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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest types of cancer. The 

worldwide estimates of its incidence and mortality in the general population are 8 cases per 

100,000 person-years and 7 deaths per 100,000 person-years, and they are significantly higher in 

the United States than the rest of the world. The incidence of this disease in the United States (US) 

is over 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase 

dramatically to become the second leading cause of cancer-related deaths before 2030. 

Considering the failure to date to efficiently treat existing PDAC, increased effort should be 

undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC 

development is of utmost importance to identify and formulate preventive strategies. Large 

epidemiological and cohort studies have identified risk factors for the development of PDAC, 

including obesity and type-2 diabetes mellitus (T2DM). This review highlights the current 

knowledge of obesity and T2DM as risk factors for PDAC development and progression, their 

interplay and underlying mechanisms, the relation to diet, as well as outlines research gaps and 

opportunities to address this deadly disease.
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Introduction

It is estimated that about one third of cases of cancer, the second leading cause of death in 

the United States (US), are caused by dietary factors.1,2 One of the deadliest types of cancer 

has been and still is pancreatic ductal adenocarcinoma (PDAC), the most common histologic 
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type of pancreatic cancer. The worldwide estimates of its incidence and mortality in the 

general population are eight cases per 100,000 person-years and seven deaths per 100,000 

person-years, and they are significantly higher in the US than the rest of the world.3 The 

projected incidence of this disease in the US is over 50,000 new cases in 2017 and it is 

currently the third leading cause of cancer mortality in both men and women.2 Despite 

advances in understanding the biology of PDAC, molecularly targeted therapy (such as 

epidermal growth factor receptor inhibitors) has not translated into substantially improved 

prognosis. Indeed, total deaths due to PDAC are projected to increase considerably to 

become the second leading cause of cancer-related deaths before 2030.4 Considering the 

failure to date to efficiently treat existing PDAC, increased effort should be undertaken to 

prevent this disease. Consequently, the focus of research has shifted gradually towards its 

prevention and interception, which encompasses halting transformed cells from becoming 

malignant cancers.5–9 In this context, a better understanding of the risk factors leading to 

PDAC development is of great importance to identify and formulate preventive and 

interceptive strategies and to ultimately educate the public. Large epidemiological and 

cohort studies have identified risk factors for the development of PDAC,10–13 including 

obesity and type-2 diabetes mellitus (T2DM). This review highlights the current knowledge 

of obesity and T2DM as risk factors for PDAC development and progression, their interplay 

and underlying mechanisms, the relation to dietary influences, as well as outlines research 

gaps and opportunities to address this deadly disease.

Epidemiology of obesity, diabetes mellitus, and pancreatic cancer

Obesity and Diabetes as Risk Factors for PDAC

T2DM and obesity are among the small number of known modifiable risk factors for PDAC. 

There is a complex relationship between T2DM and obesity as they often coexist, but 

independently increase the risk for developing PDAC. An association of PDAC with T2DM 

and obesity is strongly suggested when the geographic prevalence of all three diseases is 

examined (Figure 1). The epidemiologic support for and proposed mechanisms of increased 

risk for PDAC in both longstanding T2DM and new-onset DM have been previously 

reviewed,14–17 so the connection with obesity is further emphasized here.

Epidemiological evidence from various study types has consistently shown that obesity is a 

dose-dependent risk factor for the development of PDAC.18–24 In a population study of over 

900,000 adults, a 52% increased death rate from all cancers was observed in men and a 62% 

increased death rate in women with a body mass index (BMI) greater than 40 kg/m2 

compared to normal weight controls.21 The relative risk (RR) of PDAC for subjects with 

BMI > 40 kg/m2 was 2.61 (95% CI, 1.3–5.4; P=.001) for men and 2.76 (95% CI, 1.74–4.36; 

P=.001) for women. Additionally, an increased BMI was associated with an increased risk of 

death from several other cancers (such as esophagus, liver, and colon)25–27 in which DM is 

less prevalent supporting an independent role of obesity in cancer development. It is 

important to acknowledge that the effect size of obesity as a PDAC risk factor is likely 

diluted when only BMI is considered because the distribution of fat appears to also influence 

cancer risk. For example, an increased waist to hip ratio is associated with a greater than 

70% increased risk of PDAC.23
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Evidence from clinical studies shows that weight loss, induced by dietary restriction, 

exercise, or bariatric surgery, reduces the risk of cancer.28–33 Adams et al reported that the 

incidence of obesity-related cancers decreased by 50% in 6,596 bariatric surgery patients 

compared to 9,442 obese controls followed for an average of 12.5 years.31 Similarly, in the 

