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Abstract

Aims—Despite growing interest in using electronic health records (EHR) to create longitudinal 

cohort studies, the distribution and missingness of EHR data might introduce selection bias and 

information bias to such analyses. We aimed to examine the yield and potential for these 

healthcare process biases in defining a study baseline using EHR data, using the example of 

cholesterol and blood pressure (BP) measurements.

Methods—We created a virtual cohort study of cardiovascular disease (CVD) from patients with 

eligible cholesterol profiles in the New England (NE) and Southeast (SE) networks of the Veterans 

Health Administration in the United States. Using clinical data from the EHR, we plotted the yield 

of patients with BP measurements within an expanding timeframe around an index date of 

cholesterol testing. We compared three groups: 1) patients with BP from the exact index date; 2) 

patients with BP not on the index date but within the network-specific 90th percentile around the 

index date; and 3) patients with no BP within the network-specific 90th percentile.

Results—Among 589,361 total patients in the two networks, 146,636 (61.0%) of 240,479 

patients from NE and 289,906 (83.1%) of 348,882 patients from SE had BP measurements on the 

index date. Ninety percent had BP measured within 11 days of the index date in NE and within 5 

days of the index date in SE. Group 3 in both networks had fewer available race data, fewer 

comorbidities and CVD medications, and fewer health system encounters.
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Conclusions—Requiring same-day risk factor measurement in the creation of a virtual CVD 

cohort study from EHR data might exclude 40% of eligible patients, but including patients with 

infrequent visits might introduce bias. Data visualization can inform study-specific strategies to 

address these challenges for the research use of EHR data.

1. INTRODUCTION

Classic prospective cohort studies, such as the Framingham Heart Study and Nurses’ Health 

Study,[1, 2] begin with a single baseline visit, when disease risk factors are measured with 

surveys, physical examinations, laboratory analyses, and other data collection methods. 

Participants are then observed at regular intervals over time for outcomes such as 

cardiovascular disease (CVD) events or cancer incidence. Such studies have made 

immeasurable contributions to understanding health and disease. However, as research 

budgets tighten, the creation of new cohort studies may no longer be sustainable for 

epidemiologic discovery.[3]

Electronic health records (EHR) have potential to fill this gap.[4–7] Concurrent with the 

decline in research funding is an increasing emphasis on the implementation and meaningful 

use of EHR in patient care.[8, 9] The wealth of data in EHR systems can be a cost-effective 

alternative to large cohort studies and surpass their scale by orders of magnitude. Moreover, 

EHR contain data unavailable from any other source, since they document the processes and 

outcomes of invasive data collection methods and other procedures. However, the creation of 

cohort studies from EHR data represents a use that is secondary to their primary purposes of 

clinical care and healthcare administration.[10] As a result, the content and frequency of 

data collection that is appropriate for these primary uses can introduce bias when the data 

are used for research.[11–14] Bias exists when the association observed between an 

exposure and outcome is not entirely due to causality[15] and can threaten the internal 

validity of a study’s findings. Although dozens of biases have been described, most can be 

assigned to one of three categories: selection bias, information bias, and confounding.[16] 

Several features of research in EHR data make it susceptible to bias.[14, 17]

In this paper, we focus on one choice researchers make when creating a cohort study from 

EHR data: how to define each individual’s baseline. Patients in a health system access care 

at varying frequencies and might therefore have incomplete ascertainment of a full set of 

risk factors at any one timepoint. This variable schedule of contact with the health system 

might introduce bias to any research using an EHR-defined cohort. Limiting the analyses 

only to those patients with complete baseline data at one timepoint might decrease the yield 

of eligible patients and introduce selection bias, error in cohort selection that favors patients 

who access care most often.[14, 15, 18] However, expanding the definition of the baseline 

timeframe might introduce information bias, error in cohort characterization,[16, 18] if 

patients with less frequent contact are more likely to have inaccurate measurements of their 

risk factors at any one instance. Together, these errors that result from the way data are 

collected in EHR have been termed healthcare process bias.[19, 20]

