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Abstract

Recent advances in susceptibility MRI have dramatically improved the visualization of deep gray 

matter brain regions and the quantification of their magnetic properties in vivo, providing a novel 

tool to study the poorly understood iron homeostasis in the human brain. In this study, we used an 

advanced combination of the recent quantitative susceptibility mapping technique with dedicated 

analysis methods to study intra-thalamic tissue alterations in patients with clinically isolated 

syndrome (CIS) and multiple sclerosis (MS). Thalamic pathology is one of the earliest hallmarks 

of MS and has been shown to correlate with cognitive dysfunction and fatigue, but the 

mechanisms underlying the thalamic pathology are poorly understood.

We enrolled a total of 120 patients, 40 with CIS, 40 with Relapsing Remitting MS (RRMS), and 

40 with Secondary Progressive MS (SPMS). For each of the three patient groups, we recruited 40 

controls, group matched for age- and sex (120 total). We acquired quantitative susceptibility maps 

using a single-echo gradient echo MRI pulse sequence at 3 Tesla. Group differences were studied 

by voxel-based analysis as well as with a custom thalamus atlas. We used threshold-free cluster 
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enhancement (TFCE) and multiple regression analyses, respectively. We found significantly 

reduced magnetic susceptibility compared to controls in focal thalamic subregions of patients with 

RRMS (whole thalamus excluding the pulvinar nucleus) and SPMS (primarily pulvinar nucleus), 

but not in patients with CIS. Susceptibility reduction was significantly associated with disease 

duration in the pulvinar, the left lateral nuclear region, and the global thalamus. Susceptibility 

reduction indicates a decrease in tissue iron concentration suggesting an involvement of chronic 

microglia activation in the depletion of iron from oligodendrocytes in this central and integrative 

brain region. Not necessarily specific to MS, inflammation-mediated iron release may lead to a 

vicious circle that reduces the protection of axons and neuronal repair.
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1. Introduction

Atrophy of the thalamus is one of the earliest hallmarks of brain pathology in Multiple 

Sclerosis (MS) (Audoin et al., 2009; Bergsland et al., 2012; Calabrese et al., 2011; Henry et 

al., 2009; Henry et al., 2008; Ramasamy et al., 2009; Zivadinov et al., 2013), which 

correlates with physical disability (Rocca et al., 2010) and fatigue (Calabrese et al., 2011), 

and continues with the progression of the disease (Bergsland et al., 2012; Henry et al., 2008; 

Preziosa et al., 2017; Ramasamy et al., 2009). Thalamic atrophy has also been shown to 

correlate with cognitive dysfunction (Batista et al., 2012; Bergsland et al., 2016; Bisecco et 

al., 2017; Houtchens et al., 2007) in MS, which is in line with other studies showing an 

association between thalamocortical connectivity and diverse functions of higher level 

cognitive processes (Fama and Sullivan, 2014), including attention, speed of information 

processing, working memory, and episodic memory processes (Hughes et al., 2012; Philp et 

al., 2014; Ystad et al., 2010; Ystad et al., 2011).

However, despite its potential direct involvement in cognitive dysfunction, disability, and 

disease progression, comparatively little is known about the mechanisms of thalamic 

involvement in MS. One reason for the relative scarcity of mechanistic studies is that the 

thalamus exhibits similar MR-relevant properties as circumjacent white matter (WM) tissues 

(Kanowski et al., 2014; Tourdias et al., 2014), like T1 and T2 relaxation times and proton 

density, which hampers in vivo investigations with clinical MRI. In particular, the 

anatomical complexity of the human thalamus, which consists of approximately 100 distinct 
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cell groups or nuclei (Axer and Niemann, 1994) with distinct connectivity profiles (Fama 

and Sullivan, 2014; Postuma and Dagher, 2006; Sherman and Guillery, 2013b), has been 

inaccessible in vivo until recently. The increasing availability of higher magnetic field 

strengths and advanced MRI acquisition and analysis techniques has enabled imaging 

studies with improved resolution and sensitivity toward new biophysical tissue properties, 

recently enabling a more detailed in vivo assessment of the thalamus (Abosch et al., 2010; 

Behrens et al., 2003; Bisecco et al., 2015; Unrath et al., 2008; Wiegell et al., 2003). These 

developments have increased the interest in exploring the involvement of the thalamus in 

neurological diseases (Minagar et al., 2013).

Quantitative Susceptibility Mapping (QSM) is such a novel advanced MR-based technique 

(Duyn, 2013; Haacke et al., 2015; Liu et al., 2015; Reichenbach et al., 2015; Schweser et al., 

2011; Schweser et al., 2016; Wang and Liu, 2015) that allows for the precise anatomical 

depiction of intra-thalamic nuclei and even allows quantifying tissue property alterations 

with high spatial resolution (Deistung et al., 2013) and reproducibility (Deh et al., 2015; 

Feng et al., 2017; Lin et al., 2015; Santin et al., 2017) at clinically feasible scan times. 

Various histological validation studies have demonstrated that magnetic susceptibility, the 

quantity provided by QSM, reflects the tissue concentrations of paramagnetic iron 

complexes (Langkammer et al., 2012; Schenck, 1992; Stüber et al., 2014; Stüber et al., 

2016; Zheng et al., 2013) as well as, in an opposite way, myelin (Groeschel et al., 2016; 

Schweser et al., 2011; Stüber et al., 2014) and calcium (Chen et al., 2014b; Schweser et al., 

2010; Straub et al., 2016a; Stüber et al., 2014). Within the MS research, QSM is increasingly 

being used for the characterization of iron load in the deep gray matter (DGM) (Al-Radaideh 

et al., 2013; Blazejewska et al., 2015; Hagemeier et al., 2017; Langkammer et al., 2013; 

Ropele et al., 2017; Rudko et al., 2014; Schmalbrock et al., 2016) and lesions (Bian et al., 

2016; Chen et al., 2014a; Cronin et al., 2016; Eskreis-Winkler et al., 2014; Harrison et al., 

2016; Kakeda et al., 2015; Li et al., 2016; Wisnieff et al., 2015; Zhang et al., 2016).

In the present study, our central hypothesis was that MS is associated with increased 

magnetic susceptibility in the thalamus. We further hypothesized that the most substantial 

differences between patients and controls would be observed in the pulvinar (PUL) nucleus 

and the lateral nuclear region (LNR) because of potential trans-synaptic degeneration 

emerging from the motor and visual cortices, regions that are highly affected by MS 

(Calabrese et al., 2007) and maintain relatively rich structural connectivity with the PUL and 

LNR. We based our hypothesis on a significant body of literature on DGM iron 

accumulation in MS (Ropele et al., 2017; Stephenson et al., 2014; Stüber et al., 2016) as 

well as the well-documented fact that MS leads to demyelination and atrophy. Both the 

accumulation of iron and loss of myelin increase the tissue’s magnetic susceptibility, which 

leads to a hyper-intense appearance on the susceptibility maps. Furthermore, thalamic 

atrophy, which occurs early in the course of MS due to demyelination and 

neurodegeneration, would increase the observed susceptibility simply because of a 

condensation of the iron present in the tissue.

