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With the proliferation of multi-site neuroimaging studies, there is a greater need for handling non-

biological variance introduced by differences in MRI scanners and acquisition protocols. Such 

unwanted sources of variation, which we refer to as “scanner effects”, can hinder the detection of 

imaging features associated with clinical covariates of interest and cause spurious findings. In this 

paper, we investigate scanner effects in two large multi-site studies on cortical thickness 

measurements across a total of 11 scanners. We propose a set of tools for visualizing and 

identifying scanner effects that are generalizable to other modalities. We then propose to use 

ComBat, a technique adopted from the genomics literature and recently applied to diffusion tensor 

imaging data, to combine and harmonize cortical thickness values across scanners. We show that 

ComBat removes unwanted sources of scan variability while simultaneously increasing the power 

and reproducibility of subsequent statistical analyses. We also show that ComBat is useful for 

combining imaging data with the goal of studying life-span trajectories in the brain.
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1 Introduction

Large-scale efforts aimed at collecting diverse neuroimaging datasets for dissemination and 

sharing are rapidly growing in number and scale [Di Martino et al., 2014, Keator et al., 

2013, Mennes et al., 2013]. Having multiple scanning sites is necessary in large-scale 

studies due to logistical issues and geographic variability in subject populations [Van Horn 

and Toga, 2009]. However, a major drawback of combining neuroimaging studies across 

sites is the introduction of non-biological sources of variability to the data, typically related 

to image acquisition protocol and hardware.

Properties of MRI scanners such as field strength, manufacturer, gradient nonlinearity, 

subject positioning, and longitudinal drift have been long understood to increase bias and 

variance in the measurement of brain volume changes [Takao et al., 2011], regional cortical 

thickness [Han et al., 2006], voxel-based morphometry [Takao et al., 2014], and structural, 

functional, and diffusion images in general [Jovicich et al., 2006, Takao et al., 2011]. Such 

unwanted sources of bias and variability are typically included as confound variables in the 

analysis of neuroimaging data. Recent work has suggested that standard methods for 

including confound variables for the prediction of an outcome using neuroimaging data 

perform no better than baseline models which ignore confounding [Rao et al., 2017]. 

Furthermore, non-biological confounders typically have a priori unpredictable effects, thus 

compromising consistency and reproducibility of the downstream analyses across studies. 

This suggests that non-biological sources of variability should be handled differently. 

Similar to batch effects in genomics (see Leek et al. [2010] for a review of batch effects), we 

use the term scanner effects in neuroimaging to refer to unwanted variation that is (1) non-

biological in nature and (2) associated with differential scanning equipment or parameter 

configurations. Because different imaging sites use different physical scanners, site effects 

are one example of scanner effects.
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Recently, ComBat [Johnson et al., 2007], a batch-effect correction tool commonly used in 

genomics, has been adapted for the modeling and removal of site effects in multi-site DTI 

studies [Fortin et al., 2017]. ComBat was found to be an effective harmonization technique 

that both removes unwanted variation associated with site and preserves biological 

associations in the data.

In this paper, we propose to use ComBat for harmonizing cortical thickness measurements 

obtained from multiple sites. We investigate this in region-level cortical thickness 

measurements in two large multi-site datasets: the Establishing Moderators and 

Biosignatures of Antidepressant Response in Clinical care study (EMBARC) [Trivedi et al., 

2016], a multi-center study with 4 sites, and the Vascular Depression: Longitudinal Changes 

(VDLC) study, which was conducted at Washington University in St. Louis and Duke 

University and used a total of 7 scanners. We first propose a set of tools for the visualization 

and identification of site effects that are generalizable to other modalities. We then 

harmonize the data using ComBat, and compare to two other harmonization methods: 

residuals and phenotype-adjusted residuals. We show that Combat is successful at removing 

scanner and site effects, while preserving the variability associated with biology. We also 

show that ComBat can be used to combine datasets across multiple sites for the study of life-

span trajectories.

2 Methods

2.1 Data and Preprocessing

EMBARC dataset—The EMBARC study aims to identify moderators and mediators of 

antidepressant response in adult patients with Major Depressive Disorder [Trivedi et al., 

2016, Webb et al., 2016]. The dataset used for our analysis includes structural images, 

demographic variables and clinical variables. Participants were 200 unmedicated depressed 

individuals with Major depressive disorder and 40 healthy individuals recruited for 

EMBARC. Subjects were 18–65 years old, had to report age of depression onset before age 

30 and had to be fluent in English. Clinical variables included the Hamilton Depression 

Rating Scale (HAMD) [Hamilton, 1960], the Mood and Anxiety Symptom Questionnaire 

(MASQ) [Watson and Clark, 1991], the Snaith-Hamilton Pleasure Scale [Snaith et al., 

1995], the Spielberger State-Trait Anxiety Inventory (STAI) [Spielberger, 1983] and the 

Quick Inventory for Depression Symptomatology (QIDS) depression score [Rush et al., 

2003].

The scans were acquired at four different imaging sites, with acquisition protocols described 

in Greenberg et al. [2015]. The four sites were Columbia University (CU), University of 

Texas Southwestern (TX), Massachusetts General Hospital (MG) and the University of 

Michigan (UM). All of the sites used 3T scanners, however the manufacturer differed from 

site to site: UM used a Philips Ingenia 3T scanner, TX used a Philips Achieva 3T scanner, 

MG used a Siemens TIM Trio 3T scanner and CU used a GE SIGNA HDx 3T scanner. 

Imaging parameters for each scanner are described in Greenberg et al. [2015]. Participants 

with excessive motion (> 4 mm), low slice signal-to-noise ratio (<80), and severe slice 

artifacts were excluded from the study, leaving us with a final baseline dataset of 187 

subjects.
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VDLC dataset—The Vascular Depression: Longitudinal Changes (VDLC) study aims to 

study the longitudinal effect of vascular disease in the pathogenesis of late-life depression 

(LLD) [Barch et al., 2012, Mettenburg et al., 2012]. Participants were 117 individuals 

affected by LLD and 59 healthy controls, for a total of 236 participants. Participants were 

58–95 years old. For the purpose of investigating site effects, we only considered one time 

point for each participant; we retained the scan from the last visit. Scans were acquired at 

two sites: Duke University and Washington University in St. Louis, across 7 different 

scanners described in Table 2.