Examining the distribution of relevant EHR data can help investigators devise strategies to 

minimize this risk of bias.[21–23] We are using existing EHR data to define a “virtual” 
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cohort study of CVD risk. That is, we are seeking to define a cohort of patients from EHR 

records, identify a baseline “visit” at which relevant risk factors were measured, and then 

determine the association between those risk factors and subsequent CVD events. In this 

manuscript, we describe our approach to examining the impact of widening the baseline 

timeframe on the yield of eligible patient data, using the example of a laboratory 

measurement (cholesterol) and a vital sign (blood pressure, BP). We used data visualization 

to determine the impact of the variable rates of risk factor measurement on the yield and 

potential for bias when using EHR data for clinical epidemiology, examining whether 

patients with greater time between cholesterol and BP measurements are systematically 

different than those with narrower baselines. Specifically, we examined whether the time 

between cholesterol and BP measurements was associated with other important patient 

characteristics, including demographics, comorbidities, and laboratory values.

2. MATERIALS AND METHODS

2.1 Patient population

The Veterans Health Administration (VA) is an integrated health system caring for more 

than 8 million military veterans across the United States.[24] Veterans may receive VA 

healthcare if they meet certain requirements related to military service, disability, and 

income, and more than 90% of VA users are men. The health system is organized into of 23 

regional Veterans Integrated Service Networks (VISN), each comprised of large medical 

centers, ambulatory centers, and community-based clinics with a shared electronic health 

record. We accessed patient data from the New England Network (VISN 1, NE), 

encompassing six states and caring for 981,000 patients, and the Southeast Network (VISN 

7, SE), covering South Carolina and parts of Georgia and Alabama and caring for 1,458,000 

patients. Because we are creating 10-year CVD models, we sought to identify baseline visits 

between 2000–2007. All NE and SE patients with at least one outpatient lipid profile (see 

below) were eligible, due to the centrality of lipids in CVD risk estimation.[25]

2.2 Data sources

All data came from the electronic VA corporate data warehouse (CDW),[26] which includes 

administrative data and clinical data from the single EHR (the Computerized Patient Record 

System, CPRS) used at all VA locations nationwide. Demographic data such as sex and race 

in the CDW are derived from administrative data sources. Clinical data such as International 

Classification of Disease (ICD) codes and vital signs including blood pressure (BP) are 

entered by care team members into non-redundant structured fields in the EHR at the point 

of care in both outpatient and inpatient settings. Medication data in the CDW are derived 

from VA pharmacy records, which contain structured data about outpatient and inpatient 

prescriptions ordered by VA providers and dispensed by VA pharmacies. The CDW also 

contains structured data on medications patients receive from outside the VA, entered by VA 

providers at structured data in the EHR. Laboratory results in the CDW originate from VA 

the laboratory information management system.

For each patient, a baseline index date was assigned as described below. We used CDW data 

from the baseline index date to identify patient characteristics, including gender, race, and 
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ethnicity. Insurance status was taken from the outpatient visit closest to the index date and 

was categorized as VA only, VA plus private insurance, or VA plus other government 

insurance (including Medicare, Medicaid, and Civilian Health and Medical Program of the 

Uniformed Services [CHAMPUS]). Age was calculated as the difference between the index 

date and date of birth. Estimated glomerular filtration rate was calculated from the serum 

creatinine using the CKD-EPI method.[27] Smoking status was determined with a validated 

method developed in VA data as described previously.[28] We used ICD-9 codes before the 

index date to identify baseline CVD: acute and chronic ischemic heart disease (410.0–

414.9), cerebrovascular disease (430–438), and peripheral vascular disease (443.9, 440.20–

440.4). We identified diabetes by ICD-9 codes 250.00–250.93). Hypertension treatment was 

identified by an active prescription on the index date for at least one of the following 

medication classes, taken as a single agent or in combination formulations: diuretics, 

angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor inhibitors, beta-

blockers, and calcium channel blockers. Similarly, cholesterol-lowering treatment was 

identified by an active prescription for any of the following medications, taken as single 

agents or in combination formulations: statins, niacin, ezetimibe, gemfibrozil, fenofibrates, 

cholestyramine, and colestipol. Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors 

were not clinically available during the baseline period. Outpatient encounters included any 

day with at least one documented health system contact.

2.3 Analysis

For each patient, we anchored a baseline index date to the date of the first outpatient lipid 

results between 2000 and 2007. We chose lipid testing as the index date because of the 

centrality of cholesterol, including low-density lipoprotein (LDL), high-density lipoprotein 

(HDL), and triglycerides, in CVD risk estimation[25] and because patient lipid levels are 

generally measured less frequently than BP, a vital sign routinely collected in clinical care. 