Several previous MRI studies indicated increased thalamic iron in MS (Drayer et al., 1987; 

Rudko et al., 2014; Zivadinov et al., 2012), such as our previous work with susceptibility-

weighted imaging (SWI) MRI, in which PUL was atrophied and signal changes inidcated an 
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increased susceptibility early in the disease course of pediatric and clinically isolated 

syndrome (CIS) patients (Hagemeier et al., 2012; Hagemeier et al., 2013b). Further support 

for our hypothesis was provided by previous studies using positron emission tomography 

(PET) (Banati et al., 2000; Herranz et al., 2016; Kauzner et al., 2016; Rissanen et al., 2014) 

and histopathology (Haider et al., 2014; Vercellino et al., 2009) indicating increased 

microglia activation and influx of highly iron-laden macrophages in the thalami of MS 

patients, respectively. Also, histopathologic evidence exists for substantial focal 

demyelination and neuronal loss in the thalamus (Cifelli et al., 2002; Haider et al., 2014; 

Vercellino et al., 2009). Overall, previous literature strongly argued for a susceptibility 

increase in the thalamus of MS patients.

To test our hypothesis, we used QSM to examine intra-thalamic alterations of magnetic 

susceptibility in patients with CIS and MS as compared to matched healthy controls. QSM 

combines two crucial properties for the study of such a complex structure as the thalamus: 

first, it delivers high resolution images and enables the depiction of anatomical details that 

have been inaccessible with other in vivo imaging techniques, forming the basis of a 

volumetry of the thalamic substructures. Second, QSM represents a unique tool to assess the 

tissue composition via quantitative measurements of the tissue’s magnetic susceptibility. We 

combined volumetry and susceptibility quantification to dissect thalamic iron and myelin 

mass changes from apparent susceptibility increases that may result from atrophy without 

actual iron transported into the brain across the blood-brain barrier. A voxel-based analysis 

(VBA) of the susceptibility maps was applied to reveal disease-related thalamic 

susceptibility changes without prior assumptions about the location of the changes within 

the thalamus.

We compared each MS phenotype separately against a dedicated control group that was 

group matched for age and sex to the different MS/CIS cohort because MS-specific thalamic 

pathology develops on top of a well-established background of normal aging-related linear 

atrophy rates (Cherubini et al., 2009; Sullivan et al., 2004), and non-linear tissue iron 

concentrations. In particular, the latter peaks in the fourth decade of life and decreases 

thereafter (Bartzokis et al., 2007; Hagemeier et al., 2013a; Hallgren and Sourander, 1958; 

Mitsumori et al., 2009; Persson et al., 2015), which is difficult to model statistically, 

complicates the comparison of groups that are not perfectly age-matched, and could affect 

the comparison of the different clinical phenotypes of MS, including CIS, Relapsing-

Remitting (RR) and Secondary Progressive (SP) patients. These disease-subtypes are 

difficult to match properly on age and typically center on average ages right before, at, and 

after the characteristic peak of iron concentration in the thalamus, respectively.

2. Subjects and Methods

2.1 Subjects

The study was approved by the local Ethical Standards Committee at the University at 

Buffalo, and a written informed consent form was obtained from all participants. We 

enrolled 40 patients in each of the three patient groups (CIS, RRMS, SPMS; 120 patients 

total) and 40 normal controls (NC) in each of the three control groups (CIS-NC, RRMS-NC, 

and SPMS-NC; 120 NCs total). The female to male sex ratio was approximately 3, reflecting 
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the average sex incidence rate ratio of MS in the general population of North America 

(Trojano et al., 2012). Exclusion criteria were pregnancy and pre-existing medical conditions 

known to be associated with brain pathology (e.g., cerebrovascular disease or a positive 

history of alcohol dependence). MS/CIS patients were diagnosed using the revised 

McDonald criteria (Polman et al., 2011), and clinical disease severity was measured using 

the Expanded Disability Status Scale (EDSS) (Kurtzke, 1983). Table 1 summarizes the 

demographics and clinical details of the study groups. Patients with CIS had the lowest 

EDSS and disease duration, followed by patients with RRMS, and patients with SPMS. The 

average ages of the three patient groups were significantly different (CIS/RRMS: p=0.004; 

RRMS/SPMS: p<0.001; CIS/SPMS: p<0.001).

The three groups of each 40 age- and sex-matched normal controls (NC; CIS-NC, RRMS-

NC, and SPMS-NC) had a normal neurological examination and no history of neurologic 

disorders or chronic psychiatric disorders. Neither ages nor sex-ratio of the NC groups were 

significantly different from the respective patient groups (CIS-NC: age p=0.96, sex p=0.81; 

RRMS-NC: age p=0.84, sex p=0.46; SPMS-NC: age p=0.79, sex p=1.00). The average ages 

of the three NC groups were significantly different (CIS-NC/RRMS-NC: p=0.005; RRMS-

HC/SPMS-HC: p=0.001; CIS-HC/SPMS-HC: p<0.001).

2.2 MRI

Participants were imaged with a clinical 3T GE Signa Excite HD 12.0 scanner (General 

Electric, Milwaukee, WI, USA) using an eight-channel head-and-neck coil. Data for QSM 

were acquired using an unaccelerated 3D single-echo spoiled gradient recalled echo (GRE) 

sequence with first-order flow compensation in read and slice directions, a matrix of 

512×192×64 and a nominal resolution of 0.5×1×2 mm3 (FOV=256×192×128 mm3), flip 

angle = 12°, TE/TR=22ms/40ms, bandwidth=13.89 kHz, and a total measurement time of 8 

minutes and 46 seconds (Zivadinov et al., 2012). The anisotropic voxel size resulted from a 

reduction of the number of phase and slice encoding steps to minimize the total 

measurement time and, hence, motion artifacts. Because the scanner software did not allow 

an online reconstruction of phase images for QSM, we saved the raw k-space data for each 

coil channel. To allow a determination of the total brain volume, we applied an axial high-

resolution 3D magnetization prepared T1-weighted (T1w) fast spoiled gradient-echo pulse 

sequence with inversion recovery (IR-FSPGR) using the following parameters: TE/TI/

TR=2.8ms/900ms/5.9ms, matrix=256×192×128 matrix, nominal resolution of 1×1×1.5mm3 

(FOV=256×192×192mm3), and flip angle = 10°. No hard- or software upgrades of the MRI 

system occurred during the duration of the study.

2.3 Data Processing and Analysis

The data processing is schematically illustrated in Figure S.1. The analysts performing the 

data processing were blinded to the study groups and the scope of the study.

QSM—QSM-related processing was performed by a fully automated pipeline with in-house 

developed MATLAB programs (2013b, The MathWorks, Natick, MA) on a Linux 

workstation (Ubuntu 12.04) with 48 cores (Intel Xenon E5-2697v2 at 2.7Ghz) and 396 GB 
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RAM. Susceptibility maps were reconstructed as described previously (Hagemeier et al., 

2017); details are given in the Supplementary Material 1.