2.2 Extraction of cortical thickness measurements

For the extraction of the cortical thickness measurements, we ran the ANTs cortical 

thickness (CT) pipeline which has been shown to provide accurate and robust cortical 

thickness measurements [Tustison et al., 2014] on each dataset separately. We analyzed 

VDLC dataset in early 2016 and the EMBARC in late 2014, each using contemporaneous 

installations of ANTs compiled from source. The ANTs CT pipeline that we describe below, 

requires a population template for registration and prior knowledge of the different tissues. 

We used an average labeled template previously constructed from a subset of 35 participants 

from the Open Access Series of Imaging Studies (OASIS) [Marcus et al., 2007]. The 

participants’ age ranges from 19 to 90 years old. All subjects were healthy, except one who 

was diagnosed with mild dementia. For each image, a manual brain segmentation was 

performed by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) using the 

brainCOLOR labeling protocol. Multi-Atlas Label Fusion (MALF, [Wang et al., 2013b]) 

was used to create the consensus labels for the average template, for a total of 134 labelled 

regions, from which 98 are part of the cortex. We provide the list of the 98 cortical regions in 

Supplementary Table 1. We note that the population template is publicly available on 

Figshare (https://figshare.com/articles/ANTs_ANTsR_Brain_Templates/915436).

The ANTs CT extraction pipeline starts by performing a N4 bias field correction [Tustison et 

al., 2010] to minimize field inhomogeneity effects, and then performs brain extraction using 

a hybrid registration/segmentation method described in Tustison et al. [2014]. For each 

participant, a tissue segmentation is performed using Atropos [Avants et al., 2011] to create 

six tissue masks: cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), deep 

gray matter, brain stem, and cerebellum. Atropos allows prior knowledge to guide the 

segmentation algorithm, and we used the labels from the OASIS population template as 

priors. Cortical thickness measurements are then estimated using the DiReCT algorithm 

[Das et al., 2009]. Briefly, the DiReCT method estimates the GM/WM interface and the 

GM/CSF interface and computes a diffeomorphic mapping between the two interfaces, from 

which thickness is derived. We note that this is performed in native space and no correction 

for total brain volume was applied.

In the EMBARC data, we built a study-specific population template and performed pseudo-

geodesic joint label fusion by combining precomputed warps from the OASIS atlases to the 

EMBARC template with warps from the average template to each subject. The atlases and 

labels were warped to subject space and input to joint label fusion [Wang et al., 2013a]. The 

fused labels were masked with the subject’s gray-matter segmentation image, which is the 
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domain over which thickness is computed in the ANTs pipeline. For the VLDC data, given 

the heterogeneity of the acquisition parameters we used the OASIS population template and 

directly propagated the consensus labels from the OASIS template to each image with 

nearest neighbor interpolation. For both datasets, mean thickness was computed for each of 

the 98 cortical regions in the subject space, these were in turn averaged to produce whole-

brain mean cortical thickness.

After the processing steps described above, we performed manual quality control of the 

images by visual inspection. We specifically looked at the quality of the skull stripping, 

registration and mesh reconstruction. We flagged a few images distributed across the sites 

that appeared to be abnormal, but we did not see differences in the cortical thickness 

measurements as compared to other images. We note that the ANTs pipeline has been shown 

to perform exceptionally well for registration [Klein et al., 2009] as well as cortical 

thickness measurement in terms of minimal failure rate, higher repeatability, and improved 

predictive performance in thousands of images even compared to the state-of-the-art 

FreeSurfer [Tustison et al., 2014].

2.3 Harmonization procedures

For the removal of site effects, we compare three different harmonization procedures: (1) 
Removal of site effects using linear regression without adjusting for biological covariates. 

We refer to the method as Residuals; (2) Removal of site effects using linear regression, 

adjusting for known covariates. We refer to the method as Adjusted Residuals; (3) Removal 

of site effects using ComBat [Johnson et al., 2007]. We also compare the three methods to 

the absence of harmonization, that we refer to as Raw. We describe below the different 

harmonization techniques.

To describe each of these different methods, we use the following notation: let yijv be the n × 

1 vector of cortical thickness measurement for imaging site i, for participant j and feature v, 

for a total of (k + 1) sites, n participants and V features. Depending on the cortical thickness 

modality, the features can either be ROIs, vertices or voxels. Furthermore, let X be the p × n 
matrix of biological covariates of interests, and let Z be the k × n matrix of site indicators 

(deviations from a baseline site).

2.3.1 Residuals harmonization—The residuals harmonization method adjusts the 

images for site effects using linear regression. It does not take into account the potential 

confounding between the site variables and the biological covariates of interest in the study. 

The regression model can be written as

(1)

where αv is the average cortical thickness for the reference site for feature v and where θv is 

the k × 1 vector of the coefficients associated with Z for feature v. We assume that the 

residual terms εijv have mean 0. For each feature separately, we obtain an estimate  of the 

parameter vector θv using regular ordinary least squares (OLS). The removal of site effects 
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is done by subtracting the estimated site effects, that is we set the residuals-harmonized 

cortical thickness values to be

2.3.2 Adjusted residuals harmonization—The adjusted residuals harmonization 

method supervises the removal of site effects by adjusting for biological covariates, using 

the following linear regression model:

(2)

where αv is the average cortical thickness for the reference site for feature v, where θv is the 

k × 1 vector of the coefficients associated with Z for feature v and where βv is the p × 1 

vector of coefficients associated with X for feature v. We assume that the residual terms εijv 

have mean 0. For each feature separately, we obtain estimates  and  using regular 

ordinary least squares (OLS) on the full model described in Equation 2. The removal of site 

effects is done by subtracting the estimated site effects only, that is we set the adjusted-

residuals-harmonized cortical thickness values to be

2.3.3 ComBat harmonization—The Combat harmonization model [Johnson et al., 2007] 

extends the adjusted residuals harmonization model presented in Equation 2 in two ways: (1) 

it models site-specific scaling factors and (2) it uses empirical Bayes to improve the 

estimation of the site parameters for small sample sizes. It posits a unique linear model of 

location and scale at each feature, making the assumption that scanners (or sites) have both 

an additive and multiplicative effects on the data. The model assumes that the expected 

values of the imaging feature measurements can be modeled as a linear combination of the 

biological variables and the site effects, whose error term is modulated by additional site-

specific scaling factors. The algorithm uses empirical Bayes to improve the estimation of the 

model parameters in small sample size studies. The ComBat model, originally developed for 

gene expression microarray data, was reformulated in Fortin et al. [2017] for the 

harmonization of DTI data scalar maps. Using the previous notation, the model can be 

written as

(3)

where αv is the average cortical thickness for the reference site for feature v, where θv is the 

k × 1 vector of the coefficients associated with the site indicators Z for feature v and where 

βv is the p × 1 vector of coefficients associated with X for feature v. We assume that the 

residual terms εijv have mean 0. The parameters δiv describe the multiplicative site effect of 
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the j-th site on voxel v. Consistent with the ComBat model notation used in Fortin et al. 