Because we aimed to create a prospective cohort study for incident CVD events, we used 

outpatient, rather than inpatient, lipid measurements to identify baseline risk factors before, 

not at the time of, a CVD event, a common cause of hospitalization. In this health system, 

BP is generally measured at clinical appointments with providers such as primary care 

practitioners or subspecialists and not at encounters such as laboratory testing or optometry 

appointments.

We examined whether CVD risk factors varied by the time between CVD risk factor 

measurements in two different ways. First, we determined the proportion of patients with BP 

measured on the same date as their index date of lipid testing. We then expanded the 

definition of the baseline timeframe by one-day intervals before or after this date, plotting 

the cumulative proportion of eligible patients with BP measured (yield) with successive 

widening of the timeframe. Informed by this visualization of the data distribution, we 

compared the demographic and clinical characteristics of three mutually exclusive groups of 

patients: 1) patients with BP recorded on the index date of lipid testing; 2) patients with no 

recorded BP on the index date but within a time window to either side of the index date that 

included 90% of the patients in each network; and 3) patients with no BP within the 

network-specific 90th percentile. Second, we used linear regression to model the association 

between CVD risk factors (BP and lipid levels) and the time between the index date of lipid 
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testing and the date of the nearest-in-time BP measurement, adjusted for age, gender, race, 

diabetes, and hypertension and cholesterol medications. Specifically, the dependent variables 

in these models were systolic blood pressure (SBP), diastolic blood pressure (DBP), and 

LDL, HDL, and total cholesterol. P<0.005 indicated statistical significance.

2.4 Ethical considerations

The VA Boston Institutional Review Board approved this study and granted a waiver of 

informed consent. The study conforms to the Declaration of Helsinki.

3. RESULTS

We identified 589,361 patients with an outpatient lipid measurement in the two networks 

(Table 1). Among these, 146,636 (61.0%) of 240,479 patients from NE and 289,906 (83.1%) 

of 348,882 patients from SE had BP measurements on the same date as the index date of 

lipid testing. These yields reached 90% when the baseline window was expanded to 154 

days before the index date in NE and 14 days before the index date in SE. Alternatively, 

90% of patients had a BP measurement when the baseline window was extended 91 and 7 

days after the index date in NE and SE, respectively (Figure 1, left panel). When the baseline 

window was extended symmetrically before and after the index date of lipid testing, 90% of 

patients had a BP measurement within 11 days in NE and 5 days in SE (Figure 1, right 

panel). When patients were categorized based on the length of time between their index date 

and date of nearest BP, the three groups did not differ in age, BP, or lipid levels, but Group 3 

in both networks had fewer available race data, lower recorded prevalence of comorbidities, 

and fewer CVD medications and outpatient contact with the health system (Table 1).

When analyzed as a continuous variable in multivariable regression models, greater time 

between lipid and BP measurements was generally associated with more favorable levels of 

these quantitative CVD risk factors themselves, although the magnitudes of these 

associations were too small to be clinically meaningful. Greater time between measurements 

was statistically significantly associated with lower SBP in NE (−0.21 mmHg per 100 days, 

95% CI −0.24, −0.18) and SE (−0.20 mmHg per 100 days, 95% CI −0.23, −0.17) and lower 

DBP in NE (−0.12 mmHg per 100 days, 95% CI −0.14, −0.11) and SE (−0.10 mmHg per 

100 days, −0.11, −0.08). Greater time between measurements was also significantly 

associated with lower LDL (−0.22 mg/dL per 100 days, 95% CI −0.27, −0.17) and total 

cholesterol (−0.37 mg/dL per 100 days, 95% CI −0.43, −0.31) in NE and with lower total 

cholesterol (−0.37 mg/dL per 100 days, 95% CI −0.43, −0.30) and higher HDL cholesterol 

(0.08 mg/dL per 100 days, 95% CI 0.05, 0.10) in SE.