Voxel-based analysis (VBA)—For the VBA, susceptibility maps were normalized with 

the diffeomorphic Greedy-SyN transformation model (Advanced Normalization Tools; 

version 2.1; http://stnava.github.io/ANTs) to an in-house generated susceptibility brain 

template with 1mm3 isotropic voxel size. The template had been created independently from 

the present study dataset based on sixty randomly selected susceptibility maps of patients 

with different diseases and NCs over a wide range of ages using the diffeomorphic Greedy-

SyN transformation model with an intensity rescaling strategy (DIR-R) described previously 

(Hanspach et al., 2017). The template is illustrated in Figure 1.

After smoothing with a 1mm Gaussian kernel, we compared the control groups to one 

another to determine if previously reported aging-related differences in iron concentrations 

between the groups could be replicated. Furthermore, we performed a voxel-wise statistical 

analysis via non-parametric permutation tests (FSL randomise (Winkler et al., 2014); 5000 

permutations) using age and sex as covariates to identify susceptibility differences between 

patient groups and their respective control groups. Threshold-free cluster enhancement 

(TFCE) while controlling for family-wise error (FWE) rate revealed significant differences 

between groups at the level of p<0.05. Given the study objectives, we restricted the 

statistical analysis to voxels within the thalamus, which also increased the statistical power. 

The procedure used to define this region is described below.

Atlas-based analysis—To gain insight into volume changes of thalamic subnuclei and to 

quantify susceptibility differences between groups, we applied an atlas approach. Toward 

this end, we created a custom thalamic nuclear atlas by identifying and outlining clearly 

identifiable thalamic substructures on the susceptibility brain template with Freeview 

(FreeSurfer 5.3.0, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, 

MA). The atlas was created slice-by-slice by a trained image analyst (A.L.R.D.M.; 2 years 

of experience in neuroimaging) in consultation and based on consensus with an expert in 

brain susceptibility contrast (F.S.; 9 years of experience in neuroimaging). Identification of 

substructures was facilitated by a direct comparison of the template with cytoarchitectonic 

plates of the thalamus in the Schaltenbrand and Wahren atlas (Schaltenbrand et al., 1977), 

which has been shown to be the most suitable atlas for a segmentation of in vivo MR images 

(Deistung et al., 2013; Kanowski et al., 2014). Anatomical regions that appeared as a 

contiguous structure on the susceptibility template and could not be sub-segmented were 

treated as a single structure in the atlas, even if cytoarchitectonic plates and ultra-high field 

QSM (Deistung et al., 2013) suggested subdivisions. In addition to thalamic subnuclei, we 

outlined the thalamus as a whole (global thalamus; GT) to facilitate a comparison with 

previous studies.

We transformed the atlas to the original susceptibility maps with nearest neighbor 

interpolation by applying to the atlas the inverse of the non-linear transformations to the 

template space. We calculated the volume of each region of the warped susceptibility atlas 

and normalized it to the head volume, as determined by FMRIB’s SIENAX cross-sectional 

software tool (version 2.6) (Smith et al., 2002).
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Statistical analysis of regional average values of volume and susceptibility—
The statistical analysis of regional average values was performed using the Statistical 

Package for the Social Sciences (SPSS; version 24; IBM, Armonk, NY) and Excel (version 

1701; Microsoft, Redmond, WA). All sample distributions were tested for normality using 

the Shapiro-Wilk test and visual examination of Q-Q-plots. If distributions were normal, 

paired t-tests were used to determine whether mean values differed between left and right 

hemispheres for each anatomical region. If distributions were non-normal, we used the 

Wilcoxon signed rank test. If a significant inter-hemispheric difference was found in either 

the patient group or the respective control group, further analyses of the structure were 

carried out for both hemispheres separately; otherwise, further analyses used the mean of 

left and right hemisphere values. Univariate ANCOVA with sex as a covariate was applied to 

determine if mean values of controls and patients differed significantly from one another.

We have previously estimated that increased caudatal susceptibility observed in MS may be 

driven by a loss of tissue compartments with little iron (Hagemeier et al., 2017). To 

understand if this effect could also be the driving force leading to increased PUL 

susceptibility, we calculated the Pearson correlation coefficients for volume and 

susceptibility. For simplicity, this correlation analysis was performed for bi-hemispheric 

average values. To investigate the presumably nonlinear effect of normal aging on thalamic 

susceptibility and volume, we calculated the Spearman rank correlation coefficients for 

susceptibility and volume, respectively, using all 120 subjects of the three NC groups.

Effect sizes were estimated using Cohen’s d. Statistical significance levels were corrected 

for FWE rate using the Bonferroni procedure. Findings with p≤0.05 that did not reach 

statistical significance after the correction are reported as “trends” to counter-balance the 

conservative nature of the multiple comparison corrections.

To characterize the relative effects of age, disease duration (dd), and sex on the observed 

variables, we performed a multiple regression analysis. Variable transformations were 

performed if histograms and scatterplots indicated they were necessary. Since results from 

multivariate analyses with transformed variables are difficult to interpret, we repeated all 

analyses with untransformed variables. Reliability of fitting coefficients was determined by 

performing a collinearity analysis with a condition index threshold of 15 and variance 

proportions exceeding 90 in two or more variables.

3. Results

We report anatomical locations within the thalamus according to the recommendations of the 

Federative Committee on Anatomical Terminology (Federal Committee on Anatomical 

Terminology, 1998) and use neurological display convention in all figures (subject’s left is 

shown on the left).

Voxel-based analysis

Susceptibility differences between the three NC groups, CIS-NC, RRMS-NC, and SPMS-

NC, did not reach statistical significance (F-test). For demonstrative purposes, we calculated 

the group differences and Z-score maps of the control groups, which may be found in 
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Supplementary Figure S.2. While some nuclear groups could be discerned on these maps, 

group-average difference maps had a noisy appearance, and Z-scores did not exceed 0.5.

Figures 2a and S.3 show the regions of significant susceptibility differences between patients 

and controls after Threshold-Free Cluster Enhancement (TFCE). Figures 2b and S.4 show 

the corresponding group-average difference maps and Z-score maps. While the comparison 

of CIS patients with CIS-NCs did not reach statistical significance, it indicated a relatively 

localized disease-related susceptibility increase in the PUL and susceptibility decrease in the 

remaining part of the thalamus, Z-scores were low overall.

RRMS patients showed a statistically significant susceptibility reduction compared to 

RRMS-NCs, which reached statistical significance primarily in the left thalamus, whereas 

the right thalamus was largely unaffected apart from a small region with susceptibility 

reduction located in the central medial intralaminar nucleus of the thalamus (arrow I in Fig. 

2a and S.3; between the medial dorsal nucleus and the anterior nuclei of the thalamus). The 

reduced susceptibility in the left hemisphere was localized in the medial dorsal nucleus 

(arrow II) and the ventral posterolateral nucleus (also nuclei ventrocaudales; arrow III). 