Swedish Obesity Subjects study involving 2,010 bariatric surgery patients and 2,037 un-

operated controls, Sjöström et al reported that the overall mortality was reduced by 24% in 

the surgery cohort, but the number of deaths from individual cancers was too small to assess 

organ-specific effects.29,33

Interaction of Obesity with Diabetes and PDAC

Although many epidemiologic studies have been confounded by the frequent coexistence of 

T2DM in the obese groups, larger studies indicate that obesity confers a significant cancer 

risk independent of the presence of T2DM. For example, Jiao et al studied a pooled cohort 

of over 900,000 subjects in which there were 2,454 who developed PDAC.34 The incidence 

of PDAC increased by 19% in the group with a BMI 30–35 kg/m2, and was not affected by 

the presence of T2DM.

Studies probing the contribution of metabolic alterations associated with obesity have 

corroborated the risk and suggest that increased insulin levels due to the insulin resistance of 

obesity are an important factor. Stolzenberg-Solomon et al studied levels of glucose and 

insulin and measures of insulin resistance in 29,133 Finnish male smokers followed for 

almost two decades.35 Fasting glucose, insulin levels, and insulin resistance (estimated with 

HOMA-IR) were positively associated with PDAC. Importantly, the RR of PDAC was 2.71 

(95% CI, 1.19–6.18; P=.006) in subjects with the highest quartile of insulin resistance. As 

obesity is associated with insulin resistance in virtually all subjects, hyperinsulinemia is 

believed to have a causative role in PDAC tumorigenesis.36 In an autopsy study, Butler et al 

evaluated the influence of DM and obesity on pancreatic duct cell proliferation determined 

by the expression of Ki67, a nuclear protein strictly associated with cellular proliferation.37 

Lean non-diabetic, obese non-diabetic, lean diabetic, and obese diabetic subjects 

demonstrated progressive increases in Ki67 expression, suggesting that obesity increased 

pancreatic duct cell proliferation, and the magnitude of this effect was further increased by 

the presence of T2DM. When hyperinsulinemia can no longer adequately compensate for 

the insulin resistance, persistent hyperglycemia results, and further increases the risk. In this 

way, both hyperinsulinemia and hyperglycemia are related factors which promote dysplasia 

and neoplasia in the pancreas.

Overview of mechanisms underlying the increased risk of PDAC by T2DM 

and obesity

A variety of overlapping and distinct mechanisms exist, by which T2DM and obesity can 

promote PDAC development. Patients with T2DM and the overwhelming majority of obese 

subjects are characterized by insulin resistance with ensuing hyperinsulinemia and high 

levels of insulin-like growth factor-1 (IGF-1),38–45 which can act as potent growth-

promoting factors. The effects of insulin and/or IGF-1 are mediated by binding to insulin 

receptors, IGF-1 receptors, and hybrid insulin/IGF-1 receptors with subsequent activation of 
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the PI3K signaling cascade.46 Of note, insulin/IGF-1 receptors have been described to be 

expressed on human pancreatic cancer cells.47 The importance of elevated insulin/IGF-1 

levels in PDAC development is highlighted by the potential anti-tumor effects of metformin, 

an anti-diabetic drug that lowers circulating insulin/IGF-1 levels. Recent preclinical and 

clinical studies indicate that metformin use lowers the risk of PDAC, inhibits cancer cell 

growth, and improves survival of patients.7,48–55 The observation that several clinical trials 

did not find a beneficial effect of metformin in patients with advanced PDAC56–58 suggests a 

potential role of metformin more in the primary/secondary prevention and early interception 

settings.59

Obesity and T2DM are increasingly recognized as chronic, systemic, low-grade 

inflammatory conditions with elevations in reactive oxygen species, pro-inflammatory 

cytokines, adipokines, and eicosanoids.40,41,45 This systemic and local inflammatory milieu 

may be conducive to tumor initiation and/or promotion.60,61 The inflammatory 

microenvironment also is thought to be the major mechanism, by which chronic pancreatitis 

leads to PDAC development.62–65 Targeting pancreatic inflammation by inhibiting 

cyclooxygenase activity, using aspirin, or targeted blockade of inflammatory cytokines has 

been shown to attenuate cancer development and/or growth.66–71 Mouse models have 

demonstrated that obesity is associated with increased pancreatic inflammation, immune cell 

infiltration, and accelerated neoplasia.72–74 Targeting obesity by caloric restriction decreased 

pancreatic inflammation and reduced PDAC incidence and progression.75,76 Similarly, 

T2DM and accompanying hyperglycemia have been shown to lead to chronic inflammation 

and increased cancer risk,77 while inhibition of inflammatory signaling pathways reduced 