4. DISCUSSION

4.1. Summary of findings

Using the example of cholesterol and BP measurements, we examined the impact of 

widening the timeframe that defines the virtual baseline “visit” on the yield of eligible 

patient data for a cohort study created from the EHR. We found that requiring same-day 

measurements of cholesterol and BP might exclude up to 40% of eligible patients. Widening 

the baseline timeframe increased the yield of eligible patients, albeit at the expense of 
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including patients who were systematically different than those with a narrower time 

between measurements. Specifically, time between cholesterol and BP measurements was 

associated with the risk factor levels themselves and, perhaps more problematically, with the 

missingness of key variables such as race and ethnicity. This observation raises the concern 

of misclassification, a type of information bias: if patients with less frequent risk factor 

measurement are more likely to have missing race and ethnicity data, their CVD and 

diabetes statuses might also be misclassified as negative. Examining these relationships can 

be a first step to addressing the resulting biases.

4.2. Contextualization with prior work

The risk for bias in using EHR for research has been well documented. [11–14, 17–19] It is 

known that invoking certain data sufficiency requirements selects for a sicker patient 

population, since these patients have more frequent data collection[14, 17]. In our cohort, 

shorter time between dates of lipid and BP measurements was associated with a greater 

number of comorbidities and with poorer BP and cholesterol values. While the magnitude of 

these associations is unlikely to be clinically significant, they further illustrate the non-

random patterns of risk factor measurement and data missingess in our EHR-defined cohort. 

The relationship we observed between the measurements of a laboratory value and a vital 

sign are consistent with those of Pivovarov and colleagues, who found that, among 20 years 

of EHR data from 14,000 ambulatory internal medicine patients, the testing patterns of 

certain laboratory tests conveyed separate information from the test results’ numerical values 

themselves.[29] Interestingly, however, the numerical value of LDL cholesterol testing was 

not associated with its frequency of testing in that study, a finding the authors attributed to 

healthcare processes such as guidelines for screening and monitoring. Our analyses of 

outpatient measurements are also consistent with results from 10,000 patients receiving 

anesthetic services at one medical center, where illness severity was associated with a 

greater number of days with clinical data[30]. The decision of how to define the baseline 

timeframe of an EHR-derived cohort study can be viewed as a missing data problem,[31] 

with competing biases at either end of the spectrum. Narrower timeframes will select a 

sicker population, while wider timeframes will include patients who are more likely to have 

misclassified exposures and outcomes.

4.3. Data visualization

Data visualization is one tool to help investigators examine and address these biases when 

using EHR data for research.[22, 23, 32, 33] Pivovarov and colleagues used histograms to 

examine laboratory testing dynamics; in doing so, they identified multimodality in testing 

patterns associated with, for example, inpatient versus outpatient status.[29] Baseline 

measurements of cholesterol and BP are central to CVD prediction in the virtual cohort 

study we are creating. Our V-shaped plot of the timeframe between these measurements will 

inform how we examine the impact of data distribution on the analytic validity of our CVD 

prediction models. Sensitivity analyses are classically used in epidemiology to determine the 

robustness of statistical associations to potential biases.[34] In our case, sensitivity analyses 

that include only Group 1, Groups 1 and 2, or Groups 1–3 in our cohort will enable us to 

determine any resulting bias in our model, indicated by any change in the magnitude of the 

association between each risk factor and the risk of a CVD event. Investigators creating 
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longitudinal cohorts from EHR data may wish to use similar plots for exposures and 

outcomes beyond CVD; the choice of data distribution to examine will depend on the 

primary hypotheses and natural history of the exposures and outcomes of interest. For 

example, Albers and Hripcsak have used EHR data to demonstrate diurnal variation in serum 

creatinine values,[17] suggesting that studies of acute changes in renal function might 

require methods to handle time-based signals in a narrow window. On the other hand, it may 

be acceptable to have greater time between baseline assessments of more stable risk factors, 

such as diabetes status and smoking habits in the prediction of a future CVD event. In 

addition, a longer follow-up time between the baseline and the incident event of interest, 

such as cancer diagnosis, is also likely to diminish the relative importance of the time 

between the baseline measurements of different risk factors. Ultimately, each team of 

investigators will need to decide the appropriate methods for examining and addressing 

potential sources of bias in their studies.