Reduced susceptibility was also observed bilaterally in a small region localized at the medial 

pulvinar (PUL; arrow IV; see (Stepniewska, 2004) for PUL subdivisions).

In SPMS, we found susceptibility reductions compared to SPMS-NCs that were more 

symmetric than in the RRMS group. In particular, significantly reduced susceptibility was 

found bilaterally in the medial dorsal nucleus (arrow II) and the PUL (arrow V). While the 

whole PUL was affected in the left hemisphere, changes in the lateral division of the medial 

PUL (arrow VI) in the right hemisphere did not reach statistical significance. A comparison 

with the group difference maps and Z-scores indicated that both PULs were homogeneously 

affected and the lack of statistical significance was due to a higher variability between 

subjects in the center of the PUL (Fig. S.4). Contrary to the RRMS group, we did not find 

significant differences in the ventral posterolateral nucleus.

Altas-based analysis

Comparison of the susceptibility brain template with the Schaltenbrand and Wahren atlas 

(Schaltenbrand et al., 1977) led to the unambiguous identification of the following three 

major nuclear regions of the thalamus: PUL, medial nuclei region (MNR), and lateral nuclei 

region (LNR). The anterior nucleus appeared hyper-intense but blended over into the 

cerebrospinal fluid, rendering a reliable segmentation difficult. A further parcellation of the 

nuclear groups, as reported in previous ultra-high field work (Deistung et al., 2013), was not 

possible. Figure 1 illustrates the anatomical locations of the identified regions.

The average susceptibilities and volumes in the patient and control groups are listed in Tabs. 

2 and 3, respectively. The PUL showed the highest average magnetic susceptibility among 

all regions, in line with earlier QSM-based work (Deistung et al., 2013) and iron stains 

showing the strongest reactivity in this region (Morris et al., 1992; Spatz, 1922). Although 

both LNR and anterior nucleus had been described among the regions with the strongest iron 

reactivity (Morris et al., 1992), the LNR appeared less paramagnetic than the anterior 

nucleus (data not shown) and the MNR. This observation may be explained by the relatively 
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high myelin content of the LNR compared to other thalamic regions (Schaltenbrand et al., 

1977), which counteracts the effect of iron on the voxel susceptibility.

Group differences—The distributions of susceptibilities and volumes were normal in all 

groups and regions except for the PUL volumes in SPMS. Consistent with the VBA-results, 

differences between CIS and CIS-NCs did not reach statistical significance (p≥0.11; |d|

≤0.36). In RRMS patients, we found statistically significant reductions of susceptibility 

compared to RRMS-NCs in the GT (−5.9 ppb; d=−0.86; p<0.001) and, consistent with the 

VBA, in the left MNR (−9.7 ppb; d=−0.84; p<0.001) and left LNR (−5.1 ppb; d=−0.75; 

p=0.001). Trends toward lower susceptibility in patients were observed in the PUL (−5.3 

ppb; d=−0.50; p=0.028) and in the right MNR (−7.8 ppb; d=−0.57; p=0.019). In SPMS 

patients, magnetic susceptibility was significantly reduced compared to SPMS-NCs in all 

regions (≤−7.0 ppb; d≤−1.18) except in the LNR (d=−0.44; p=0.051), in line with the VBA 

findings.

Volume differences between CIS and CIS-NCs did not reach statistical significance, but 

disease-related atrophy was indicated by trends in the right GT (−0.28 ml; d=−0.47; 

p=0.043) and the right PUL (−0.15 ml; d=−0.49; p=0.034). In both RRMS and SPMS 

patients, volume reductions relative to the individual NC groups reached statistical 

significance in all regions (except for a trend in the right MNR of RRMS). Effect sizes were 

|d|≥1.0 in all areas except the MNR (|d|≥0.6).

Associations between susceptibility and atrophy—Table 4 lists the correlations of 

susceptibility and volume for all groups. Correlations were positive in all regions. Statistical 

significance was reached in the PUL of all patient groups (r>0.399, p<0.011), the PUL of 

SPMS-NCs (r=0.414, p=0.008), and the MNR of RRMS-NCs (r=0.508, p<0.001) and 

SPMS-NCs (r=0.525, p=0.001). Trends were observed in PUL (CIS-NC and RRMS-NC), 

MNR (all patient groups), and GT (all patient groups and SPMS-NC).

Multivariate linear regression—A histogram analysis revealed a positively skewed 

distribution of the dd, which could be mitigated by a log-transform of the variable. 

Scatterplots correlating susceptibility with age and dd, respectively, indicated non-linear 

associations of susceptibility with age in the PUL and with the log-transformed dd in PUL 

and MNR, which could be described by a quadratic relationship. A similar analysis for the 

volumes revealed non-linear associations of left/right PUL with transformed dd and LNR 

with age and transformed dd. Hence, we performed a multivariate regression analysis with 

susceptibility and volume as dependent outcomes, respectively, and the following 

transformed independent variables in all 120 patients: age2 [susceptibility: PUL; volume: 

LNR], ln(dd) [susceptibility: GT, LNR; volume: all], and ln(dd)2 [susceptibility: PUL, 

MNR; volume: PUL, LNR], respectively.

We found significant negative associations of right GT susceptibility with ln(dd) [p<0.001, 

partial correlation Rp=−0.34], average PUL susceptibility with ln(dd)2 [p<0.001, Rp=−0.42], 

and left MNR susceptibility with age [p=0.004, Rp=−0.28]. Trends toward negative 

associations were found for the left GT susceptibility with ln(dd) [p=0.029, Rp=−0.21] and 

age [p=0.035, Rp=−0.21], for the right MNR susceptibility with ln(dd)2 [p=0.017, Rp=

Schweser et al. Page 9

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−0.23], and for the left LNR susceptibility with age [p=0.028, Rp=−0.21]. For volumes, we 

found significant negative associations between right GT and ln(dd) [p<0.001, Rp=−0.33], 

PUL and ln(dd)2 [p<0.001, Rp=−0.32/−0.38], left MNR and age [p<0.001, Rp=−0.34], and 

LNR and ln(dd)2 [p<0.001, Rp=−0.35]. Trends were found for negative associations of left 

GT with age [p=0.012, Rp=−0.24] and ln(dd) [p=0.045, Rp=−0.20] and right MNR with 

ln(dd) [p=0.019, Rp=−0.23]. Associations with sex did not reach p≤0.05 in any of the 

regions.

Age (and age2) correlated significantly with ln(dd) [and ln(dd)2] (Pearson 0.63≥R≥0.61, 

p<0.001), but condition indices of the collinearity analyses between the variables did not 

exceed 14 in any of the analyses. Supplementary Material 2 summarizes the results of the 

multivariate analyses with untransformed variables for susceptibility and volumes, 

respectively. The directions of the dependencies were largely in line with the analyses using 

transformed variables. Statistically significant univariate correlations are plotted in Figure 3.

