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CD300 molecules (CD300s) belong to paired activating and
inhibitory receptor families, which mediate immune responses.
Human CD300e (hCD300e) is expressed in monocytes and mye-
loid dendritic cells and transmits an immune-activating signal
by interacting with DNAX-activating protein 12 (DAP12). How-
ever, the CD300e ortholog in mice (mCD300e) is poorly charac-
terized. Here, we found that mCD300e is also an immune-acti-
vating receptor. We found that mCD300e engagement triggers
cytokine production in mCD300e-transduced bone marrow–
derived mast cells (BMMCs). Loss of DAP12 and another signal-
ing protein, FcR�, did not affect surface expression of trans-
duced mCD300e, but abrogated mCD300e-mediated cytokine
production in the BMMCs. Co-immunoprecipitation experi-
ments revealed that mCD300e physically interacts with both
FcR� and DAP12, suggesting that mCD300e delivers an activat-
ing signal via these two proteins. Binding and reporter assays
with the mCD300e extracellular domain identified sphingomy-
elin as a ligand of both mCD300e and hCD300e. Notably, the
binding of sphingomyelin to mCD300e stimulated cytokine pro-
duction in the transduced BMMCs in an FcR�- and DAP12-de-
pendent manner. Flow cytometric analysis with an mCD300e-
specific Ab disclosed that mCD300e expression is highly
restricted to CD115�Ly-6Clow/int peripheral blood monocytes,
corresponding to CD14dim/�CD16� human nonclassical and
intermediate monocytes. Loss of FcR� or DAP12 lowered the
surface expression of endogenous mCD300e in the CD115�Ly-
6Clow/int monocytes. Stimulation with sphingomyelin failed to
activate the CD115�Ly-6Clow/int mouse monocytes, but induced

hCD300e-mediated cytokine production in the CD14dimCD16�

human monocytes. Taken together, these observations indicate
that mCD300e recognizes sphingomyelin and thereby regulates
nonclassical and intermediate monocyte functions through
FcR� and DAP12.

A variety of paired activating and inhibitory receptor fami-
lies, including immunoglobulin-like receptors and C-type lec-
tin-like receptors, regulate immune responses (1–3). CD300
(also called leukocyte mono-immunoglobulin-like receptor
(LMIR),3 CMRF-35-like molecule (CLM), myeloid-associated
immunoglobulin-like receptor, or immune receptor expressed
by myeloid cell) belongs to paired immunoglobulin-like recep-
tor families (4 –13). CD300 members are mainly expressed in
myeloid cells and contain a highly homologous single immuno-
globulin-like domain in their extracellular regions; CD300a
(LMIR1 or CLM-8) and CD300f (LMIR3 or CLM-1) are inhib-
itory receptors that harbor immunoreceptor tyrosine-based
inhibitory motif in their cytoplasmic regions, whereas other
CD300 members are thought to be activating receptors that are
coupled with adaptor proteins (e.g. FcR� and DNAX-activating
protein 12 (DAP12)) bearing immunoreceptor tyrosine-based
activating motif (ITAM) (4 –13). Multiple studies showed that
lipids or lipid-binding proteins act as ligands for several mem-
bers of the mouse and human CD300 family (14 –20). For
example, the recognition of ceramide by mouse CD300f or cer-
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amide and sphingomyelin by human CD300f induces the sup-
pression of various inflammatory responses (15, 21–24).
CD300a, CD300b, CD300c, or CD300f binds to phosphatidyl-
serine, thereby positively or negatively regulating apoptotic
cell-mediated immune responses (16, 17, 19, 20). The binding
of T-cell immunoglobulin and mucin domain 1 to CD300b
accelerates renal ischemia/reperfusion injury (14).