Our data plots revealed another potential source of healthcare process bias in our data: the 

variation in CVD risk factor data collection between two regional networks of the same 

national integrated health system. Ninety percent of patients had a BP measurement within 

11 and 5 days of their baseline lipid measurement in NE and SE, respectively. However, 

when including BP measurements only taken before the index lipid test, 90% of patients in 

SE had an eligible BP within 14 days, while for NE, this timeframe had to be extended to 

154 days to include 90% of patients. Reasons for such variation might include more frequent 

BP measurement in SE or more frequent utilization of non-VA healthcare in NE. Our 

illustration of data variability between two networks within one system suggests the 

likelihood of even greater variability in the EHR data of different health systems, as 

demonstrated elsewhere.[12] This is an important consideration for researchers combining 

EHR data across different health systems to power larger-scale analyses.

4.4 Addressing healthcare process bias

Recognizing the potential for healthcare process bias is the first step toward choosing 

strategies for mitigating that bias.[20] Strategies for handling the missing or infrequent data 

that result from healthcare processes can occur at the pre-analytic and analytic phases of 

EHR-based research. Before analysis, collateral or complementary data sources can be 

sought.[35] The Electronic Medical Records and Genomics (eMERGE) network, a multi-

institution consortium using EHR data to define clinical phenotypes, has combined EHR and 

pharmacy insurance claims data to improve the detection of cases of resistant hypertension.

[36] As another example, data from sources such as the National Death Index and the 

Centers for Medicare and Medicaid Services can supplement missing data such as medical 

diagnoses and race. Validating EHR-derived data against gold-standard research 

measurements in the same cohort might determine the confidence that can be placed in EHR 

data alone.[36] For example, the Million Veteran Program is using this approach to validate 

EHR-derived smoking status against participant survey data. In the analytic phase of 

research, investigators often limit analyses only to patients with a complete set of data.[14, 

31] For example, the eMERGE network has defined completeness as having one biobanked 

sample, at least two clinical visits, and data from each of several data categories.[36] Our 

results and those of others suggest that such data sufficiency requirements might introduce 
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bias that should be examined before investigators choose this strategy over other methods to 

account for missing data,[14] including multiple imputation.[31] The pattern of data 

collection itself can be informative. This was recently illustrated in a machine learning study 

of serum ferritin values, in which patient demographics and other concurrent laboratory 

results had remarkable accuracy for predicting high ferritin levels and in some cases 

predicted iron-deficiency anemia more accurately than measured ferritin.[37] Additional 

approaches such as lagged regression models[21] and other temporal-informed methods[38–

41] [42] [43] can be used to account for healthcare process bias and improve the specificity 

and sensitivity of time-based analyses in EHR data.

4.5 Limitations

Our analyses have a few limitations to note. First, they are limited to patients receiving care 

from the Veterans Health Administration, a patient population with fewer women and 

greater burden of physical and psychological comorbidities than many health systems. 

Although our specific quantitative results about CVD risk factor measurement may not 

generalize to EHR data from other health systems, we believe our approach to visualizing 

and addressing the potential for healthcare process biases might. Second, in this exercise, we 

chose to illustrate the temporal relationship between the measurements of only two 

important clinical CVD factors, BP and cholesterol. Of course, CVD risk depends on 

numerous other factors, including clinical variables such as body-mass index and renal 

function and lifestyle factors such as smoking, diet, and exercise. Third, these analyses are 

limited by the lack of CVD outcome data, but as we define our cohort study and collect 

CVD outcomes, sensitivity analyses as described above will inform the degree to which 

variable data distribution might bias our prediction models.

5. CONCLUSIONS

In conclusion, plotting the timeline of data distribution helps researchers assess and mitigate 

the inherent potential for healthcare process bias when using EHR for research or other 

secondary purposes.

Acknowledgments

This work was supported by VA Merit Award I01-CX001025. JLV is supported by NIH L30-DK089597, KL2-
TR001100, and Career Development Award IK2-CX001262 from the United States Department of Veterans Affairs 
Clinical Sciences Research and Development Service.

References

1. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of 
coronary heart disease using risk factor categories. Circulation. 1998; 97:1837–47. [PubMed: 
9603539] 

2. Fiebach NH, Hebert PR, Stampfer MJ, Colditz GA, Willett WC, Rosner B, et al. A prospective 
study of high blood pressure and cardiovascular disease in women. Am J Epidemiol. 1989; 
130:646–54. [PubMed: 2773913] 

3. FitzGerald GA. Evolution in translational science: Whither the CTSAs? Sci Transl Med. 2015; 
7:284fs15.

Vassy et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2018 March 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



4. Callard F, Broadbent M, Denis M, Hotopf M, Soncul M, Wykes T, et al. Developing a new model 
for patient recruitment in mental health services: a cohort study using Electronic Health Records. 
BMJ open. 2014; 4:e005654.