[2017], we rewrite  as γiv:

(4)

The procedure for the estimation of the site parameters γiv and δiv uses Empirical Bayes, 

and is described in [Johnson et al. 2007] and Fortin et al. [2017]. The final ComBat-

harmonized cortical thickness measurements are defined as

2.4 Methods evaluation framework

To investigate and correct site effects using ComBat, we performed a set of analysis tasks of 

increasing complexity on the cortical thickness data. We first performed an exploratory 

analysis to confirm the existence of site effects in the data. Next, we performed various 

univariate tests of significance to understand the relationships between individual features in 

the data and individual target variables. Finally, we applied various multivariate predictive 

models to understand how cortical thickness relates to target variables. Our analyses were 

aimed at both identifying and correcting site effects at multiple levels of complexity, along 

with understanding the specific effects of ComBat on downstream analysis.

3 Results

We present several visualization tools for investigating scanner effects in multi-site studies, 

as well as several metrics to quantify such scanner effects. We use the cortical thickness 

measurements from both the EMBARC and VDLC studies to illustrate the different 

methodologies. We next evaluate different harmonization procedures for the correction of 

site effects. Last, we combine and harmonize the EMBARC and VDLC studies, which have 

different age range, and show that it is possible to improve multi-site cross-sectional 

analyses of life-span trajectories by using ComBat harmonization.

3.1 Visualization and quantification of site effects

EMBARC study—In Figure 1, we present diagnostic plots for the EMBARC study. For 

each subject, we summarize the cortical thickness measurements into a boxplot (Figure 1a). 

We observe a global downwards shift in the cortical thickness measurements from the MG 

site, as well as increased variability in the measurements from the TX and UM sites relative 

to the two other sites. The four boxplots presented in Figure 1b summarize the distribution 

of the median cortical thicknesses at each site, and facilitate the visualization of the site-

specific additive and scaling effects. Using ANOVA, the median cortical thickness was 

significantly different across the four sites (p = 1.1 × 10−10). More specifically, we found the 

median cortical thickness for the MG site was significantly different from those of the three 

remaining sites, adjusting for multiple comparisons using the Dunnett-Tukey-Kramer (DTK) 
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test [Dunnett, 1980]. The latter is an extension of Tukey’s method [Tukey, 1949] that takes 

into consideration unequal variances as well as unequal sample sizes. To assess the 

normality assumption of the t-tests, we first performed the Shapiro-Wilk test for each of the 

scanners, and the p-values were not significant for any of the groups in the EMBARC study 

(CU: p = 0.17; MG: p = 0.74; TX: p = 0.18; UM: p = 0.23). A p-value is significant when 

the data do not appear to be normally distributed.

Next, because the scale of the measurements can also be affected by scanner, we also 

compared the variances of the median cortical thickness measurement across sites. To do so, 

we performed the Bartlett’s sphericity test [Bartlett, 1937], which assesses whether or not 

the variances are homogeneous across sites. To avoid confounding of site with age and 

gender, we first regressed out the variation explained by age and gender; the test was 

significant (p = 1.8 × 10−7). We subsequently compared the pairwise site variances using the 

usual F-tests for variances ratio, and four of the pairs were significant after adjusting for 

multiple comparisons using Bonferroni correction: TX vs. CU, TX vs. MG, UM vs. CU, and 

UM vs. MG differed in variance of median cortical thickness.

We also tested each ROI individually for site effects by calculating an ANOVA F-test. We 

obtained 53 ROIs significantly associated with site, using Bonferroni correction to adjust for 

multiple comparisons (adjusted p < 0.05). Because Bonferroni correction is a conservative 

approach to control for the family-wise error rate (FWER), we alternatively corrected for 

multiple comparisons using the permutation-based one-step maxT procedure [Westfall and 

Young, 1993, Dudoit et al., 2003], and obtained 60 ROIs significantly associated with site 

(adjusted p < 0.05, B = 10,000 permutations). We present in Figure A.1a the observed R2 

from ANOVA and the distribution of the maximum R2 obtained from each permutation. To 

test for scanner-specific scaling effects, we also tested each feature individually for 

homogeneity of variances across sites using Bartlett’s test. We obtained 41 ROIs with 

variances significantly associated with site (adjusted p < 0.05, B = 10,000 permutations). 

The significant regions are reported in Supplementary Table 2.

In Figure 1, we observe a global decrease of the cortical thickness measurements with age, 

and note that combining measurements from multiple sites adds variability to the trend (blue 

boxplots are shifted downwards). We also observe that the imaging sites are not distributed 

equally across the age span, with more younger subjects from the MG and CU sites (more 

blue and grey boxplots to the left) and older subjects coming from the TX site (more light 

red boxplots to the right). This indicates some confounding between imaging site and age. In 

Figure 1d, we present the median cortical thickness measurements as a function of age to 

visually inspect the global image-age relationship. In Figure 1e, we present bivariate scatter 

plots of the first 3 principal components (PCs) from a principal component analysis (PCA) 

performed on the cortical thickness values. We note that the second PC is highly associated 

with site, confirming that a large proportion of the variation in the data is explained by site.

Finally, we present in Figure 2 the distribution of age, gender, HAMD score and QIDS score 

across imaging sites. This allows a visual inspection of potential confounding level between 

the different covariates and imaging site. The width of the boxplots represents the sample 

size at each site. We note that age is highly imbalanced across sites, with older subjects at 
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the TX site. We also note that gender is imbalanced within each site with a greater number 

of females. The QIDS score appears to be also imbalanced with respect to imaging site and 

anti-correlated with age.