Human CD300e (hereafter referred to as hCD300e) is
expressed in monocytes and myeloid dendritic cells. Cross-
linking of DAP12-coupled hCD300e with its specific antibody
leads to cytokine production in human peripheral blood (PB)
monocytes (10, 13). However, the CD300e ortholog in mice
(hereafter referred to as mCD300e), also called LMIR6 or
CLM-2, remains poorly characterized. In this study, we ana-
lyzed mCD300e-transduced bone marrow– derived mast cells
(BMMCs) from wild-type (WT), FcR��/�, DAP12�/�, or
FcR��/�DAP12�/� mice (25, 26), and demonstrate that
mCD300e can transmit an activating signal in the transduced
BMMCs by interacting with both FcR� and DAP12. In addition,
flow cytometric analysis using a newly generated antibody
specific for mCD300e showed that mCD300e expression is
highly restricted to CD115�Ly-6Clow/int PB monocytes.
Moreover, both physical binding and functional reporter
assays (15, 27, 28) using the extracellular domain of CD300e
identified sphingomyelin as a candidate ligand for mouse
and human CD300e.

Sphingomyelin is the most abundant sphingolipid in the
cell and lipoprotein components. It is an essential element of
plasma membrane that is crucial for cellular function (29,
30). In addition, it is abundant in the central nervous system
(CNS); the levels of sphingomyelin in CNS are reported to be
associated with the pathologies of CNS diseases, including
ischemia/hypoxia, Alzheimer’s disease, and Parkinson’s dis-
ease (30).

Currently, three types of monocytes are classified in humans
and mice. In humans, CD14�CD16�, CD14dimCD16�, and
CD14�CD16� monocytes are classical, nonclassical (patrol-
ling), and intermediate monocytes, respectively. These three
types of monocyte populations correspond to CD115�Ly-6C�,
CD115�Ly-6Clow, and CD115�Ly-6Cint monocytes in mice
(31–33). Nonclassical (patrolling) monocytes exhibit unique
functions in the vasculature, and play a specialized role in
inflammatory diseases and cancer surveillance; they contribute
to wound healing and resolution of inflammation in damaged
tissues by removing damaged cells and debris (31–36). How-
ever, it was also reported that patrolling monocytes produce
high levels of proinflammatory cytokines under various con-
texts (37–39). Accordingly, patrolling monocytes are impli-
cated in the pathogenesis of a variety of inflammatory diseases
(e.g. atherosclerosis, myocardial infarction, neurological dis-
ease, glomerulonephritis, and arthritis) or cancer by either pro-
moting or suppressing the disease progression (31–36, 39 – 44).
Our results together with previous findings (31–36) imply that
mCD300e, a novel surface marker of nonclassical and interme-
diate monocytes, possibly recognize sphingomyelin, thereby
controlling vascular and/or tissue inflammation.

Results

mCD300e is an N-glycosylated surface receptor

The full-length cDNA of mCD300e was isolated by PCR from
a cDNA library of C57BL/6J mouse-derived bone marrow (BM)
cells. The mCD300e protein is composed of an N-terminal sig-
nal peptide, extracellular region containing a single V-type
immunoglobulin-like domain, transmembrane domain con-
taining a positively-charged amino acid residue lysine, and
short cytoplasmic tail without any signaling motif. The immu-
noglobulin-like domain of mCD300e shares 41% amino acid
sequence identity with that of mouse CD300f, which is an
inhibitory receptor (Fig. 1A). To analyze the function of
mCD300e, FLAG-tagged mCD300e was transduced into Ba/F3,
a pro-B cell line. Flow cytometric analysis showed that
anti-FLAG antibody (Ab) specifically stained FLAG-tagged
mCD300e on the surface of the transduced Ba/F3 cells, but not
of the mock-transduced cells, demonstrating that mCD300e is
a cell-surface receptor (Fig. 1B). Western blot analysis showed
that FLAG-tagged mCD300e transduced into Ba/F3 cells was
detected by anti-FLAG Ab as two discrete bands with differing
mobilities (28 –34 and 19 kDa) (Fig. 1C). Because an N-glyco-
sylation site (asparagine at residue 84) is present within the
immunoglobulin domain of mCD300e, we pretreated the same
cell lysates with N-glycosidase F. The results showed that this
pretreatment shifted the mobilities of the two forms of FLAG-
tagged mCD300e (24 –26 and 18 kDa) (Fig. 1C). Notably,
FLAG-tagged mCD300e-N84Q, in which asparagine (N) at res-
idue 84 was replaced with glutamine (Q), transduced into Ba/F3
cells was detected as two bands (24 –26 and 18 kDa), nearly
identical to those in the case of FLAG-tagged mCD300e after
treatment with N-glycosidase F (Fig. 1C). In addition, treatment
with N-glycosidase F no longer influenced the apparent molec-
ular masses of FLAG-tagged mCD300e–N84Q (Fig. 1C).
Because a positively charged amino acid residue lysine is pres-
ent at residue 179 (Lys179) within the transmembrane domain
of mCD300e, we asked whether mCD300e could be coupled
with an ITAM-containing adaptor protein that harbors a neg-
atively charged residue in its transmembrane domain. We fur-
ther performed co-immunoprecipitation experiments using
HEK 293T cells transiently expressing FLAG-tagged mCD300e
together with either Myc-tagged FcR� or DAP12. The results
showed that both FcR� and DAP12 were co-immunoprecipi-
tated with mCD300e (Fig. 1D), indicating their roles as candi-
date adaptor proteins for mCD300e. Collectively, mCD300e is
an N-glycosylated surface receptor that can be coupled with
ITAM-containing adaptor proteins FcR� and DAP12.