PDAC growth in a diabetic animal model.78 On a molecular level, a novel cross-talk 

between the inflammatory prostaglandin signaling pathway and mTORC-1, which is 

implicated in insulin resistance during obesity and T2DM, highlights the intricate cross-talk 

between obesity, T2DM, and inflammation.79 There is recent evidence indicating the nuclear 

receptor PPAR-γ to be at the crossroads of obesity, T2DM, and PDAC by regulating 

metabolism, inflammation, insulin and adipokine production.80 Dietary fish oil and omega-3 

polyunsaturated fatty acids (PUFAs) have been shown in some laboratory and clinical 

studies to be correlated with a reduced PDAC incidence and decreased cancer growth,81–86 

while some reports showed no beneficial effects.87 The Pancreatic Cancer 2012 Report of 

the Continuous Update Project (CUP) described a marginal correlation between total fat 

intake and PDAC risk, but no conclusions could be made for PUFAs.88 Consumption of fish 

oil has been correlated with the prevention of obesity and the improvement of insulin 

resistance, non-alcoholic fatty liver disease, and cardiovascular disease.89–94 Fish oil rich in 

omega-3 PUFAs has thereby been shown to promote an anti-inflammatory 

microenvironment by altering adipokine/cytokine production and attenuating pro-

inflammatory immune cells.95–98 Importantly, omega-3 PUFAs are known ligands of PPAR-

γ, again placing this nuclear receptor in a central role orchestrating metabolism, 

inflammation, and cancer risk.

Chronic pancreatic inflammation is characterized by a desmoplastic (dense fibroblastic) 

reaction. Conflicting reports have described both a pro- and anti-tumorigenic role of 

desmoplasia (dense connective tissue).99,100 Recent studies have highlighted the importance 

of pancreatic desmoplasia in the context of obesity-associated PDAC.101 In addition, a 
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connection between hyperinsulinemia, pancreatic stellate cell activation, and islet fibrosis in 

a diet-induced obesity model of PDAC has been described.102 Other mechanisms have been 

described, by which obesity can promote the development of cancers, including changes in 

autophagic processes, gastrointestinal peptide secretion, and gut microbiota.39,43,45,103 A 

recent study reported that a membrane protein from a specific gut bacterium improved 

metabolism in obese and diabetic mice.104 However, a current meta-analysis questioned 

whether there are specific microbiome-based markers that can be associated with human 

obesity.105 This analysis reported that the ability to reliably classify individuals as obese 

solely on the basis of the composition of their microbiome was limited due to a lack of 

power to detect modest effect sizes.105 It is therefore currently unclear whether obesity leads 

to significant changes in the gut microbiome with subsequent deleterious health effects. 

Overall, there are many possible mechanisms, by which obesity and T2DM can promote 

PDAC development and enhance risk factor-induced tumor formation, including changes in 

signaling and metabolic pathways and fibro-inflammatory processes.

The central role of adipose tissue in mediating the increased risk of PDAC 

by T2DM and obesity

During obesity, the white adipose tissue may become dysfunctional and fail to meet the 

storage capacity needed for the excess caloric intake. This may lead to deleterious sequelae, 

including inflammation, fibrosis, hypoxia, and dysregulated adipokine secretion (Figure 2).
106 This adaptive failure of adipose tissue may also result in ectopic fat deposition in other 

metabolically active tissues, e.g. liver, skeletal muscle, endocrine and exocrine pancreas, 

leading to progressive insulin resistance and T2DM.106,107 Obesity-associated adipose tissue 

inflammation is characterized by an elevation of pro-inflammatory cytokines and 

adipokines, e.g. TNF-α, IL-1β, IL-6, MCP-1, leptin, and resistin, and a decrease in anti-

inflammatory molecules, e.g. IL-10, adiponectin.108 The inflammatory milieu in white 

adipose tissue during obesity is also characterized by profound immune cell changes. 

Adipose tissue macrophages (ATM) play a critical role in obesity-associated adipose tissue 

inflammation.109–115 In the lean state, ATMs display an anti-inflammatory M2-polarized 

phenotype, which is maintained by Th2-type cytokines produced by other tissue-resident 

immune and stromal cells. During obesity, the adipose tissue is characterized by a reduction 

of anti-inflammatory immune cells and cytokines, a predominance of pro-inflammatory M1-

polarized macrophages, and an increase in Th1-type cytokines. Inhibiting the pro-

inflammatory macrophage phenotype has been demonstrated to improve obesity-associated 

metabolic dysfunctions.116,117

Adipose tissue inflammation is considered to significantly contribute to the development of 