VDLC study—In Figure 3b, we present diagnostic plots for the VDLC study. We note in 

the VDLC study that there is a clear positive shift in the cortical thickness measurements for 

images acquired on 3T scanners in comparison to images acquired on 1.5T scanners (Figure 

3a). Using ANOVA, the median cortical thickness was significantly different across the 

seven scanners (p = 2.2 × 10−16). Not surprisingly, the median cortical thicknesses from each 

of the 3T scanners were significantly different from those of each of the 1.5T scanner, 

adjusting for multiple comparisons using the DLK test. To assess the normality assumption 

of the t-tests, we first performed the Shapiro-Wilk test for each of the scanners, and the p-

values were not significant for most groups in the VDLC study (W_TIMTrio_A: p = 0.07; 

W_TIMTrio_B: p = 0.42; D_TIMTrio_A: p = 0.004; W_Sonata_A: p = 0.90; W_Sonata_B: 

p = 0.63; D_TIMTrio_B: p = 0.39; D_SIGNA: p = 0.88). A p-value is significant when the 

data do not appear to be normal. Only the D_TIMTrio_A scanner appeared to have a non-

normal distribution.

We also compared the variances of the median cortical thickness measurement across 

scanners. To do so, we performed the Bartlett’s sphericity test, which estimates whether or 

not the variances are homogeneous across scanners. To avoid confounding of scanner with 

age and gender, we first regressed out the variation explained by age and gender; the test was 

significant (p = 0.0013).

We also tested each ROI individually for site effects by calculating an ANOVA F-test. We 

obtained 86 ROIs significantly associated with site, using Bonferroni correction to adjust for 

multiple comparisons (adjusted p < 0.05), and 87 ROIs using the permutation-based one step 

maxT procedure (adjusted p < 0.05, B = 10,000 permutations). We present in Figure A.1b 

the observed R2 from ANOVA and the distribution of the maximum R2 obtained from each 

permutation. To test for scanner-specific scaling effects, we also tested each feature 

individually for homogeneity of variances across sites using Bartlett’s test. We obtained 4 

ROIs with variances significantly associated with site (adjusted p < 0.05, B = 10,000 

permutations). The significant regions are reported in Supplementary Table 2.

Finally, we present in Figure 4 the distribution of age, gender, and disease group across 

scanners. This allows a visual inspection of potential confounding level between the 

different covariates and imaging site. The width of the boxplots represents the sample size at 

each site. We note that the average age is significantly different for the D_SIGNA scanner. 

We also note that the gender ratio is significantly different for the W_Sonata_B scanner, 

with a significantly larger number of females imaged using this scanner. In the third panel, 

one can observe that proportions of depressed versus healthy subjects vary greatly across 

scanners.

3.2 Removal of site effects with harmonization

To remove site effects in both the EMBARC and VDLC datasets, we applied three different 

harmonization techniques: (1) Residuals: removal of site effects estimated from linear 
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regression; (2) Adjusted Residuals: removal of site effects estimated from linear regression, 

adjusting for biological covariates; and (3) ComBat. We now present the results for both 

studies separately.

EMBARC Study—In Figure 5, we show the empirical distributions of the site effects for 

the EMBARC study, for both the location and scale parameters (dotted lines), together with 

the prior distributions estimated by ComBat (solid lines). We remind the reader that both the 

location and scale site effects are deviations from the grand mean. Consistent with the 

description of the site effects in the previous section, we note that the additive site effects (γ) 

are greater in magnitude for the MG site (Figure 5a, and the multiplicative site effects (δ) are 

greater than 1 on average for the TX and UM sites and lower than 1 for the two remaining 

sites (Figure 5b). We note that the prior distributions fit the empirical distributions well for 

both the location and scale parameters; the ComBat procedure therefore appears appropriate 

for capturing these effects.

To visualize whether or not most of the variation in the data was still associated with 

imaging site after harmonization, we first performed an unsupervised dimension reduction of 

the harmonized cortical thickness measurement using PCA. The data projected into the first 

two PCs are presented in the first column of Figure 6. We note that for all three 

harmonization methods, the data points appear to be distributed equally across sites. We also 

performed a linear discriminant analysis (LDA), a popular supervised dimension reduction 

that maximizes the projection coordinates to predict the data classes. Here, we use the 

imaging sites as the data classes to be predicted. We present the projected data in the second 

column of Figure 6. One can see that for the raw data, the data points cluster almost 

perfectly by imaging site. This is not surprising; all features are highly associated with site 

effects when not harmonized. We also note that despite harmonization of the acquisition 

sequences (for more details on study design, see Trivedi et al. [2016]), the EMBARC study 

still exhibits inter-site effects before harmonization. Furthermore, note that images acquired 

on scanners from the same manufacturer tend to cluster together in the LDA plots. After 

harmonization, site clusters are substantially attenuated.

To formally test whether or not site effects remain after harmonization, we again used the 

different tests described in Section 3.1. Using ANOVA F-tests, all methods corrected for 

mean site differences in the median cortical thickness: p = 0.997 for Residuals, p = 0.0498 

for Adjusted Residuals and p = 0.0473 for ComBat. We also tested for site-specific scaling 

effect in the measurements using Bartlett’s sphericity test. We found that only ComBat was 

able to remove the scaling effects associated with site (p = 0.42). The site-specific variances 

remained largely uncorrected for both the Residuals (p = 2.53 × 10−8) and Adjusted 

Residuals (p = 3.08 × 10−8) methods. This is not surprising; only the ComBat harmonization 

method is able to model scaling factors associated with site. We also tested each ROI 

individually for remaining site effects. For all harmonization methods, none of the ROIs was 

significantly associated with site, using either the Bonferroni or the maxT adjustment.

Finally, to further investigate if site effects were entirely removed for each of the 

harmonization method, we attempted to predict imaging site from the harmonized cortical 

thickness features. More specifically, we used the support vector machine (SVM) [Cortes 
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and Vapnik, 1995] classification algorithm, with radial basis kernel, to predict site from the 

imaging features. The SVM is largely used in the imaging community in the context of 

multivariate pattern analysis (MPVA) for understanding and discovering patterns associated 

with a disease outcome, for instance. A harmonization method that is successful in removing 

site effects will result in a lower SVM accuracy when attempting to predict site. Using B = 

10,000 repetitions of a 10-fold cross-validation, we estimated an average accuracy for each 

method. For the raw values, the SVM prediction achieved an average of 76.6% classification 

accuracy. For the residuals and adjusted residuals methods, the average accuracies were 

40.5% and 38.7% respectively. The ComBat method resulted in the lower average accuracy 

(36.3%). Using a permutation-based approach to generate a null distribution (B = 10, 000), a 

SVM classification by chance attained on average 36.9% accuracy. This indicates the 

Adjusted Residuals and ComBat were best for the removal of site effects in the cortical 

thickness measurements. In comparison to the adjusted residuals, we note that the ComBat 

method additionally removes site-specific scaling effects. This could explain the better 

performance in the SVM, in which the covariance structure is implicitly used for predicting 

the class labels.