mCD300e can deliver an activating signal in BMMC
transfectants in both FcR�- and DAP12-dependent manner

Because mouse CD300 members are mainly expressed in
myeloid cells, FLAG-tagged mCD300e was transduced into
BMMCs for further investigation of mCD300e function. Flow
cytometric analysis confirmed that BMMCs transduced with
FLAG-tagged mCD300e or mock-exhibited equivalent levels of
c-Kit and Fc�RI, both of which are mast cell-surface markers (7,
45) and that the former transfectants, but not latter, expressed
FLAG-tagged mCD300e on the cell surfaces (Fig. 2A). Cultur-
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ing the two types of BMMC transfectants on plates coated with
anti-FLAG Ab revealed robust production of IL-6 in the
BMMCs transduced with FLAG-tagged mCD300e, but not in
mock transfectants (Fig. 2B). In contrast, stimulation with

phorbol 12-myristate 13-acetate (PMA) induced comparable
levels of IL-6 production in the two types of transfectants (Fig.
2B). These results indicate that mCD300e can act as an activat-
ing receptor. Next, to identify ITAM-containing adaptor pro-

Figure 1. mCD300e is an N-glycosylated surface receptor. A, the phylogenetic tree of mouse LMIR3 (CLM-1/CD300f), LMIR4 (CLM-5), LMIR5 (CLM-7/
CD300b), LMIR6 (CLM-2/CD300e), and LMIR7 (CLM-3) is shown on the basis of homology with the immunoglobulin-like domain (upper panel). The percentage
of amino acid sequence identity of the immunoglobulin-like domain is indicated. Alignment of amino acid sequences for mCD300e is shown (lower panel). The
putative signal sequence is shown in lowercase. An immunoglobulin-like domain is boxed. The transmembrane domain is underlined. The potential N-linked
glycosylation site is shaded. The positively charged amino acid residue lysine within the transmembrane domain is shown in bold. B, Ba/F3 cells were
transduced with FLAG-tagged mCD300e or mock. The transfectants were stained with mouse anti-FLAG Ab or mouse IgG1 Ab followed by PE-conjugated
anti-mouse IgG goat F(ab�)2 Ab. C, lysates of Ba/F3 cells expressing FLAG-tagged mCD300e, mCD300e-N84Q, or mock were pretreated with or without
N-glycosidase F before immunoprecipitation with mouse anti-FLAG Ab and subsequently immunoblotted with rabbit anti-FLAG Ab. D, 293T cells were
transiently co-transfected with FLAG-tagged mCD300e construct or mock together with Myc-tagged FcR� or DAP12 construct or mock. Immunoprecipitates
of lysates of these transfectants with mouse anti-FLAG Ab were probed with anti-Myc Ab or rabbit anti-FLAG Ab. B–D, a representative of three independent
experiments is shown. N-Gly, IB, or IP indicates N-glycosidase F, immunoblot, or immunoprecipitation, respectively.
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teins for mCD300e, BMMCs from FcR��/�, DAP12�/�, or
FcR��/�DAP12�/� mice (25, 26) as well as WT mice were
transduced with FLAG-tagged mCD300e. Flow cytometric
analysis confirmed equivalent levels of c-Kit in these BMMC
transfectants (Fig. 2C). Loss of FcR� dampened the surface
expression of Fc�RI as expected (7), whereas loss of FcR�
and/or DAP12 failed to influence the surface expression levels
of the transduced FLAG-tagged mCD300e (Fig. 2C). We then
stimulated these BMMC transfectants with plate-coated anti-
FLAG Ab or control Ab. The results showed that deficiency of
FcR� or DAP12 significantly lowered mCD300e-mediated IL-6
production (Fig. 2D). Remarkably, deficiency of both FcR� and
DAP12 abrogated mCD300e-mediated IL-6 production in
BMMC transfectants (Fig. 2D). In contrast, stimulation with
PMA induced comparable levels of IL-6 production in the
transfectants tested (Fig. 2D). Collectively, both FcR� and
DAP12 were dispensable for maintaining surface expression of
the transduced mCD300e; however, one or the other of the