obesity-associated cancers, including PDAC.41,43,101,118,119 A recent report has 

demonstrated that in the conditional KrasG12D mouse model of PDAC diet-induced obesity 

induced robust inflammation in the visceral white adipose tissue with an increase in crown-

like structures, histological features of adipose tissue inflammation (necrotic adipocytes 

surrounded by macrophages) and elevated levels of pro-inflammatory cytokines and 

adipokines.120 This was associated with an acceleration of PDAC development.120 

Interestingly, the observed obesity-associated inflammatory changes in this model were 
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more robustly seen in mesenteric (peri-pancreatic) visceral adipose tissue than in other 

depots, emphasizing the importance of distinct anatomical locations of white adipose tissue.
120 This notion is supported by human studies showing a stronger correlation between 

visceral adiposity (in contrast to generalized whole body fat), metabolic dysfunction, and 

PDAC.121–126

Recent studies have highlighted the importance of adipokines in PDAC risk and progression. 

Elevated levels of leptin, which are commonly seen in obese patients (with or without 

T2DM), were found to be associated with an increased risk of PDAC.127,128 Increased 

plasma concentrations of leptin were also detected in a diet-induced obesity model of PDAC,
72 whereas caloric restriction decreased circulating leptin levels, which was accompanied by 

a delay of PDAC development.129 Experimental studies have linked leptin signaling to 

PDAC progression.130–132 Fewer studies have focused on the role of adiponectin in PDAC 

but lower circulating adiponectin levels are correlated to an increased PDAC risk.133–135

Intra-pancreatic fat accumulation, termed non-alcoholic fatty pancreas disease (NAFPD), 

ranging from simple fat deposition to pancreatic inflammation and fibrosis, has been 

associated with other diseases of obesity.107 A recent meta-analysis of clinical studies has 

shown that NAFPD may promote pancreatic endocrine dysfunction associated with insulin 

resistance and T2DM, and have links to the development of PDAC.136–141 Taken together, 

the available literature strongly indicates an important role of dysfunctional white adipose 

tissue, including inflammation and ectopic fat deposition due to obesity on metabolic 

disorders and PDAC development.

Dietary factors and Pancreatic Ductal Adenocarcinoma

Dietary factors that may affect the risk for PDAC include carbohydrate intake, fat intake, 

meat, fish, fruits and vegetables.12 It has been difficult to definitively establish risk factors 

because selection bias (e.g. studies limited to females only, or individuals of certain ethnicity 

only) complicates such investigations.24 The other common problem with studies on dietary 

factors is recall bias, which is a particular concern in retrospective studies. Further, 

individual studies of various designs and questionable methodological quality are frequently 

evaluated by meta-analysis,142 which may yield biased estimates. While more than 100 

articles are published annually on dietary factors associated with risk of developing PDAC, 

we elected to present findings from the most robust individual epidemiological studies, i.e. 

prospective cohort studies conducted in a general population. PubMed was searched for 

articles published between January 1, 1990, and December 31, 2016. Only prospective, 

population-based, cohort studies that investigated dietary factors in relation to the 

development of PDAC are summarized below. Studies had to include adult individuals of 

both sexes living in a given geographic area. Studies were excluded if they were 

retrospective cohort, (nested) case-control, cross-sectional, or interventional studies or were 

not representative of the general population (e.g., insurance claims, tertiary setting only, 

cohorts limited to a particular ethnicity or occupation).
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Carbohydrate intake

A prospective cohort study by Mueller et al.143 followed up a total of 60,524 individuals in 

Singapore for 14 years (on average), of which 140 developed incident PDAC. In multivariate 

analysis, the authors found that individuals consuming ≥2 soft drinks/week had a statistically 

significant increased risk of PDAC (hazard ratio or HR, 1.87; 95% CI, 1.10–3.15) compared 

with individuals who did not consume soft drinks. No statistically significant association 

was found between juice consumption and PDAC risk. A prospective cohort study by 

Larsson et al.144 followed a total of 77,797 individuals in Sweden for 7.2 years (on average), 

of which 131 developed incident PDAC. In multivariate analysis, the authors found 

significant associations between consumption of added sugar and soft drinks and risk of 

pancreatic cancer. The HRs for the highest compared with the lowest consumption 

categories were 1.95 (95% CI, 1.10–3.46; P = 0.03) for added sugar and 2.30 (95% CI, 