VDLC study—In Figure 7, we show the empirical distributions of the site effects for the 

VDLC study, for both the location and scale parameters (dotted lines), together with the 

prior distributions estimated by ComBat (solid lines). Consistent with the description of the 

site effects in the previous section, we note that the additive scanner effects (γ) are greater in 

magnitude for the 3T scanners. The multiplicative scanner effects (δ) are shown in Figure 

7b. We note that the prior distributions fit the empirical distributions well for both the 

location and scale parameters; the ComBat procedure therefore appears appropriate for 

capturing these effects.

To visualize whether or not most of the variation in the data was still associated with scanner 

after harmonization, we first performed an unsupervised dimension reduction of the 

harmonized cortical thickness measurement using PCA. The data projected into the first two 

PCs are presented in the first column of Figure 8. We note that for all three harmonization 

methods, the data points appear to be distributed equally across scanners. We also performed 

LDA using scanners as the data classes. We present the projected data in the second column 

of Figure 8. One can see that for the raw data, there is a clear separation between the 

different types of scanners. Interestingly, the data from the D SIGNA scanner appear to 

cluster separately; we note that this is the only GE scanner in the VDLC study. After 

harmonization, clusters associated with scanner are substantially attenuated.

Using ANOVA F-tests, all methods corrected for mean scanner differences in the median 

cortical thickness: p = 0.99 for Residuals, p = 0.94 for Adjusted Residuals and p = 0.94 for 

ComBat. We also tested for scanner-specific scaling effects in the measurements using 

Bartlett’s sphericity test. We found that only ComBat was able to remove the scaling effects 

associated with scanner (p = 0.46). Scanner-specific variances remained present in both the 

Residuals (p = 0.03) and Adjusted Residuals (p = 0.01) methods. Finally, we tested each 

ROI individually for remaining scanner effects. For all harmonization methods, none of the 

ROIs was significantly associated with scanner, using either the Bonferroni or the maxT 
adjustment.
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As conducted in the EMBARC study, we used the SVM with radial basis kernel to assess 

prediction of scanner from the imaging features. Again, a harmonization method that is 

successful in removing scanner effects will result in a lower SVM accuracy when attempting 

to predict scanner. Using B = 10,000 repetitions of a 10-fold cross-validation, we estimated 

an average accuracy for each method. For the raw values, the SVM prediction achieved an 

average of 67.7% classification accuracy. For the residuals and adjusted residuals methods, 

the average accuracies were 43.4% and 44.4% respectively. The ComBat method resulted in 

the lowest average accuracy (41.0%).

3.3 Associations with age

While it is important to show that a harmonization method successfully removes site effects, 

it is equally important to show that the method preserves the biological variability in the 

data; a method that removes both site effects and biological effects has no scientific use. To 

investigate whether or not the different harmonizations presented in this paper perform well 

at preserving biological variability, we use age as a variable of interest.

We assessed the proportion of variation explained by age before and after harmonization. 

Without harmonization, the percentage of variation in the average cortical thickness 

explained by age was 23%. This was calculated using the usual coefficient of variation R2 

from linear regression with median cortical thickness as the outcome. For the unadjusted 

Residuals method, this percentage was increased to 26%, and for both the Adjusted 

Residuals and ComBat, the percentage was increased to 33%. The fact that the Unadjusted 

Residuals did not substantially increase the association with age is not surprising; we 

observed that age was confounded with imaging site, and therefore removing site effects 

without adjusting for age will also remove variation in the imaging features associated with 

age. On the other hand, both the Adjusted Residuals and ComBat strengthened the expected 

inverse relationship between age and cortical thickness by removing site effects, but also by 

preserving biological variability in the data.

We also evaluated the effects of harmonization on the prediction of age using the 

harmonized cortical thickness measurements. For prediction, we used two different 

algorithms: linear regression, and the popular support vector regression (SVR) algorithm, 

also commonly called ε-SVM regression, using two different kernels: a linear kernel and a 

radial basis function. The ε-SVM regression paradigm is similar to the regular classification 

SVM, but for a continuous outcome. For each algorithm, we used the cortical thickness 

measurements of the 98 cortical regions as imaging features inputs to predict age (98 values 

per participant). For each harmonization method, we randomly partitioned the subjects into 

k folds, and trained the prediction algorithm on k −1 folds. We then predicted the age of the 

remaining subjects (testing dataset) and calculated the root-mean-square error (RMSE). We 

repeated the random sampling B = 1000 times, for k ∈ {3, 5, 10}, to obtain a distribution of 

the RMSE for each method at each k. For each random sampling, we selected the 

hyperparameters that led to the best cross-validated performance by performing a grid search 

with the following grid values: C ∈ {0.001, 0.1, 1, 10, 100, 1000} and ε ∈ {0.01, 0.1, 0.5, 

1}.
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In Figure 9, we present the results from linear regression. For the three values of k, we 

observe that the data harmonized with the unadjusted Residuals do not perform well 

(substantial increase of RMSE). On the other hand, both the Adjusted Residuals and 

ComBat significantly improve the average prediction accuracy compared with the raw data 

(p < 0.05 for all k). In Figure 10, we present the results from ε-SVM regression using a 

linear kernel. For the three values of k, the Adjusted residuals improve the age prediction 

compared to the raw data; Combat performs either equally (k = 3, 10), or improves the 

performance (k = 5). As it is the case for Figure 9, the unadjusted Residuals worsens the age 

prediction. In Figure 11, we present the results from ε-SVM regression using a radial basis 

function kernel. While the Adjusted Residuals and ComBat perform similarly to the raw data 

for the three values of k (no significant difference in the RMSE), the unadjusted Residuals 

substantially increases the RMSE.

Overall, the removal of unwanted site effects with both ComBat and the Adjusted Residuals 

did not decrease our ability to predict age, either using linear regression or SVMs. This 

confirms that both methods preserved biological variability associated with age, a crucial 

requirement for adequate multi-site harmonization. On the other hand, the unadjusted 

Residuals substantially decreased the predictive performance. This shows that failing to 

account for age when removing site effects in an unbalanced sample leads to removal of age-

related signal, as described in Rao et al. [2017].

