate their involvement further 

during future work.

To achieve practical computation times while using the modified QPP method that examines 

every time point, analysis was performed on a parcel-wise basis for most of this work. Our 

preliminary analysis, based on 40 low movers, has shown that QPP type, correlation 

histogram and relation with the global signal, do not change when analyzed using cortical 

parcels as opposed to cortical and subcortical voxels. Also, as shown in Glasser et al., 2016b 

or Chen et al., 2015, parcel-wise analysis has the additional advantage of increasing the 

statistical significance. In our results, for instance, QPP correlation significantly increases. 

However, some of the fine details of the QPP are lost due to the spatial downsampling. For 

example, the propagation along the cortex observed by Majeed et al. 2009 and 2011 or even 

in this report (particularly evident in the videos) is difficult to detect in the parcel-wise QPP.

For the current analysis, all of the free parameters for the QPP analysis were kept constant 

across subjects. However, the outcomes suggest that some of these parameters should be 

optimized on an individual basis. For example, visual inspection of all 470 QPP1s shows 

that the full cycles are slightly different from 30 timepoints for some individuals (see Fig. 

S20 for a typical and two extreme examples). As shown in Majeed et al., 2011, the QPP 

algorithm is robust in finding templates whose duration slightly deviates from a preset value, 

and qualitatively all the results presented in this work, such as QPP type and relation with 

global signal, seem robust in this regard as well, but systematically determining the optimal 

window-length for each individual is a goal of our future work.

The modified QPP algorithm uses all time points to avoid any potential biases. Nevertheless, 

it is clear from Fig. 1b that considerable redundancy results. A carefully-selected subset 

would ensure robust detection of the primary QPP while reducing the computation time. The 

selection of this subset will be explored in future work.

The origins of the QPPs remain poorly understood and are critical to understanding the 

neuro-physiological processes that are represented in MRI-based measurements of 

functional connectivity (FC). The spatially coherent fluctuations of the QPP certainly 

contribute to FC measurements, while the relatively long time scale and repetitive nature of 

the patterns is evidence that they are not solely serving cognitive processing attributed to 

intrinsic activity of DMN and TPN. To determine if QPPs were linked to the variations in 

correlation observed with sliding window techniques, we looked at phase amplitude 
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coupling between infra-slow activity and higher frequencies (Thompson et al, 2014b), but 

found little evidence of a relationship. Further work showed that infra-slow electrical activity 

correlated with QPPs and higher frequency activity correlated more closely to sliding 

window BOLD correlation (Thompson et al, 2015), strong evidence that the QPPs and 

remaining BOLD signal have differing sensitivities to neural activity and do not reflect the 

same underlying processes. The link between QPPs and infra-slow electrical activity 

suggests that QPPs are likely to reflect a distinct brain process and at a minimum, they are a 

source of neuro-physiological BOLD fluctuations that can be removed as a nuisance signal 

like respiration or cardiac pulsation. Both the residual BOLD FC maps and the QPP 

templates that characterize intrinsic activations of DMN and TPN have the potential to 

provide new insight into the basic organization of the brain as well as neurological and 

psychiatric disorders. Examining the behavioral correlates of various features of the QPP is 

an especially crucial avenue for future work that will help us understand the role it plays in 

the brain’s functional organization.

Conclusion

This work provides the first assessment of the variability in individual QPPs and their 

relationship to global signal and physiological parameters. Improving the characterization of 

QPPs might provide further insight into the organization of dynamic brain activity, which in 

turn could underlie behavioral differences in the healthy population or connectivity changes 

in neurological and psychiatric disorders.
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Fig. 1. 
(a) Correlation between a template corresponding to a single starting timepoint and the 

entire scan for one individual. (b) Timepoints corresponding to supra-threshold local 

maxima of a template correlation timecourse (e.g., marked in Fig 1a) plotted in the vertical 

axis for each starting time point, with the value of correlation is indicated by color. When all 

timepoints are considered as starting timepoints, considerable redundancy results: (i) 

sequential starting timepoints detect different phases of the same template (black inset), and 

(ii) starting timepoints which are ~30 timepoints apart are essentially part of the same 

template; for instance, Fig. 1a corresponds to the starting timepoint 2126 (thick vertical 

cyan line) and 1765 and 1831 are among supra-threshold maxima (and the corresponding 

template is the average of the segments of scan starting at those maxima after convergence 

of the algorithm), when 1765 is the starting timepoint, 1831 and 2126 are among supra-

threshold maxima and when 1831 is the starting time point, 1765 and 2126 are among supra-

threshold maxima.
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Fig. 2. 
(a) QPPs from two representative subjects. One exhibits anti-correlated activity between 