5. Dziadkowiec O, Callahan T, Ozkaynak M, Reeder B, Welton J. Using a Data Quality Framework to 
Clean Data Extracted from the Electronic Health Record: A Case Study. EGEMS (Washington, 
DC). 2016; 4:1201.

6. Kopcke F, Lubgan D, Fietkau R, Scholler A, Nau C, Sturzl M, et al. Evaluating predictive modeling 
algorithms to assess patient eligibility for clinical trials from routine data. BMC Med Inform Decis 
Mak. 2013; 13:134. [PubMed: 24321610] 

7. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, et al. A review of 
approaches to identifying patient phenotype cohorts using electronic health records. J Am Med 
Inform Assoc. 2014; 21:221–30. [PubMed: 24201027] 

8. Buntin MB, Jain SH, Blumenthal D. Health information technology: laying the infrastructure for 
national health reform. Health Aff (Millwood). 2010; 29:1214–9. [PubMed: 20530358] 

9. Byrd JB, Vigen R, Plomondon ME, Rumsfeld JS, Box TL, Fihn SD, et al. Data quality of an 
electronic health record tool to support VA cardiac catheterization laboratory quality improvement: 
the VA Clinical Assessment, Reporting, and Tracking System for Cath Labs (CART) program. Am 
Heart J. 2013; 165:434–40. [PubMed: 23453115] 

10. Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PR, Bernstam EV, et al. Caveats for the use of 
operational electronic health record data in comparative effectiveness research. Med Care. 2013; 
51:S30–7. [PubMed: 23774517] 

11. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med 
Inform Assoc. 2013; 20:117–21. [PubMed: 22955496] 

12. Madigan D, Ryan PB, Schuemie M, Stang PE, Overhage JM, Hartzema AG, et al. Evaluating the 
impact of database heterogeneity on observational study results. Am J Epidemiol. 2013; 178:645–
51. [PubMed: 23648805] 

13. Albers DJ, Hripcsak G. Using time-delayed mutual information to discover and interpret temporal 
correlation structure in complex populations. Chaos (Woodbury, NY). 2012; 22:013111.

14. Weber GM, Adams WG, Bernstam EV, Bickel JP, Fox KP, Marsolo K, et al. Biases introduced by 
filtering electronic health records for patients with “complete data”. J Am Med Inform Assoc. 
2017:ocx071.

15. Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 
2004; 15:615–25. [PubMed: 15308962] 

16. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002; 
359:248–52. [PubMed: 11812579] 

17. Albers DJ, Hripcsak G. A statistical dynamics approach to the study of human health data: 
resolving population scale diurnal variation in laboratory data. Physics letters A. 2010; 374:1159–
64. [PubMed: 20544004] 

18. Hripcsak G, Knirsch C, Zhou L, Wilcox A, Melton G. Bias Associated with Mining Electronic 
Health Records. Journal of Biomedical Discovery and Collaboration. 2011; 6:5.

19. Hripcsak G, Albers DJ. Correlating electronic health record concepts with healthcare process 
events. J Am Med Inform Assoc. 2013; 20:e311–e8. [PubMed: 23975625] 

20. Hripcsak G, Albers DJ. High-fidelity phenotyping: richness and freedom from bias. J Am Med 
Inform Assoc. 2017

21. Levine ME, Albers DJ, Hripcsak G. Comparing lagged linear correlation, lagged regression, 
Granger causality, and vector autoregression for uncovering associations in EHR data. AMIA 
Annual Symposium proceedings / AMIA Symposium AMIA Symposium. 2016; 2016:779–88. 
[PubMed: 28269874] 

22. Swayne DF, Buja A. Missing Data in Interactive High-Dimensional Data Visualization. 
Computational Statistics. 1998; 13:15–26.