1.35–3.92; P = 0.006) for soft drinks. However, there were no associations between 

consumption of fruit soups, or stewed fruit jam/marmalade, or sweets and PDAC risk. In a 

prospective cohort study by Bao et al.145 a total of 487,922 individuals in the US were 

followed up for 7.2 years (on average), of which 1258 developed incident PDAC. In 

multivariate analysis, the authors found no statistically significant association between high 

intake of total added sugar or sugar-sweetened foods/beverages and PDAC risk. The median 

intakes for the lowest and highest quintiles of total added sugar intake were 12.6 (3 tsp/d) 

and 96.2 (22.9 tsp/d) g/d, respectively. A prospective cohort study by Jiao et al.146 followed 

up a total of 482,362 individuals in the US for 7.2 years (on average), of which 1151 

developed incident PDAC. In multivariate analysis, the authors found no statistically 

significant association between total or available carbohydrates or glycemic load/glycemic 

index and risk of pancreatic cancer. However, individuals with high free fructose intake were 

at a significantly higher risk of developing PDAC (highest compared with lowest quintile, 

RR, 1.29; 95% CI, 1.04–1.59; P = 0.004). Similarly, individuals with high free glucose 

intake were at a significantly higher risk of developing PDAC (RR, 1.35; 95% CI, 1.10–

1.67; P = 0.005). These data are in agreement with another large meta-analysis describing a 

positive correlation between high fructose intake (but not total carbohydrates, glycemic 

index) and pancreatic cancer.142 In another prospective cohort study by Patel et al.147 a total 

of 124,907 individuals were followed up in the US for a maximum of nine years, of which 

401 developed incident PDAC. In multivariate analysis, the authors found no statistically 

significant association between glycemic load/glycemic index or carbohydrate intake and 

PDAC risk. Finally, an important meta-analysis reported that high fructose intake is 

associated with an increased incidence of PDAC.142

Fat intake

A prospective cohort study by Thiebaut et al.148 followed up a total of 525,473 individuals 

in the US for 6.3 years (on average), of which 1337 developed incident PDAC. In 

multivariate analysis, the authors found that the intakes of total fat (highest vs lowest 

quintile, HR, 1.23; 95% CI, 1.03–1.46; P = 0.03), saturated fat (HR, 1.36; 95% CI, 1.14–

1.62; P = 0.001), and monounsaturated fat (HR, 1.22; 95% CI, 1.02–1.46; P = 0.05) were 

associated with statistically significant higher PDAC risks. The associations were strongest 

for saturated fat from animal food sources (HR, 1.43; 95% CI, 1.20–1.70; P < .001); 

specifically, intakes from red meat and dairy products.
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Fish intake

A prospective cohort study by He et al.85 followed up a total of 66,616 individuals in the US 

for 6.8 years (on average), of which 151 developed incident PDAC. In multivariate analysis, 

the authors found that long-chain (n-3) polyunsaturated fatty acids (LC-PUFAs) were 

associated with a statistically significant lower PDAC risk (HR, 0.62; 95% CI, 0.40–0.98; P 

= 0.04). Similarly, non-fried fish intake was associated with a statistically significant lower 

PDAC risk (HR, 0.55; 95% CI, 0.34–0.88; P = 0.04). Also, docosahexaenoic acid showed a 

greater inverse association with PDAC than eicosapentaenoic acid. However, no statistically 

significant associations were observed with fried fish and shellfish consumption.

Meat intake

A prospective cohort study by Stolzenberg-Solomon et al.149 followed up a total of 537,302 

individuals in the US for a maximum of five years, of which 831 developed incident PDAC. 

In multivariate analysis, the authors found total, red, and high-temperature cooked meat 

intake was significantly associated with PDAC among men (fifth versus first quintile: HR, 

1.41, 95% CI, 1.08–1.83, P = 0.001; HR, 1.42, 95% CI, 1.05–1.91, P = 0.01; and HR, 1.52, 

95% CI, 1.12–2.06, P = 0.005, respectively). However, no statistically significant 

associations were observed among women.

Fruits and vegetables

A prospective cohort study by Larsson et al.150 followed up a total of 81,922 individuals in 

Sweden for 6.8 years (on average), of which 135 developed incident PDAC. In multivariate 

analysis, the authors found that cabbage consumption was associated with a statistically 

significant lower PDAC risk (≥1 serving/week versus never consumption: HR, 0.62; 95% CI, 

0.39–0.99). However, the HR for the highest compared with the lowest category of intake 

was not statistically significant for total vegetables (HR, 1.08; 95% CI, 0.63–1.85). 

Similarly, the HR for the highest compared with the lowest category of intake was not 

statistically significant for total fruits (HR 1.10; 95% CI, 0.64–1.88). While some studies 

found no association between fruit and vegetable intake and PDAC, it is possible that 

measurement errors may obscure an association as one large cohort found an inverse 

association between vitamin C and carotenoids (as markers of fruit and vegetable intake) and 

PDAC risk.151

It is now well-established that metabolic pathways are altered in cancer.152 However, it is 

less readily evident how chronic alterations in our system biology enhance cancer risk. 