proteins were indispensable for mCD300e-mediated activation
of BMMC transfectants.

Generation of specific antibody against mCD300e

To examine the mRNA expression profiles of mCD300e, we
performed quantitative real-time PCR analysis using various
mouse tissues. We found significantly higher expression levels
of mCD300e in PB cells as compared with that in other tissues,
although mCD300e expression was detected in the lung, liver,
spleen, and BM (Fig. 3A). This suggests that mCD300e expres-
sion is restricted mainly to circulating PB cells and, to a lesser
extent, possibly to tissues with abundant vascularity. To further
examine mCD300e protein expression profiles in hematopoi-
etic cells, we generated an Armenian hamster anti-mCD300e
monoclonal Ab. To confirm the specificity of this Ab, Ba/F3
cells were transduced with FLAG-tagged mouse LMIR1/
CLM-8 (CD300a), LMIR2/CLM-4, LMIR3/CLM-1 (CD300f),
LMIR4/CLM-5, LMIR5/CLM-7 (CD300b), LMIR6/CLM-2

Figure 2. mCD300e delivers an activating signal in BMMC transfectants in both FcR�- and DAP12-dependent manners. A, BMMCs transduced with
FLAG-tagged mCD300e or mock were stained with FITC-conjugated anti-Fc�RI� Ab and PE-conjugated anti-c-Kit Ab (left panel) or with mouse anti-FLAG Ab or
mouse IgG1 Ab followed by PE-conjugated anti-mouse IgG goat F(ab�)2 Ab (right panel). B, BMMCs transduced with FLAG-tagged mCD300e or mock were
stimulated with plate-coated anti-FLAG Ab or mouse IgG1 as control or with 100 nM PMA for 12 h. IL-6 released into the culture supernatants were measured
by ELISA. C, FLAG-tagged mCD300e-transduced BMMCs from WT, FcR��/�, DAP12�/�, or FcR��/�DAP12�/� mice were stained with FITC-conjugated anti-
Fc�RI� Ab and PE-conjugated anti-c-Kit Ab (left panel) or with mouse anti-FLAG Ab or mouse IgG1 Ab followed by PE-conjugated anti-mouse goat IgG F(ab�)2
Ab (right panel). D, FLAG-tagged mCD300e-transduced BMMCs from WT, FcR��/�, DAP12�/�, or FcR��/�DAP12�/� mice were stimulated with plate-coated
anti-FLAG Ab or mouse IgG1 Ab as control or with 100 nM PMA for 12 h. IL-6 released into the culture supernatants were measured by ELISA. A and C, a
representative of three independent experiments is shown. B and D, all data points correspond to the mean � S.D. of three independent experiments.
Statistically significant differences are shown. *, p � 0.05 or **, p � 0.01 (Student’s t test).
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(CD300e), or LMIR7 (CLM-3) (4 –9). We found that monoclo-
nal anti-mCD300e Ab recognized the transduced mCD300e in
Ba/F3 cells; however, it did not detect other LMIRs transduced
into Ba/F3 cells (Fig. 3B). In addition, we found that plate-
coated anti-mCD300e Ab remarkably induced IL-6 production
in mCD300e-transduced BMMC transfectants, but not in
mock transfectants (Fig. 3C). Thus, we succeeded in generating
a monoclonal Ab specific for mCD300e.