3.4 Life-span study by harmonizing the EMBARC and VDLC datasets

While the two studies present in this paper have a different age range ([18,65] y.o. for the 

EMBARC study; [58,95] y.o. for the VDLC study), there is some overlap between the two 

age ranges (see Figure 12, first panel). For the study of life-span trajectories, it is sometimes 

necessary to combine data from multiple studies, with each individual study often targeting 

participants from a specific age range. We show here that even though different scanners and 

slightly different cortical thickness ROI extraction methods were used across the studies, it is 

possible to combine and harmonize the data, to remove the scanner effects, and thereby 

improve the correlation between the imaging outcome and biological factors of interest, 

namely age.

We present the relationship between median cortical thickness and age, before and after 

harmonization in Figure 12 with data points colored by study (red for EMBARC and green 

for VDLC). One can observe an overlap in the age span between the two studies, and that 

inter-subject variation seems to be higher in the EMBARC subjects in the raw data. This can 

be explained by the large variation between the four scanners in the EMBARC, as discussed 

previously in the Results section. For each method, we calculated the correlation between 

the median cortical thickness and age. For the unharmonized data, we obtained a correlation 

of − 0.70. For the unadjusted Residuals, we obtained a correlation of −0.26. Such a weaker 

correlation is not surprising; both studies have a vastly different age range, and therefore 

blindly harmonizing the data for site without adjusting by age will diminish the age effect 

across the life span. For the Adjusted Residuals, we obtained a correlation of −0.77, and we 

obtained a correlation of −0.79 for ComBat. Both adjusted residualization and ComBat were 
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effective at decreasing the inter-subject variability by removing scanner effects, while 

preserving the trend associated with age across the life-span.

3.5 Associations with gender

We also investigated the impact of harmonizing the EMBARC and VDLC studies together 

on the associations between cortical thickness measurements and gender. Before 

harmonization (raw data), 30 cortical regions were significantly associated with gender, after 

adjusting for multiple comparisons using the Benjamini-Hochberg procedure (p < 0.05). 

Interestingly, after harmonizing the data using either the unadjusted Residuals, the Adjusted 

Residuals, or the ComBat approach, we found that none of the features were associated with 

gender.

To investigate whether or not the results from the raw data consisted of false positives as a 

consequence of gender ratios that are imbalanced across sites (see Figure 4), we devised the 

following subsampling strategy: to obtain unconfounded assessments of the associations of 

gender with cortical thickness measurements, we sampled an equal number of females and 

males from each scanner at random, resulting in a total of n = 306 subjects; we repeated the 

random subsampling B = 1000 times. While the resulting total sample size of the matched 

datasets is smaller, the gender associations in the matched datasets should not be confounded 

by unwanted scanner variation, and therefore lead to results that are more reflective of the 

truth. For each of the B = 1000 matched datasets, we calculated the number of features 

associated with gender, again adjusting for multiple comparisons using the Benjamini-

Hochberg procedure. We obtained that more than 98% of the time (981 datasets), there was 

0 feature associated with gender, confirming that the 30 features associated with gender in 

the original raw data are most likely false positives.

In light of these results, it appears that the three harmonization techniques are effective at 

reducing the number of false positives. Such false positives are most likely features that are 

artificially associated with a biological covariate of interest, as a result of the biological 

covariate being unbalanced across scanners or sites.

4 Discussion

With the increasing complexity of study design in multi-site neuroimaging studies, the 

neuroscience community needs robust, validated, and computationally feasible methods for 

addressing the critical impact of non-biological sources of data variation. We use the term 

“harmonization” to refer to the process of combining data from multiple sites and removing 

the unwanted variability associated with scanner.

In this paper, we proposed to use the ComBat algorithm, previously developed to deal with 

batch effects in the study of gene expression data, as a reliable harmonization method for 

combining cortical thickness measurements across sites. This was motivated by its 

previously documented excellent performance for harmonizing voxel-wise fractional 

anisotropy (FA) and mean diffusivity (MD) measurements [Fortin et al., 2017], two common 

DTI scalar maps. Using two large multi-site studies, EMBARC and VDLC, we presented a 

general approach for identifying unwanted sources of variance in neuroimaging data. We 
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then showed that ComBat is effective at removing nuisance variability associated with 

scanners, while preserving the age effects in the cortical thickness across participants. We 

also showed that ComBat can be used to combine those two large studies, with a vastly 

different age range, to study cortical thickness across the life span. Indeed, while the 

extraction of thickness in the ROIs was slightly different for the two studies, we nonetheless 

found ComBat to effectively mitigate scanner effects. We expect future studies of ComBat 

for addressing minor differences in image processing across studies to evaluate the 

feasibility of distributed analyses in which only post-processed data are available.

While our analyses of harmonized data did not yield any differences between males and 

females in cortical thickness measures, there is a significant literature documenting these 

differences [Luders et al., 2006, Sowell et al., 2006, Gennatas et al., 2017]. These studies 

used different analytic pipelines to calculate cortical thickness, although we would expect 

our ANTsCT pipeline to provide similar results. However, previously reported results were 

based were conducted in healthy individuals, and several were specifically designed to study 

sex differences, in contrast to the VLDC and EMBARC studies which included large 

numbers of depressed subjects and were heterogeneous in their demographics across sexes. 

We expect that future analyses of sex effects from multi-center studies of normal subjects 

using ComBat to replicate the well-established differences in thickness measures.

We note that ComBat performs well for removing systematic biases associated with scanner 

in studies independently of whether acquisition protocols were carefully harmonized. In the 

EMBARC study, for example, inter-site effects were present despite such harmonization; 

similar differences have recently been reported in volumetric measurements from another 

multi-center study which used a traveling subject design [Shinohara et al., 2017]. As we 

found that ComBat was effective in removing effects associated with differences in 

acquisition protocol and scanner as in the VDLC study, as well as residual site effects from 

images acquired using the harmonized protocol in the EMBARC.

We compared the ComBat harmonization algorithm to two commonly-used scanner effect 

correction methods: residualization and adjusted residualization. The latter method adjusts 

for covariates of interest (for instance age) in the removal of site effects. ComBat is similar 

to the adjusted method, except that it additionally models scanner-specific scaling effects. 

ComBat also uses a Bayesian framework to improve the stability of the estimated parameters 

in small sample sizes. ComBat is easy to apply and has minimal computational overhead. 

Equally importantly, we have developed open-source, easy-to-use code for applying this 

algorithm in R, Matlab, and Python. This ensures that the ComBat algorithm can be 

seamlessly integrated into any existing processing pipelines.