Excessive caloric intake due to excessive dietary fat and red meat, sugar-containing soft 

drinks, and fructose can lead to an increasing prevalence of obesity of diabetes, and 

secondarily to a higher incidence of PDAC. However, there are likely also direct effects. 

Thus, high intake of sugars leads to elevated chronic elevation in insulin levels, excessive fat 

intake may cause abnormal lipid metabolism and promote reactive oxygen generation, 

whereas the chronic absence of green vegetables and fruits can lead to alterations in 

regulatory immune pathways and the microbiome. All these alterations can enhance cancer 

risk in the context of polymorphisms and genetic susceptibilities. An update of the current 

evidence on food, nutrition and physical activity relating to the prevention of pancreatic 

cancer has been published as part of the Continuous Update Project in 2012.88 An improved 
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understanding of these alterations that precede neoplastic transformation in the pancreas 

would allow for the development of more precise preventive strategies.

Animal models of obesity and diabetes to study PDAC

Animal models that mimic aspects of diabetes, in particular, T2DM and obesity are 

important tools for the understanding of how these metabolic diseases can increase the risk 

of developing other diseases such as PDAC. The complexity of the processes involved with 

T2DM and obesity and the time it takes for individuals to develop PDAC makes it 

challenging to conduct longitudinal studies in humans focused on specific molecular 

mechanisms related to these diseases. Therefore, using animal models that recapitulate in 

part obesity and T2DM as surrogates are an option for researchers interested in 

understanding the molecular basis of these diseases. Unfortunately, animal models are 

imperfect and most do not recapitulate all features of human obesity and T2DM. The 

selection of the models used for pre-clinical studies depends on the research hypothesis and 

a detailed understanding of how the model was generated including its phenotype. Of the 

many models currently available, the diet-induced obesity (DIO) model is one of the most 

commonly used as well as genetically engineered mouse models (GEMM) for which 

pathways linked to the control of body weight and appetite signals are altered. Currently 

available mouse models to study obesity are comprehensively reviewed elsewhere.153,154 

Here we describe the models most commonly used to study these diseases as they relate to 

PDAC.

In the DIO model mice are fed a diet high in fats and calories that closely mimics what is 

commonly referred to as a Western-style diet, which contains 40–60% of energy derived 

from fats and is consumed ad libitum.155 These diets have been used extensively in obesity 

research with great success76,156 and recapitulate obesity-induced by diet in humans. The 

most commonly used mouse strain is C57BL/6, which is among the most sensitive to DIO 

and results in increased glucose levels. In this strain, males develop more severe obesity than 

females. Using this model injection of PDAC cells led to increased tumor burden in diet-

induced obese mice.132,157 A number of studies have tested these diets using GEMM that 

recapitulate the human stages of PDAC development, and shown an acceleration of the 

initiation and progression of PDAC and reduced survival.72,74,76,120,158,159 Moreover, these 

studies have been able to identify the molecular mechanisms for which obesity increases the 

risk of developing PDAC, including an increase in inflammatory pathways.

Among the most commonly used GEMM of obesity and diabetes are those affecting the 

leptin pathway leading to hyperphagia, decreased energy expenditure, hyperglycemia, and 

insulin resistance. Mice with a single base spontaneous mutation in the obese (ob) gene 

(Lepob/Lepob) are not able to secrete leptin from adipose tissues.160,161 These mice become 

obese and exogenous administration of leptin prevents obesity development and metabolic 

syndrome. Recently this model was used to study the effects of obesity-induced 

inflammation in PDAC where PDAC cell lines were injected orthotopically and an 

accelerated tumor growth was observed.101 Another useful model is one, in which mice lack 

the leptin receptor (LepRdb/LepRdb)162–164 due to a point mutation in a stop codon that 

shortens the intracellular domain and abolishes signaling. PDAC cells implanted 
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subcutaneously in this model developed larger tumors compared to lean mice.165 However, 

the obesity and insulin-resistant phenotype observed in these mice is dependent upon the 

genetic background.153 These mice are often used in T2DM studies, but do not recapitulate 

all aspects of human disease, such as pancreatic amyloid deposition.153

Despite marked similarities between mouse models and human disease, differences exist that 

need to be considered before designing animal experiments. Even though the mouse models 

of obesity and T2DM (in the context of PDAC) discussed here do not recapitulate all 

features seen in humans, they are still an invaluable resource to investigate important aspects 

of these diseases that can then be translated into humans. With obesity and obesity-related 

metabolic diseases representing a growing socioeconomic burden globally and PDAC being 

a relatively rare cancer, mouse models are needed to explore the molecular mechanisms that 

link these diseases.