4. Discussion

13 This work is the first systematic assessment of intra-thalamic susceptibility variations 

across the clinical spectrum of MS. We found significantly reduced magnetic susceptibility 

in specific thalamic subregions of patients with RRMS and SPMS, in particular in the PUL, 

but not in patients with CIS. Susceptibility reduction was significantly associated with 

increase in dd. In the following, we discuss our findings in the light of previous works and 

provide a mechanistic interpretation. In particular, we believe that the integrative role of the 

thalamus in brain function and the common notion of iron increase as a driver in 

neurodegeneration justify a detailed discussion of the potential biophysical origin and 

mechanistic processes underlying our findings.

Previous susceptibility-based MRI studies in MS that are consistent with our findings

In CIS patients, we found increased susceptibility in the PUL (Figure 2b), but group 

differences did not reach statistical significance (d=0.14; Tab. 2). This finding is (partially) 

in line with previous studies by Al-Radaideh et al. (Al-Radaideh et al., 2013), Langkammer 

et al. (Langkammer et al., 2013) and Elkady et al. (Elkady et al., 2017), which did not find 

statistically significant changes in the thalamus of CIS patients with QSM, and previous 

studies by our group reporting significantly increased iron load in the PUL of CIS patients 

(Hagemeier et al., 2012; Zivadinov et al., 2012) using a predecessor techniques of QSM. 

Although statistically insignificant, the group differences between CIS patients and controls 

found by Elkady et al. (Elkady et al., 2017) (Fig. 3a in that publication) closely resembled 

our findings of increased susceptibility in the PUL and decreased susceptibility in the rest of 

the thalamus (Fig. 2b).

In RRMS patients, we found significantly decreased GT susceptibility. This finding is 

consistent with recent QSM-based studies by Burgetova et al. (Burgetova et al., 2017) 

(−3.3ppb, p=0.004) and by our group (Hagemeier et al., 2017) (−5.7ppb, d=0.71–0.94, 

p<0.001). Also similar to the present work, Burgetova et al. observed reduced thalamic 

susceptibility in RRMS only when excluding the PUL and not in the PUL itself. This 
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observation is consistent with group differences shown by Elkady et al. (Elkady et al., 2017) 

(Fig. 3b in that publication).

Previous susceptibility-based MRI studies in MS that are inconsistent with our findings

Several authors did not find significant GT changes in patients with RRMS (or mixed 

phenotype groups) using either QSM (Elkady et al., 2017; Fujiwara et al., 2017), the 

effective transverse relaxation rate (R2*) (Fujiwara et al., 2017), or different iron-sensitive 

non-QSM techniques (Du et al., 2015; Hagemeier et al., 2013b; Raz et al., 2014). Other 

studies suggested increased GT iron in RRMS with QSM (Cobzas et al., 2015) and other 

techniques (Cobzas et al., 2015; Ge et al., 2007; Modica et al., 2014). Rudko et al. (Rudko et 

al., 2014) reported increased susceptibility relative to controls in a mixed group of CIS and 

RRMS patients, but differences in R2* between CIS and RRMS patients of similar age did 

not reach significance (Khalil et al., 2009).

In the present study, the PUL appeared unaltered in RRMS patients and showed significantly 

decreased values in SPMS when compared to NCs. In line with previous work (Henry et al., 

2008), we found both atrophy and reduced susceptibility in the left MNR of our RRMS 

group and bilaterally in SPMS patients. However, we could not confirm the previous 

findings of significant atrophy of the bilateral MNR and bilateral PUL in CIS (Henry et al., 

2008). Inconsistent with the present study is also the increased PUL iron load that has been 

suggested in RRMS using QSM (Al-Radaideh et al., 2013; Elkady et al., 2017; Rudko et al., 

2014), R2* (Elkady et al., 2017; Lebel et al., 2012; Quinn et al., 2014; Walsh et al., 2014), 

and other techniques (Haacke et al., 2010; Habib et al., 2012; Hagemeier et al., 2013b; 

Modica et al., 2014; Zivadinov et al., 2012; Zivadinov et al., 2010).

Heterogeneity of the literature on brain-iron in MS—Overall, the literature is highly 

heterogeneous with respect to the outcomes of brain iron studies in MS. This observation 

may be explained by the wide variety of techniques employed for imaging, reconstruction, 

and analysis. Even a direct quantitative comparison between studies that employed QSM is 

difficult because the studies employed different reference regions (or did not specify the 

region used), phase processing techniques (Özbay et al., 2017; Schweser et al., 2017b), and 

QSM algorithms (Wang and Liu, 2015). A comparison with non-QSM techniques, such as 

R2* mapping, is even more problematic because of confounding sensitivities on the 

microdistribution and chemical form of iron (Dietrich et al., 2017) as well as the 

microstructure. Furthermore, the non-linear aging trajectory of the thalamic iron 

concentration (Hallgren and Sourander, 1958) and the heterogeneity of the disease render a 

comparison of groups with different clinical and demographic characteristics challenging. 

An overview of the substantial differences between the cohorts studied in the literature may 

be found in the Inline Supplementary Tab. S.3. Interestingly, Burgetova et al.’s study, which 

is largely consistent with the present work, relied on a cohort relatively similar to our RRMS 

group.

The comparison of the group characteristics and outcomes of published studies led us to the 

proposal of a early-rise late-decline hypothesis: Increased PUL susceptibility may be found 

predominantly in younger patients with an average age below 40 years (all studies published 
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before 2017; cf. Tab. S.3), whereas in older patients, such as those studied in the present and 

in our previous work (Hagemeier et al., 2017), PUL susceptibility in patients was, on 

average, lower than in controls. The observed significant reduction of PUL susceptibility 

with dd (p<0.001) further supports this hypothesis. Moreover, in a recent R2*-based follow-

up study, Khalil et al. (Khalil et al., 2015) suggested that not only in the thalamus but also in 

other brain regions iron accumulation is more pronounced in the early stages than in the later 

stages of the disease. Showing that iron decreases over time already in CIS, this study also 

suggests that peak iron concentration may be observed (best) before the first clinical 

symptoms. However, since the authors did not enroll a control group, it remained unclear if 

the observed temporal iron decrease exceeded the normal aging-related iron decrease. 

Hence, the authors’ conclusion, although consistent with our findings, warrants further 

investigation.

Biophysical explanation of the observed thalamic susceptibility alterations

A decrease of magnetic susceptibility toward more diamagnetic values can be explained by 

both a reduction of the contributions from paramagnetic compounds (such as ferritin-bound 

iron) and an increase in the contributions from diamagnetic compounds (such as myelin or 

calcium); a change toward higher susceptibility values vice versa. While calcium may play a 

role in MS (see Supplementary Material 3 for a detailed discussion), no strong evidence 

exists for a substantial calcium accumulation in the thalamus. Hints on the underlying 

biophysical mechanisms of the observed susceptibility decrease may be obtained from 

correlations of susceptibility and R2*. The two measures have a similar dependence on 

paramagnetic but an opposite dependence on diamagnetic tissue compartments; iron 

increases both of them, whereas calcium decreases/increases susceptibility/R2*. Hence, 

thalamic susceptibility and R2* values would be expected to correlate negatively if calcium 

had a significant contribution to the variations between observed measures. Fujiwara et al. 