mCD300e is highly expressed in CD115�Ly-6Clow/int

monocytes

Because high levels of mCD300e mRNA were found in PB
cells, we stained PB cells with the monoclonal anti-mCD300e
Ab. The results showed that mCD300e was not expressed in

CD3� T cells, CD19� B cells, or Ly-6G� neutrophils in PB (Fig.
4A). By contrast, mCD300e was selectively expressed in
a small subset of cell populations in PB, which was
CD11b�CD11c�F4/80�CD80highCD86�MHC-II�, suggest-
ing that mCD300e is expressed in monocyte-lineage cells in PB
(Fig. 4B). Because mouse PB monocytes are divided into three
subpopulations (CD115�Ly-6Chigh, CD115�Ly-6Cint, and
CD115�Ly-6Clow), we examined the surface expression of
mCD300e in these populations, demonstrating that mCD300e
is expressed highly in CD115�Ly-6Clow nonclassical (patrol-
ling) monocytes and moderately in CD115�Ly-6Cint inter-
mediate monocytes, but not in CD115�Ly-6Chigh classi-
cal monocytes (Fig. 4, C and D) (31–33). In contrast,
CD80highmCD300e� cells were not detectable in the spleen,

Figure 3. The generation of specific antibody against mCD300e. A, relative expression levels of mCD300e in indicated tissues were estimated by real-time
PCR. The amount of expression was indicated relative to that in BM. B, Ba/F3 cells were transduced with FLAG-tagged mouse LMIR1 (CD300a), LMIR2, LMIR3
(CD300f), LMIR4, LMIR5 (CD300b), LMIR6 (CD300e), LMIR7, or mock. The transfectants were stained either with mouse anti-FLAG Ab or mouse IgG1 Ab followed
by PE-conjugated anti-mouse IgG goat F(ab�)2 Ab (upper panel) or with biotinylated anti-mCD300e Ab or Armenian hamster IgG Ab followed by PE-conjugated
streptavidin (lower panel). A and B, data are representative of three independent experiments. C, BMMCs transduced with FLAG-tagged mCD300e or mock were
stimulated with plate-coated anti-mCD300e Ab or Armenia hamster IgG Ab as control or with 100 ng/ml of PMA for 12 h. IL-6 released into the culture
supernatants were measured by ELISA. All data points correspond to the mean � S.D. of three independent experiments. Statistically significant
differences are shown. *, p � 0.05 (Student’s t test).
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thymus, or BM (Fig. 4E). In addition, we found no detectable
levels of mCD300e in BMMCs, BM-derived myeloid dendritic
cells (BMmDCs), BM-derived plasmacytoid dendritic cells
(BMpDCs), or BM-derived macrophages (BMM�) (Fig. 4F).

Flow cytometric analysis of CD115�Ly-6Clow/int PB monocytes
from WT, FcR��/�, DAP12�/�, or FcR��/�DAP12�/� mice
showed that loss of either FcR� or DAP12 lowered the surface
expression levels of endogenous mCD300e, unlike the trans-