Another advantage of ComBat is its ability to scale up for large neuroimaging studies. 

Indeed, the ComBat algorithm scales linearly with the number of imaging features, which 

makes the procedure suitable to image analyses performed at the voxel level, where the 

number of voxels can often be in the millions. We note that for brainwide analyses 

performed at the voxel level, the assumptions of the ComBat methodology that scanner 

effects are shared across all voxels might not be valid. In previous work, our group and 

others have found that scanner effects on image intensities can be dependent on tissue class, 

Fortin et al. Page 15

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and thus adjustments for site effects may necessitate tissue class-specific modeling. One 

possible solution is to apply ComBat on each tissue separately. An alternative would be to 

extend the ComBat model to allow for a mixture of empirical distributions for the scanner 

effects.

We note that several other harmonization techniques have been previously proposed in the 

context of other imaging modalities. For instance, for conventional MRI studies, intensity 

normalization techniques have been developed to make the image intensities comparable 

across studies, including histogram matching [Nyúl et al., 2000], WhiteStripe [Shinohara et 

al., 2014] and RAVEL [Fortin et al., 2016]. Another method, called source-based 

morphometry, uses independent component analysis (ICA) to remove variability associated 

with certain scanner parameters in structural MRI [Chen et al., 2014]. For diffusion tensor 

imaging (DTI) studies, it has been proposed to use spherical harmonics to harmonize data 

across studies, using a reference site to create pairwise site transformations [Mirzaalian et 

al., 2016]. It has also been proposed to use functional normalization, originally developed in 

[Fortin et al., 2014], for harmonizing DTI scalar maps.

The aforementioned harmonization techniques cannot be readily applied to cortical 

thickness. For instance, for WhiteStripe and RAVEL, control features in the WM and in the 

CSF are required, which do not make sense in the context of cortical thickness 

measurements in the GM. Furthermore, the histogram matching method attempts to estimate 

the histogram peaks for each of the GM, WM and CSF tissues, and then aligns these peaks 

across images to make the intensities comparable. Again, this technique is not applicable to 

cortical thickness measurements in the GM. On the other hand, ComBat does not make such 

specific assumptions on the nature of the imaging measurements, making it a potential and 

versatile tool for the harmonization of multi-site imaging studies for other modalities.

In the future, we plan to develop a time-dependent ComBat algorithm for understanding 

scenarios where subjects were scanned over multiple time points, and for which scans were 

acquired on different scanners, or on the same scanners but with different scanning 

parameters. We are also planning on improving the performance of ComBat in the presence 

of confounding by implementing an inverse probability weighting (IPW) scheme into the 

algorithm. IPW has been shown to improve prediction when the outcome of interest is 

confounded with another covariate [Linn et al., 2016]. This has the potential to improve the 

performance of ComBat for age prediction using the SVM regression framework, as well as 

for other prediction methods.

5 Software

All postprocessing analysis was performed in the R statistical software (version 3.2.0). For 

ComBat, the reference implementations from the sva package was used. All figures were 

generated in R with customized and reproducible scripts. We have adapted and implemented 

the ComBat methodology to imaging data, and the software is available in R and Matlab 

(https://github.com/Jfortin1/ComBatHarmonization ) and in Python (https://github.com/

ncullen93/neuroCombat).
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Appendix A

Figure A.1. Variance explained by imaging site (R2)
For each feature, we calculated the coefficient of determination R2 between cortical 

thickness and imaging site. We present the densities of R2 (red lines) for the (a) EMBARC 

study and the (b) VDLC study. To obtain a measure of significance and to correct for 

multiple comparisons, we performed a one-step max R2 procedure. Briefly, we permuted the 

site labels B = 10, 000 times, recalculated the R2 values and retained the maximum R2 value 

at each permeation. The grey densities represent the distribution of the maximum R2’s. The 

vertical dashed line indicates the 95% quantile of the maximum R2 distribution. The features 

above that threshold are significant at the α = 0.05 level (shaded red area). Most features 

remained significant after adjustment.

Abbreviations

ANTs Advanced normalization tools

AD Alzheimer’s disease

ADNI Alzheimer’s Disease Neuroimaging Initiative

ANOVA Analysis of variance

CSF Cerebrospinal Fluid
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DiReCT Diffeomorphic Registration Based Cortical Thickness

DTI Diffusion tensor imaging

EB Empirical Bayes

EMBARC Establishing Moderators and Biosignatures of Antidepressant Response in 

Clinical care

FA Fractional anisotropy

FWER Family-wise error rate

GM Grey Matter

GPR Gaussian process regression

HAMD Hamilton Depression Rating Scale

IPW Inverse probability weighting

LDA Linear discriminant analysis

LLD Late-life depression

MALF Multi-atlas label fusion

MASQ Mood and Anxiety Symptom Questionnaire

MCI Mild cognitive impairment

MD Mean diffusivity

MVPA Multivariate pattern analysis

OASIS Open Access Series of Imaging Studies

PC Principal component

PCA Principal component analysis

QIDS Quick Inventory for Depression Symptomatology

RMSE Root-mean-square error

ROI Region of interest

STAI Spielberger State-Trait Anxiety Inventory

SVM Support vector machine

SVR Support vector regression

VDLC Vascular disease: Longitudinal changes

WM White Matter
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Figure 1. Visualization of sites effects in the EMBARC study
Plots are colored by imaging site: Columbia University (CU), University of Texas 

Southwestern (TX), Massachusetts General Hospital (MG) and University of Michigan 

(UM). (a) Boxplots of the cortical thickness sorted by site. Each boxplot represents the 

distribution of the 98 cortical regions for one subject. (b) Boxplots of the median cortical 

thickness, grouped by site. The MG site has lower median cortical thickness on average, 

while the TX and UM sites have higher variability. (c) Same as (a), but sorted by age. Age 

intervals are included in brackets to help interpretation. (d) Relationship between median 

cortical thickness and age, colored by site. (e) Plots of the first 3 principal components (PCs) 
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from principal component analysis (PCA), colored by site. The second PC is highly 

associated with site.
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Figure 2. Distribution of covariates in the EMBARC study
Distributions of age, gender, HAMD score and QIDS scores across sites for the EMBARC 

study. The width of the boxplots is proportional to the number of subjects scanned at each 

site. The full and shaded bars in the gender barplots represent males and females 

respectively. HAMD: Hamilton Depression Rating Scale; QIDS: Quick Inventory for 

Depression Symptomatology. p-values indicate the significant differences in means between 

the centers. Gender ratios were not significantly different between sites.
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Figure 3. Visualization of sites effects in the VDLC study
Plots are colored by scanner. The green shades represent the 1.5T scanners, while the brown 

shades represent the 3T scanners. (a) Boxplots of the cortical thickness sorted by site. Each 

boxplot represents the distribution of the 98 cortical regions for one subject. (b) Boxplots of 

the median cortical thickness, grouped by scanner. The measurements derived from 1.5T 

scanners are substantially lower than measurements from 3T scanners. (c) Same as (a), but 

sorted by age. Age intervals are included in brackets to help interpretation. (d) Relationship 

between median cortical thickness and age, colored by scanner. (e) Plots of the first 3 

principal components (PCs) from principal component analysis (PCA), colored by scanner. 