DMN and non-DMN areas (anti-correlated type QPP) and the other exhibits correlated 

activity in most areas, with only a few time points showing anti-correlation (most-correlated 

type QPP). (b) The same subjects shown in parcel-wise format. Subplots showing the signal 

in the QPP template for each parcel at each time point, with each parcel residing in one of 22 

subplots corresponding to Glasser’s 22 Networks (color-coded; arrows show 

anticorrelation).

(c) and (d) the same as (a) and (b) after global signal regression. After global signal 

regression, both subjects exhibit anti-correlation between the DMN and TPN in their 

templates.
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Fig. 3. 
(a) histograms of correlations with LPCC for the two QPPs shown in Fig. 2a and b. (b) Left 

plot: 40 low movers sorted based on %ROIs correlated<−0.8 (the value of the first bin of 

their histogram of correlation ), with the dashed line indicating when zero is reached. Right 

plot: 40 low movers are sorted based on %ROIs correlated>0.8 (the value of the last bin of 

their histogram of correlation ). Two groups of data-points are evident and color indicates 

QPP type. (c) %ROIs with strong negative and positive correlations shown in (b) are plotted 
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against rms of the global signal. (d) and (e) are similar to (b) and (c), respectively, for 470 

low-moderate movers and show a similar separation into two groups. (f) Sorted histograms’ 

bins similar to (d) but with global signal regression performed before QPP analyses. All 470 

subjects show substantial anti-correlation within their QPPs.

(g) Number of subjects with strong negative and positive correlations per each ROI. Most 

ROIs with strong anti-correlation belong to non-DMN networks and most ROIs with strong 

correlation belong to DMN, (h) Similar to (g) but after global signal regression. Strong 

correlation and anti-correlation are much more localized.
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Fig. 4. 
(a) rms of global signal is correlated with standard deviation of respiratory variation and 

heart rate variation (4×292 datapoints correspond to four scans of 292 individuals included). 

(b) Subjects sorted based on the first and the last bin of the histogram of correlation within 

their QPPs, after physiological noise regression; more subjects exhibit anti-correlated type 

QPP.
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Fig. 5. 
(a) The time course of correlation between QPP and the functional scan for the same two 

representative subjects in Fig 2a and 3a. The median of QPP correlation at supra-threshold 

local maxima, which describes the strength of the QPP, is 0.31 for Subject 1 and 0.36 for 

Subject7. The median of the time between successive maxima, which describes how often 

the pattern occurs, is 30s and 22s, respectively (the sum of all QPP correlation values at 

supra-threshold local maxima, which depends on both the strength of the pattern and how 

often it occurs, is 32 for Subject 1 and 57 for Subject 7). As observed at the group level, in 

these two representative subjects, the QPP occurs more often and is more strongly correlated 

in the subject with higher global signal (Subject 7). (b) For all 470 subjects, histograms 

describe the median of QPP correlation at supra-threshold local maxima (top, median:0.35, 

range:0.26–0.57) and time between successive supra-threshold local maxima (bottom, 

median:26s, range:11–38s). (c) values of (b) versus rms of global signal; a higher rms of the 

global signal (likely the most-correlated QPP type) corresponds to higher correlation and 

periodicity, (d) same as (c) after global signal regression; QPPs’ correlation and periodicity 

decrease (correlation has median of 0.31 and range of 0.27–0.4, and time difference has 

median of 32s and range of 15–44s).
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Fig. 6. 
The averaged Fourier transform of QPP correlation across all subjects exhibits a broad peak 

at 0.02–0.04 Hz, qualitative evidence of the quasi-periodic nature of the pattern. The peak is 

significantly different between the two QPP types or when comparing before and after 

global signal regression.
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Fig. 7. 
Between two days: (a) individuals with anti-correlated type QPP are more stable in their 

QPP type, (b) the rms of the global signal is highly correlated, as is (c) QPP correlation and 

periodicity collectively reflected in the sum of QPP correlation at supra-threshold maxima. 

(d) QPPs are significantly more correlated across days within subjects than between subjects 

(area under distributions has been normalized to 1).
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