Figure 4. mCD300e is highly expressed in CD115�Ly-6Clow/int monocytes. A, mouse PB cells were stained with FITC-conjugated anti-CD3, CD19, or Ly-6G
Ab and with biotinylated anti-mCD300e Ab or Armenian hamster IgG Ab followed by PE-conjugated streptavidin. Expression of mCD300e in CD3�, CD19�, or
Ly-6G� cells was shown. B, mouse PB cells were stained with FITC-conjugated CD11b, CD11c, F4/80, Ly-6C, CD80, CD86, or MHC class II (MHC-II) Ab and with
biotinylated anti-mCD300e Ab or Armenian hamster IgG Ab followed by PE-conjugated streptavidin. C, mouse PB cells were stained with FITC-conjugated
anti-Ly-6C Ab and PE-conjugated anti-CD115 Ab (upper left panel) or FITC-conjugated anti-Ly-6C Ab and biotinylated anti-mCD300e Ab or Armenian hamster
IgG Ab followed by PE-conjugated streptavidin (lower left panel). Histograms showed expression of Ly-6C in CD115� PB cells (upper right panel) or in mCD300e�

PB cells (lower right panel). D, mean fluorescent intensity (MFI) of mCD300e in CD115�Ly-6Clow, CD115�Ly-6Cint, or CD115�Ly-6Chigh PB monocytes was
measured by flow cytometry. E, BM, spleen, or thymus cells were stained with FITC-conjugated anti-CD80 Ab and biotinylated anti-mCD300e Ab or Armenian
hamster IgG Ab followed by PE-conjugated streptavidin. F, BMMCs, BMmDCs, BMpDCs, or BMM� were stained with biotinylated anti-mCD300e Ab or Arme-
nian hamster IgG Ab followed by PE-conjugated streptavidin. G, MFI of mCD300e in CD11c� PB monocytes from WT, FcR��/�, DAP12�/�, or FcR��/�DAP12�/�

mice were measured by flow cytometry. A–C, E, and F, data are representative of three independent experiments. D and G, all data points correspond to the
mean � S.D. of four independent experiments. Statistically significant differences are shown. *, p � 0.05 or **, p � 0.01 (Student’s t test).
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duced mCD300e in BMMCs (Fig. 4G). Thus, mCD300e expres-
sion was highly restricted to CD115�Ly-6Clow/int monocytes in
PB and possibly to a small subset of the related lineage cells in
tissues.

Sphingomyelin is a candidate ligand for mCD300e

To identify the ligand that binds to mCD300e, we performed
both binding and reporter assays using the extracellular domain
of mCD300e. Because ceramide and sphingolipids have previ-
ously been identified as ligands for several CD300 members in
mice and humans (15–20), we first asked whether ceramide and
sphingolipids could bind to mCD300e-Fc, in which the extra-
cellular domain of mCD300e was fused to the Fc portion of
human IgG1. The results showed that mCD300e-Fc, but not
control Fc, significantly bound to plated-coated sphingomyelin
among the lipids tested (Fig. 5A). We then generated reporter
cells mCD300e–2B4-GFP, where a chimeric receptor com-
prised of the extracellular domain of FLAG-tagged mCD300e,
the transmembrane domain of mouse CD300f, and the intra-
cellular domain of ITAM-bearing human CD3� was transduced
into the parental reporter cell line 2B4-GFP (15, 27, 28).
Because GFP expression is induced by the activation of nuclear
factor of activated T-cells in 2B4-GFP cells, the binding of
mCD300e ligands to this chimera receptor would be expected
to induce GFP expression in mCD300e–2B4-GFP cells. Nota-

bly, plate-coated sphingomyelin as well as anti-FLAG Ab-in-
duced GFP expression in mCD300e–2B4-GFP cells, but not
in 2B4-GFP cells (Fig. 5B). In contrast, GFP expression was
not induced by other plate-coated lipids tested (Fig. 5B). In
addition, pretreatment with the soluble anti-mCD300e Ab,
but not with control Ab, abolished sphingomyelin-mediated
GFP expression in mCD300e–2B4-GFP cells (Fig. 5C). These
results indicate that sphingomyelin is a candidate ligand for
mCD300e.