The second PC is highly associated with scanner.
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Figure 4. Distribution of covariates in the VDLC study
Distributions of age, gender, and disease group for the VDLC study. The width of the 

boxplots is proportional to the number of subjects scanned at each site. For the age boxplots, 

the p-values indicate the significant differences in means between sites. The full and shaded 

bars in the gender barplots represent males and females respectively; the gender ratio was 

significantly different for the W_Sonata_B scanner. The full and shaded bars in the disease 

group barplots represent control and depressed subjects respectively. The proportions of 

subjects with depression were significantly across the 4 scanners.
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Figure 5. Prior distributions of the site effect parameters estimated by ComBat in the EMBARC 
study
Location and scale site-specific parameters estimated by ComBat, for the EMBARC study. 

(a) The ComBat-estimated prior distributions for the site-specific location parameters γ are 

shown in solid lines, and the empirical distributions of the site-specific location parameters 

are shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific 

scale parameters δ are shown in solid lines, and the empirical distributions of the site-

specific scale parameters are shown in dashed lines. The prior distributions fit well the 

empirical distributions for both the location and scale parameters.
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Figure 6. Supervised and unsupervised dimension reductions before and after harmonization for 
the EMBARC dataset
For each harmonization method, we first used principal component analysis (PCA) to reduce 

the dimension of the cortical thickness measurements in an unsupervised manner (agnostic 

of imaging sites). We present in the first column the projection of the data into the first two 

principal components (PCs) that explain most of the variation in the data. We also performed 

a supervised dimension reduction technique using linear discriminant analysis (LDA) using 

imaging site as a target variable. We present in the second column the projection of the data 

into the first two LDA coordinates. In both PCA and LCA, the first two coordinates are 

highly associated with site, while all harmonization methods removed most variation 

associated with site.
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Figure 7. Prior distributions of the site effect parameters estimated by ComBat in the VDLC 
study
Location and scale site-specific parameters estimated by ComBat, for the VDLC study. (a) 
The ComBat-estimated prior distributions for the site-specific location parameters γ are 

shown in solid lines, and the empirical distributions of the site-specific location parameters 

are shown in dashed lines. (b) The ComBat-estimated prior distributions for the site-specific 

scale parameters δ are shown in solid lines, and the empirical distributions of the site-

specific scale parameters are shown in dashed lines. The prior distributions fit well the 

empirical distributions for both the location and scale parameters.
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Figure 8. Supervised and unsupervised dimension reductions before and after harmonization for 
the VDLC dataset
For each harmonization method, we first used principal component analysis (PCA) to reduce 

the dimension of the cortical thickness measurements in an unsupervised manner (agnostic 

of imaging sites). We present in the first column the projection of the data into the first two 

principal components (PCs) that explain most of the variation in the data. We also performed 

a supervised dimension reduction technique using linear discriminant analysis (LDA) using 

imaging site as a target variable. We present in the second column the projection of the data 

into the first two LDA coordinates. In both PCA and LCA, the first two coordinates are 

highly associated with site, while all harmonization methods removed most variation 

associated with site.
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Figure 9. Root-mean-square error (RMSE) for age prediction using linear regression
Using k-fold validation for k ∈ {3, 5, 10} for B = 1000 random samplings, we calculated the 

RMSE on a testing dataset for the predicted age using linear regression. For the different 

harmonization methods, we used the harmonized cortical thickness measurements as input 

image features to train the algorithm. The p-values represent significant reductions of RMSE 

with respect to the raw data.
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Figure 10. Root-mean-square error (RMSE) for age prediction using ε-SVM (linear kernel)
Using k-fold validation for k ∈ {3, 5, 10} for B = 1000 random samplings, we calculated the 

RMSE on a testing dataset for the predicted age using ε-SVM with a linear kernel. For the 

different harmonization methods, we used the harmonized cortical thickness measurements 

as input image features to train the algorithm.
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Figure 11. Root-mean-square error (RMSE) for age prediction using ε-SVM (radial basis 
function kernel)
Using k-fold validation for k ∈ {3, 5, 10} for B = 1000 random samplings, we calculated the 

RMSE on a testing dataset for the predicted age using ε-SVM with a radial basis function 

kernel. For the different harmonization methods, we used the harmonized cortical thickness 

measurements as input image features to train the algorithm.
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Figure 12. Median age trajectory before and after harmonization
The EMBARC and VDLC studies were combined using different harmonizations. The red 

dots represent the median cortical thickness for the EMBARC study participants, and the 

greens dots represent the median cortical thickness for the VDLC study participants. The 

curves represent the lowess fitted values for each study separately.
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Table 1

Description of the EMBARC and VDLC study samples

Scanner N subjects N females (%) Age range N Depressed (%)

EMBARC study 187 116 (62) [18,65] 187 (100)

CU 46 29 (63) [18,61] 46 (100)

MG 26 21 (81) [18,60] 26 (100)

TX 72 42 (58) [19,65] 72 (100)

UM 43 24 (56) [18,59] 43 (100)

VDLC study 236 139 (59) [58,95] 177 (75)

W_Sonata_A 23 15 (65) [58,83] 23 (100)

W_Sonata_B 78 61 (78) [59,92] 62 (81)

W_TIMTrio_A 16 8 (50) [62,85] 2 (13)

W_TIMTrio_B 40 23 (58) [59,80] 37 (93)

D_TIMTrio_A 24 7 (29) [60,95] 24 (100)

D_TIMTrio_B 38 19 (50) [59,84] 25 (66)

D_SIGNA 17 6 (35) [60,83] 3 (18)
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