(Fujiwara et al., 2017) recently performed such a partial correlation analysis correcting for 

age and sex in the DGM of MS patients. However, they reported a significant positive 
correlation in the thalamus (r=0.6; p<0.001) as well as all other DGM. This observation 

indicates that variations in the tissue concentration of iron, but not calcium, dominate the 

inter-subject variations of susceptibility and R2* in MS. Interestingly, the authors found 

significant positive correlations also in the DGM of NCs, but not in their thalami (r=0.03; 

p=0.89). This discrepancy between MS patients and NCs may be explained by the relatively 

high amount of diamagnetic myelin in the thalamus of NCs, which counteracts the positive 

correlation, and the reduced amount of myelin in MS.

The most plausible explanation of increased PUL magnetic susceptibility early in the disease 

(Fig. 2b and previous work) is the iron accumulation of microglia (Banati et al., 2000; 

Haider et al., 2014; Herranz et al., 2016; Kauzner et al., 2016; Rissanen et al., 2014). Recent 

evidence for a chronic intravascular haemolysis (Lewin et al., 2016) and a correlation of 

serum iron with DGM susceptibility changes (Bergsland et al., 2017) in MS point toward a 

translocation of blood-iron into the brain, where it accumulates in microglia, a process that 

has been hypothesized already by Metz and Spatz in 1924 (Metz and Spatz, 1924). DGM 

may be particularly prone to the inlux of heme-iron due to their high perfusion compared to 

WM. In principle, also the reduction of the relative voxel volume fraction of myelin 
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associated with the focal thalamic demyelination in MS (Haider et al., 2014; Vercellino et 

al., 2009) could increase the susceptibility. However, while the thalamus is higher 

myelinated than other DGM regions, myelin stains show that the PUL is one of the regions 

with the least amount of myelin in the thalamus (Schaltenbrand et al., 1977), rendering it 

unlikely that demyelination in this region explains a substantial increase of the tissue 

susceptibility.

The decrease of magnetic susceptibility in later stages of the disease most likely involves 

iron-containing thalamic cells. In both WM and DGM of normal brain, most of the iron is 

found in oligodendrocytes and their processes (Bagnato et al., 2011; Francois et al., 1981; 

Haider et al., 2014; Hill and Switzer III, 1984; Meguro et al., 2008). Iron-staining in rats 

indicated a higher number of iron-laden oligodendrocytes as well as a higher iron load of 

individual oligodendrocytes in the DGM than in the WM (Meguro et al., 2008). In human 

DGM, approximately 30% of the cell bodies have been reported to be oligodendrocytes (in 

the caudate) (Myers et al., 1991b), most of them are probably perineuronal satellite 

oligodendrocytes with unknown functions (Verkhratsky, 2013). Hence, the substantial 

reduction of the magnetic susceptibility below that in NCs, as observed in definite MS (Tab. 

2 and Fig. 2b), points toward a decrease of the oligodendrocyte density or a depletion of iron 

from oligodendrocytes. In fact, using diaminobenzidine (DAB)-enhanced Turnbull blue 

staining for ferrous and ferric iron, Hametner et al. (Hametner et al., 2013) reported a 

decrease in the iron concentrations in both the WM close to the neocortex (including the 

iron-rich U-fibers, personal communication) and in the deep normal appearing WM 

(NAWM; sampled from the whole telencephalon, personal communication) of MS tissue 

specimens relative to that in specimens of NCs. Similar to our findings in the thalamus, the 

reduction of WM iron correlated significantly with the dd (R2=0.31, p<0.001). Furthermore, 

the authors reported a loss of oligodendrocytes and a reduction of non-heme iron within 

oligodendrocytes and myelin in NAWM. Using ionised calcium-binding adapter molecule 1 

(IBA-1) immunoreactivity, the same group later demonstrated a shift of iron from 

oligodendrocytes to microglia in the DGM (Haider et al., 2014). While the authors assessed 

iron by semi-quantitative densitometry, which may not represent iron concentration linearly, 

Popescu et al. (Popescu et al., 2017) recently confirmed the decrease of iron with age and 

disease duration in NAWM of MS patients using X-ray fluorescence imaging, which is an 

element-specific and quantitative technique. Reduced iron has also been reported in inactive 

cortical MS lesions (Yao et al., 2014), i.e. lesions with sparse inflammatory cells.

Mechanistic interpretation of the observed thalamic susceptibility alterations

Due to their high oligodendrocyte density, the DGM may be subject to similar pathological 

processes as the WM. In particular, both NAWM (Frischer et al., 2009) and DGM (Herranz 

et al., 2016) show chronic microglial activation in MS, with the highest activity in the 

thalamus (Banati et al., 2000; Herranz et al., 2016; Kauzner et al., 2016; Rissanen et al., 

2014). The pro-inflammatory cytokines TNF-α and interferon-γ, expressed by microglia 

upon activation, have an iron-mediated toxic effect on oligodendrocytes (Zhang et al., 2005) 

and trigger a release of iron from the cells (Zhang et al., 2006). While protective against the 

direct toxicity of cytokines, this oligodendroglial iron release may itself have several 

detrimental consequences. First, before the liberated iron is detoxified and cleared from the 
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region, it might directly contribute to mitochondrial dysfunction and neurotoxicity by 

fueling the creation of reactive oxygen and nitrogen species via Fenton chemistry. Second, 

iron deficiency negatively affects several pathways of normal oligodendrocyte function 

(Connor and Menzies, 1996), the proliferation of oligodendrocyte progenitor cells 

(Schonberg et al., 2012), their differentiation, and remyelination (Stephenson et al., 2014). 

Third, microglia that pick up the iron increase the release of proinflammatory cytokines and 

switch from a quiescent to a pro-inflammatory phenotype (Zhang et al., 2006), further 

fueling the release of iron from oligodendrocytes in a vicious circle.

The observed positive correlation between structural volumes and magnetic susceptibility 

observed in the present study (Tab. 4) points toward an association between iron depletion 

and the relatively high number of focal demyelinating lesions previously observed in the 

thalamus (Haider et al., 2014; Vercellino et al., 2009). This association might result from a 

loss of iron-containing oligodendrocytes secondary to the lesion formation or be related to a 

retraction of oligodendrocyte processes under an iron-depletion related stress condition 

(Rone et al., 2016). Hence, it may be speculated that the bystander damage of chronic 

inflammation and, in particular, its effect on the local availability of storage iron, represents 

the missing link between inflammatory and neurodegenerative disease components in MS, 

partially explaining the slow transition from RRMS to SPMS. In this context, it is an 

interesting observation that thalamic T2-hypointensity, indicative of high iron load, predicts 

the progression of brain atrophy over 1 year in untreated MS patients, whereas this 

relationship diminishes upon immune-modulating treatment with interferon β-1 (Bermel et 

al., 2005) despite no measurable effect of the drug on the atrophy rate during this time.

An association between chronic microglial activation and iron depletion would provide the 

missing link also for a mechanistic explanation for the peculiar normal aging trajectory of 

thalamic iron (Fig. S.6). Microglial activation is a poorly understood phenomenon of normal 

aging, which shows the strongest correlation with age in the thalamus (Schuitemaker et al., 

2012).