Effect of T2DM and obesity on the pancreatic microenvironment - crosstalk 

between stellate cells and islets

PDAC presents a unique microenvironment for a cancer with a substantial desmoplastic 

response. The desmoplastic response is due to proliferation and production of extracellular 

matrix proteins by tumor-associated fibroblasts, which are activated pancreatic stellate cells 

(PaSCs). This desmoplasia or microenvironment contains immune cells, nerve cells, blood 

vessels and extracellular matrix (ECM) proteins and factors that regulate ECM production.
166 The identification of activated PaSCs as key participants in the desmoplastic 

microenvironment of PDAC was first made in 2004 by Apte et al.167 They showed that the 

activated PaSCs, which contribute to the fibrosis of chronic pancreatitis,168 were also present 

in PDAC. In their normal, inactive and non-pathologic state, PaSCs produce small amounts 

of ECM and are involved in tissue repair.169 In both in human tissue and in mouse 

experimental models of PDAC activated PaSCs are present both in early intraepithelial 

neoplastic lesions (PanIN) as well as in advanced PDAC.72,166,170 Related to obesity and 

diabetes, in a mouse model of high fat, high calorie diet there were increased activated 

PaSCs and fibrosis associated with the advancement of the tumor lesions.72

Regarding the effect of T2DM on PaSC function a recent publication examined the effects 

on insulin and glucose on PaSCs in mice and humans.102 In this study, activated PaSC were 

observed both in the islets and the peri-islet exocrine tissue in both T2DM patients and in 

mice fed a high-fat, high-calorie diet. These findings were absent in control-fed animals. 

These findings support those of previous studies showing mild fibrosis in patients with 

T2DM which has been referred to as diabetes-associated exocrine pancreatopathy.171 This 

study also found that PaSCs respond to high concentrations of both insulin and glucose with 

increased cell proliferation and ECM production. Further, the effects of insulin were 

mediated by insulin receptors and insulin-like growth factor receptors that were present on 

PaSCs and by Akt/mTOR downstream signaling. The study concluded that obesity and 

T2DM through effects on PaSCs can contribute to pancreatic fibrogenesis, desmoplasia and 

promotion of PDAC. Several other studies have demonstrated that islet macrophages, 

particularly M1-like macrophages, contribute to islet inflammation and beta-cell dysfunction 
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in T2DM.172 Therefore, it is plausible that in T2DM multiple local cytokines secreted by 

islet macrophages and PaSCs modulate macrophage polarization, islet inflammation, and 

peri-islet fibrosis, all factors increasing T2DM pathology and the risk of PDAC.

There are studies designed to delineate mechanistic relationships between PaSCs, cancer 

cells and immune cells in PDAC.166,173 In brief, these studies show that PDAC cells 

stimulate proliferation and migration of PaSC in culture, as well as their production of ECM 

components.166,174 Secretions from pancreatic duct cells isolated from GEMM stimulate 

activation, proliferation and fibrogenic responses in isolated mouse PaSC170 supporting the 

role of the cancer cell in regulating the PaSC responses in development.

A question that remains under debate is whether the activated PaSCs promote or retard 

cancer growth. Early studies showed that PaSCs stimulate cell proliferation; inhibit 

apoptosis; and promote migration as well as epithelial mesenchymal transition (EMT) in 

cancer cells.166,175,176 Also, studies have shown that ECM proteins made by PaSCs are 

necessary to prevent apoptosis of cancer cells.177–181 A recent study182 using a chronic 

pancreatitis model where the tissue has similar characteristics to the desmoplasia of PDAC 

activated PaSCs secrete cytokines IL-4 and IL-13 promoting the transition of monocytes and 

macrophages to pro-tumor associated macrophages (TAMs). These macrophages are present 

in PanIN lesions and PDAC.183 Furthermore, TAMs in PDAC are associated with poor 

outcomes as they inhibit normal immune surveillance.184,185 Because TAMs secrete TGF-β, 

which promotes the activated state of PaSCs, a feed forward promotion of PaSC activation 

and TAM maintenance has been proposed for advancement of PDAC.173

There are recent reports186,187 showing that genetic methods eliminating PaSCs or 

pharmacological targeting of the Sonic hedgehog pathway, which is known to promote PaSC 

function in a PDAC mouse model, increased invasive and undifferentiated tumors and 

decreased survival. These results have resulted in a consensus that PaSCs can have either 

PDAC promoting or inhibiting effects. Current work is directed toward understanding the 

molecular details of these differences which could lead to important therapeutic 

interventions.