23. Meyer RD, Cook D. Visualization of data. Curr Opin Biotechnol. 2000; 11:89–96. [PubMed: 
10679340] 

24. US Department of Veterans Affairs VHA. Health Benefits: Veterans Eligibility. 

Vassy et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2018 March 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



25. Stone NJ, Robinson J, Lichtenstein AH, Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA 
Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk 
in Adults: A Report of the American College of Cardiology/American Heart Association Task 
Force on Practice Guidelines. Circulation. 2013

26. Price LE, Shea K, Gephart S. The Veterans Affairs’s Corporate Data Warehouse: Uses and 
Implications for Nursing Research and Practice. Nurs Adm Q. 2015; 39:311–8. [PubMed: 
26340242] 

27. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation 
to estimate glomerular filtration rate. Ann Intern Med. 2009; 150:604–12. [PubMed: 19414839] 

28. McGinnis KA, Brandt CA, Skanderson M, Justice AC, Shahrir S, Butt AA, et al. Validating 
smoking data from the Veteran’s Affairs Health Factors dataset, an electronic data source. Nicotine 
& tobacco research : official journal of the Society for Research on Nicotine and Tobacco. 2011; 
13:1233–9. [PubMed: 21911825] 

29. Pivovarov R, Albers DJ, Sepulveda JL, Elhadad N. Identifying and mitigating biases in EHR 
laboratory tests. Journal of biomedical informatics. 2014; 51:24–34. [PubMed: 24727481] 

30. Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: bias towards sick patients 
when sampling patients with sufficient electronic health record data for research. BMC Med 
Inform Decis Mak. 2014; 14:51. [PubMed: 24916006] 

31. Newgard CD, Lewis RJ. Missing data: How to best account for what Is not known. JAMA. 2015; 
314:940–1. [PubMed: 26325562] 

32. Estiri H, Chan Y-F, Baldwin L-M, Jung H, Cole A, Stephens KA. Visualizing Anomalies in 
Electronic Health Record Data: The Variability Explorer Tool. AMIA Summits on Translational 
Science Proceedings. 2015; 2015:56–60.

33. Huang C-W, Lu R, Iqbal U, Lin S-H, Nguyen PA, Yang H-C, et al. A richly interactive exploratory 
data analysis and visualization tool using electronic medical records. BMC Med Inform Decis 
Mak. 2015; 15:92. [PubMed: 26563282] 

34. Szklo, M., Nieto, FJ. Epidemiology: Beyond the Basics. 2. Boston: Jones and Bartlett Publishers; 
2007. p. 392-4.

35. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014; 
311:2479–80. [PubMed: 24854141] 

36. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, et al. Validation of 
electronic medical record-based phenotyping algorithms: results and lessons learned from the 
eMERGE network. J Am Med Inform Assoc. 2013; 20:e147–54. [PubMed: 23531748] 

37. Luo Y, Szolovits P, Dighe AS, Baron JM. Using Machine Learning to Predict Laboratory Test 
Results. Am J Clin Pathol. 2016; 145:778–88. [PubMed: 27329638] 

38. Dahlem D, Maniloff D, Ratti C. Predictability Bounds of Electronic Health Records. Sci Rep. 
2015; 5:11865. [PubMed: 26148751] 

39. Hripcsak G, Albers DJ, Perotte A. Parameterizing time in electronic health record studies. J Am 
Med Inform Assoc. 2015; 22:794–804. [PubMed: 25725004] 

40. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature 
learning over noisy, sparse, and irregular clinical data. PLoS One. 2013; 8:e66341. [PubMed: 
23826094] 

41. Albers DJ, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phenotyping: using temporal 
analysis of clinically collected physiologic data to stratify populations. PLoS One. 2014; 9:e96443. 
[PubMed: 24933368] 

42. Hagar Y, Albers D, Pivovarov R, Chase H, Dukic V, Elhadad N. Survival analysis with electronic 
health record data: Experiments with chronic kidney disease. Statistical Analysis and Data Mining: 
The ASA Data Science Journal. 2014; 7:385–403.

43. Perotte A, Ranganath R, Hirsch JS, Blei D, Elhadad N. Risk prediction for chronic kidney disease 
progression using heterogeneous electronic health record data and time series analysis. J Am Med 
Inform Assoc. 2015; 22:872–80. [PubMed: 25896647] 

Vassy et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2018 March 12.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Figure 1. Yield of patients with eligible blood pressure (BP) measurement around an index date 
of lipid testing
Cumulative proportion of patients versus time (days) between index date and nearest BP 

measurement, analyzed before and after the index date separately (left panel) and by 

absolute time between the index date and BP measurement (right panel). Dotted lines (right 

panel) separate Groups 1, 2, and 3 from the New England network (see text).
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