What distinguishes the thalamus from other brain regions that show predominantly 
increased magnetic susceptibility in MS?

Strong evidence exists for the common notion that MS is associated with an increase in the 

DGM iron concentration. This evidence may give rise to the question why the WM and the 

thalamus show the opposite behavior. However, increased iron concentration, such as that 

observed in the DGM, does not necessarily imply iron deposition. We have estimated in a 

recent longitudinal QSM-based MS study that the expected increase of caudatal 

susceptibility due to demyelination and atrophy of cells with little or no iron, exceeds the 

observed susceptibility increase (Hagemeier et al., 2017). In other words, the removal of 

iron-containing cells or depletion of iron from cells on top of the major demyelination is 

required to explain the observed longitudinal increase of magnetic susceptibility in the 

caudate of MS patients. This estimation was recently supported by independent preliminary 

data on total iron estimated from R2* and volumetric measurements, which indicated 

decreased total iron in the caudate, pallidum, and thalamus of MS patients (Hernández-

Torres et al., 2017). Reduced DGM iron has also previously been observed in other 
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neurological diseases (Doring et al., 2016; Kanaan et al., 2017). In summary, the depletion 

of iron may not be restricted to the thalamus but may instead be a general hallmark of MS.

However, its rich connectivity profile and central role in several brain networks might render 

the thalamus particularly susceptible to secondary effects from remote injury in other parts 

of the brain via Wallerian degeneration or hypometabolism. This hypothesis is supported by 

studies showing that the reduction of thalamic NAA in MS (Cifelli et al., 2002; Wylezinska 

et al., 2003), indicative of neurodegeneration, is correlated with NAA in the frontal NAWM 

(Wylezinska et al., 2003), and thalamic atrophy and hypometabolism are correlated with 

WM lesion volume (Blinkenberg et al., 2000; Houtchens et al., 2007). Furthermore, a study 

by Henry et al. (Henry et al., 2009) suggested a mechanistic relationship between thalamic 

atrophy and WM lesions in thalamocortical tracts. A recent study in the experimental 

autoimmune encephalomyelitis (EAE) mouse model for MS reported chronic inflammation 

and demyelination of the spinothalamic tract at the level of the spinal cord paired with 

neuronal loss in the thalamic target region of the tract (Wagenknecht et al., 2016). The 

absence of indicators for autoimmune attack of the thalamus during the acute stage of the 

disease suggested that the observed thalamic neurodegeneration was secondary to the 

autoimmune attack in the spinal cord.

It is also known that neuroinflammatory responses can be ‘projected’ bidirectionally along 

cortico-thalamic tracts (Banati, 2002), where cortical injury induces a remote microglial 

response in the ipsilateral thalamus (Banati et al., 2001; Kuchcinski et al., 2017; Myers et 

al., 1991a; Pappata et al., 2000; Sørensen et al., 1996). Consequently, the widespread 

cortical pathology in MS (Calabrese et al., 2007; Kutzelnigg and Lassmann, 2005), 

including chronic active lesions with microglial activation (Pitt et al., 2010) and meningeal 

inflammation (Howell et al., 2011; Kutzelnigg et al., 2005), may spread along cortico-

thalamic tracks and, as such, “focus” in the thalamus. In fact, thalamic [11C]-PBR28 

binding correlates with cortical thinning and reduced cognitive performance (Herranz et al., 

2016).

Remote cortical injury as a driving factor for the observed susceptibility reduction is also 

supported by the fact that the PUL was the most affected region in the present work. Being 

the largest of the “association” nuclei (Shipp, 2003), the PUL receives the majority of its 

input directly from the cerebral cortex and participates primarily in reciprocal cortico-corical 

interactions. In addition, also the MNR, including the mediodorsal nucleus, is primarily 

associative, whereas the LNR, which showed only little alteration in the present study, 

consists of “relay” nuclei, which receive input from the periphery and only forward it to the 

cortex (Jones, 1991).

It is likely that the strong susceptibility decrease in the PUL observed in the present study is 

secondary to injury elsewhere in the optical pathways. Cortico-pulvinar-cortical circuitry has 

an active participation in the processing of visual information and selective attention through 

the promotion of synchronized activity in different cortical areas (Benarroch, 2015; Fama 

and Sullivan, 2014). Early studies in monkeys have demonstrated that lesions in the visual 

cortex (Mathers, 1972; Ogren and Hendrickson, 1979) cause degenerative changes in the 

PUL. Visual impairment is a frequent symptom of MS and both retinal nerve fiber layer 
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thickness, and retinal periphlebitis have been associated with disease activity in MS 

(Sepulcre et al., 2007). More recently, Mühlau et al. (Muhlau et al., 2013) found that WM 

lesions and PUL atrophy are spatially related in MS, with axonal transection within WM 

lesions and subsequent degeneration along the axonal projections being the most plausible 

explanation. Gabilondo et al. (Gabilondo et al., 2014) showed retro- and anterograde trans-

synaptic neuronal degeneration in the visual pathway and Zivadinov et al. (Zivadinov et al., 

2014) reported a trend toward associations between retinal nerve fiber layer thickness in 

RRMS patients and microstructural damage in the thalamus, in particular, volume changes 

in the GT and PUL.

Interestingly, thalamic lesions in MS have previously been reported primarily in the MNR 

and the anterior nuclear region, but not in the LNR (Vercellino et al., 2009). These 

observations are in line with the locations of significant susceptibility reduction in our VBA 

(Figs. 2a and S.3). Several studies have shown that the LNR connects to premotor areas 

(anterior portion) (Behrens et al., 2003; Bisecco et al., 2015; Johansen-Berg et al., 2005), 

M1, and somatosensory cortices S1/S2 (posterior portion) (Behrens et al., 2003; Johansen-

Berg et al., 2005). The intra-thalamic spatial patterns of regions with thalamo-occipital, -

temporal, and -somatosensory projections shown in these publications resemble surprisingly 

well our QSM-based findings in RRMS, and areas with thalmo-occipital, -parietal, and -

frontal projections those in SPMS (Figs. 2a and S.3). Also a recent R2*-based study in 

stroke patients (Kuchcinski et al., 2017) reported increased iron in the MNR and PUL 

following infarcts in more anterior brain regions and more posterior regions, respectively. 

This selective involvement of areas with specific connectivity profiles further supports a 

direct relationship between thalamus pathology and pathology in the cortex.

Laterality of susceptibility changes

We observed strong laterality in some regions. Although the reason for the laterality remains 

unclear, it is not an unexpected finding. Cobzas et al. (Cobzas et al., 2015) reported left-right 

asymmetry of the p-values in their VBA of thalamus susceptibility. Asymmetry of deep 

brain regions has also recently been shown in a large multi-center study. In particular, 

thalamus was among the structures with the highest inter-hemispheric asymmetry 

(Guadalupe et al., 2016). A meta-analysis by Lansley et al. (Lansley et al., 2013) showed 

increased atrophy of the left thalamus in patients with RRMS and Preziosa et al. (Preziosa et 

al., 2017) recently reported a stronger association of atrophy in the left than in the right 

thalamus with worsening disability and cognitive deterioration over 5 years.