Gaps in knowledge and research opportunities

Although the risk factors promoting PDAC development have been known for several 

decades their underlying molecular mechanisms and interactions have just recently begun to 

be explored. High quality epidemiological studies associate obesity with an elevated risk of 

PDAC. Nevertheless, it is currently unclear whether “metabolically healthy obesity” also 

carries an increased risk of PDAC. In addition, the beneficial effects of weight reduction and 

bariatric surgery on improving insulin resistance are known, but their role in decreasing 

PDAC incidence is still essentially unknown. Although the general pathways linking obesity 

and T2DM to PDAC have been described, including chronic tissue and systemic 

inflammation, cytokines/adipokines, hyperinsulinemia and elevated IGF-1, the exact 

molecular and signaling pathways and their intricate interaction are still underexplored. 

Adipose tissue plays a central role in obesity and T2DM. However, the precise contribution 

and molecular signals of different adipose tissue depots and possible sex differences on 
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PDAC development are not known. Several genetically engineered animal models are now 

available to study early PDAC development and risk factors and to investigate preventive 

strategies. Diet-induced obesity models are valuable tools to explore the role of obesity and 

metabolic disturbances in PDAC. However, very few studies exist that comprehensively 

investigate and compare the effects of individual nutritional components on PDAC 

development. It is currently unknown whether obesity experimentally induced by a high fat 

or high carbohydrate diet differs in increasing PDAC incidence or whether the simply 

increased caloric intake is the essential component. Altogether, given the high mortality of 

PDAC and expected increase in obesity and diabetes over the next few decades, efforts 

should be undertaken to mechanistically understand the link between obesity, diabetes, and 

PDAC. Preclinical animal models are available that will facilitate the study of these 

important interactions to advance our knowledge, so that the obesity- and diabetes-driven 

burden of PDAC can be curbed.

The Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreatic Cancer 

(CPDPC) is a multi-center program jointly sponsored by the National Institute of Diabetes 

and Digestive and Kidney Diseases and the National Cancer Institute, which is pursuing a 

variety of studies to further identify mechanisms and biomarkers of PDAC in order to 

increase early detection of the disease and to inform intervention strategies.188 CPDPC 

investigators are applying lessons learned from studies such as those described here to gain 

insights into the mechanisms by which diabetes and inflammation contribute to the 

incidence of PDAC.
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Research Snapshot

Research Question

What is the current research status on the link between obesity, type 2 diabetes mellitus, 

dietary issues, and pancreatic cancer?

Key Findings

This narrative review describes a clear epidemiological association between obesity, type 

2 diabetes mellitus and pancreatic cancer risk. Major pathophysiological mechanisms 

underlying this link, including inflammation and adipose tissue dysfunction, are 

discussed. Available animal models to study the impact of these risk factors on pancreatic 

cancer development are summarized, and research gaps and opportunities to advance the 

field presented.
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Figure 1. Prevalence of diabetes mellitus (DM), Prevalence of Obesity, and Incidence of 
Pancreatic Cancer
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Figure 1A (Top): Prevalence of DM (in quartiles) 2014 (from http://www.cdc.gov/diabetes/

data). Figure 1B (Middle): Prevalence of Obesity expressed as Body Mass Index (in 

quartiles) 2015 (from http://www.cdc.gov/obesity/data). Figure 1C (Bottom): Incidence of 

Pancreatic Cancer, age adjusted, all races (in quartiles) 2009–2013 (from http://

statecancerprofiles.cancer.gov/data-topics/incidence.html).
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Figure 2. Adipose tissue dysfunction during obesity
Schematic overview of obesity-associated changes in white adipose tissue leading to 

hyperplasia/hypertrophy of adipocytes, recruitment and proliferation of immune cells, 

increased secretion of pro-inflammatory cytokines (e.g. TNF-α, IL-6) and adipokines 

(leptin), reduction of adiponectin, increase of free fatty acids (FFA), ultimately leading to 

insulin resistance and systemic and local inflammation (from van Kruijsdijk et al. Cancer 

Epidemiol Biomarkers Prev 2009; 18(10): 2569–78 with permission).
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Figure 3. Promotion of PDAC by T2DM: Potential Role of Islet Factors
Illustration of the interplay and crosstalk between pancreatic pre-cancer (PanIN) and cancer 

(PDAC) cells, pancreatic stellate cells (PaSCs), immune cells (e.g. tumor-associated 

macrophages: TAMs), and islets.
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