Limitations of the study

Our work has conceptual and technical limitations. Conceptual limitations of the study 

include the lack of a detailed assessment of the disability profile in patients and its 

correlation with the intra-thalamic susceptibility changes. It is likely that a link exists 

between the alterations in sub-nuclei and functional, emotional, and cognitive dysfunction 

primarily associated with these regions and basal ganglia-thalamocortical pathways. In 

particular, the globus pallidus is the major input region to the thalamus (Alexander et al., 

1986) and, at the same time, one of the DGM regions that show the greatest susceptibility 

increase in MS (Hagemeier et al., 2017).
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To investigate if our findings are strongly associated with clinical disability, we performed 

an exploratory post hoc analysis in which we added EDSS to the multivariate regression 

analysis (log-transformed due to platykurtic distribution). We observed a statistically 

significant positive association between the transformed disability and susceptibility in the 

left (p=0.034) and right (p=0.025) LNR. In all other regions, associations between disability 

and susceptibility did not reach significance (p>0.05). In particular, we failed to confirm the 

negative association of the global thalamus susceptibility with EDSS scores previously 

reported by Burgetova et al. (Burgetova et al., 2017). Considering that the LNR is a region 

that contains primarily relay nuclei, which forward information from the periphery to the 

cortex, a more direct association of the LNR with EDSS scores (compared to the association 

nuclei) seems plausible. A more detailed investigation of the associations of susceptibility 

alterations in thalamic sub-nuclei with clinical disability will be the subject of future 

research.

Another limitation of our study is that we could not demonstrate that thalamic susceptibility 

explains more variance than other, more conventional MRI measures and did not take into 

account the thalamic lesion burden. In addition, although the design of our cross-sectional 

study controlled for confounding effects to the extent possible, longitudinal studies are 

needed to control for cohort effects that affect the whole cohort equally.

We discuss the technical limitations of the study in the Supplementary Material 4.

Conclusion

In conclusion, the results of the present study falsified our hypothesis of increased thalamic 

susceptibility. Our findings suggest that thalamic susceptibility decreases with dd and that 

thalamic sub-regions follow distinct temporal trajectories. The inconsistency of this result 

with some previous studies may be attributed to a substantial heterogeneity of clinical 

characteristics, imaging methods, and group demographics, particularly a lower group-

average age in previous studies. Although the biophysical origin of the decreased thalamic 

susceptibility remains unclear, a plausible explanation that is supported by independent 

previous work is the depletion of iron from oligodendrocytes, which may be a side effect 

related to chronic microglia activation and ultimately lead to neurodegeneration. Because the 

different thalamic nuclei maintain distinct connectivity profiles that form a closely coupled 

system with virtually all cortical and subcortical areas (Fama and Sullivan, 2014; Postuma 

and Dagher, 2006; Sherman and Guillery, 2013b), the observed pathologic alterations in 

thalamic tissue properties may have wide-spread interaction effects with other disease 

mechanisms and symptoms in MS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Avg Average

CI Confidence Interval

CIS Clinically Isolated Syndrome

DAB Diaminobenzidine

dd Disease Duration

DGM Deep Gray Matter

EDSS Expanded Disability Status Scale

FOV Field of view

FWE Family-Wise Error

GRE Gradient Recalled Echo

GT Global Thalamus

IBA-1 Ionised Calcium-Binding Adapter Molecule 1

IQR Interquartile Range

IR-FSPGR Fast Spoiled Gradient-Echo Pulse Sequence With Inversion Recovery

LNR Lateral Nuclear Region

MNR Medial Nuclear Region

MS Multiple Sclerosis

NAWM Normal Appearing White Matter

NC Normal Controls

PET Positron Emission Tomography

ppb Parts Per Billion

PUL Pulvinar

QSM Quantitative Susceptibility Mapping

R2* Effective Transverse Relaxation Rate
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RRMS Relapsing-Remitting MS

SPMS Secondary Progressive MS

SWI Susceptibility-Weighted Imaging

T1w T1-Weighted

TFCE Threshold-Free Cluster Enhancement

WM White Matter
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Figure 1. 
Brain template and custom thalamus atlas. Pulvinar (PUL) indicated in blue, lateral nuclear 

region (LNR) in yellow, and medial nuclear region (MNR) in green. The global thalamus 

(GT) is indicated in red (other areas overlaid). The white circle indicates the location of the 

slices used in the enlarged views in Fig. 2. The cutout view on the left visualizes the three-

dimensional spatial location in the brain.
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Figure 2. 
Results of the voxel-based analysis. (a) Regions in which differences between patients and 

controls reached statistical significance. Shown are voxels with a p-value below 0.05 (color-

coding) after TFCE in selected slices (white circles in Fig. 1). The corresponding overview 

of the results in the whole thalamus is shown in Fig. S.3 in the Supplementary Material. (b) 

Voxel-based group-average differences of magnetic susceptibility between the patient and 

their corresponding NC groups (top to bottom) in selected slices, illustrating the magnitude 

and direction of the group differences in every voxel. Note the differences in contrast 

between the groups (color bars). The corresponding overview of the results in the whole 

thalamus is shown in Fig. S.4 along with the Z-scores
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Figure 3. 
Top and middle row: Scatter plots illustrating univariate associations of susceptibility for 

regions that were significant in the multivariate analysis (top row and middle row for 

patients) and, for illustrative purposes, associations with age for the same regions (middle 

row). The shapes of the markers indicate the clinical phenotypes: circle – CIS; square – 

RRMS; cross - SPMS. In the top row, linear regression curves are used, whereas in the 

middle row cubic curves were used, except for the MNR, where we used a quadratic fit. 

Bottom row: Scatter plots of the susceptibilities in corresponding regions of NCs over age. 

The regression line for the left GT was determined by fitting a + b · (0.3 mg/100g · age 
−5.82·10−3 mg/100g · age2 + 3.15·10−5 mg/100g · age3) to the susceptibility values 

(Levenberg-Marquardt), which relies on the known iron aging-trajectory in the GT (see 

Figure S.6 in the Supplementary Material). The fitted coefficients were a = (−15.3±6.9) ppb 

and b = (5.22±1.58) ppb·100g/mg. For the other NC plots, we used a cubic regression (PUL: 

R2=0.13, ANOVA p=0.0011, 22.0ppb – 7.18·10−3 ppb/a · age + 1.62·10−2 ppb/a2 · age2 

− 2.41·10−4 ppb/a3 · age3; MNR: R2=0.05, p=0.11; LNR: R2=0.22, p<0.001, 20.3ppb – 

8.36·10−1 ppb/a · age + 1.77·10−2 ppb/a2 · age2 − 1.48·10−4 ppb/a3 · age3). For improved 

visualization, all ordinates, except that of the MNR, cover a susceptibility interval of 65ppb 

(all data points are visible).
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