Sphingomyelin is a possible ligand for CD300e

To test whether sphingomyelin acts as a ligand of mCD300e,
FLAG-tagged mCD300e-transduced BMMCs were stimulated
with plate-coated sphingomyelin or vehicle, and plate-coated
sphingomyelin, but not vehicle, significantly induced IL-6 pro-
duction in the BMMC transfectants (Fig. 6A). Pretreatment
with the soluble anti-mCD300e Ab, but not control Ab, sub-
stantially reduced the cytokine production in mCD300e-trans-
duced BMMCs stimulated by plate-coated sphingomyelin (Fig.
6A). Moreover, the deficiency of either FcR� or DAP12
decreased IL-6 production induced by the sphingomyelin–
mCD300e interaction in the BMMC transfectants, whereas the
loss of both FcR� and DAP12 dampened the IL-6 levels (Fig.
6B). However, CD115�Ly-6Clow/int monocytes sorted from
mouse PB failed to produce detectable levels of IL-6 in response

Figure 5. Sphingomyelin is a candidate ligand for mCD300e. A, mCD300e–Fc or Fc was incubated on plates coated with the indicated lipids. mCD300e–Fc
or Fc bound to the plates was quantified by ELISA. All of the data points correspond to the mean � S.D. of three independent experiments. Statistically
significant differences are shown. **, p � 0.01 (Student’s t test). PS, PC, PE, SM, or SPC indicates phosphatidylserine, phosphatidylcholine, phosphatidyletha-
nolamine, sphingomyelin, or sphingosylphosphocholine. B, flow cytometry of GFP expression of mCD300e–2B4-GFP cells or 2B4-GFP cells that were incubated
for 24 h on plates coated with indicated lipids or with anti-FLAG Ab or anti-mCD300e Ab. C, mCD300e–2B4-GFP cells were incubated for 24 h on plates coated
with sphingomyelin in the presence of 20 �g/ml of either a soluble anti-mCD300e Ab or Armenia hamster IgG Ab as control. B and C, data are representative
of three independent experiments.
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Figure 6. A possible role of the sphingomyelin–CD300e interaction. A and B, IL-6 released into the culture supernatants were measured by ELISA. All data
points correspond to the mean � S.D. of four independent experiments. Statistically significant differences are shown. *, p � 0.05 or **, p � 0.01 (Student’s t
test). A, BMMCs transduced with FLAG-tagged mCD300e were stimulated with plate-coated sphingomyelin or vehicle in the presence of 20 �g/ml of either
soluble anti-mCD300e Ab or Armenia hamster IgG Ab as a control. B, FLAG-tagged mCD300e-transduced BMMCs from WT, FcR��/�, DAP12�/�, or FcR��/

�DAP12�/� mice were stimulated with plate-coated sphingomyelin or vehicle. C, Ba/F3 cells were transduced with FLAG-tagged human CD300a, CD300b,
CD300c, CD300e, CD300f, or mock. The transfectants were stained either with mouse anti-FLAG Ab or mouse IgG1 Ab followed by PE-conjugated anti-mouse
IgG goat F(ab�)2 Ab (upper panel) or with anti-hCD300e Ab (233804), anti-hCD300e Ab (233812), or rat IgG2a Ab followed by PE-conjugated anti-rat IgG goat
F(ab�)2 Ab (middle and lower panels). D, flow cytometry of GFP expression of hCD300e–2B4-GFP cells or 2B4-GFP cells that were incubated for 24 h on plates
coated with indicated lipids or with anti-FLAG Ab or anti-hCD300e Ab (233804). E, flow cytometry of GFP expression of hCD300e–2B4-GFP cells that were
incubated for 24 h on plates coated with sphingomyelin in the presence of 20 �g/ml of either soluble anti-hCD300e Ab (233812) or rat IgG2a Ab as a control.
F, human PB cells were stained with APC-conjugated anti-CD14 Ab and FITC-conjugated anti-CD16 Ab and with anti-hCD300e Ab (233812) or rat IgG2a Ab
followed by PE-conjugated anti-rat IgG goat F(ab�)2 Ab. Expression of hCD300e in CD14�CD16�, CD14�CD16�, or CD14dimCD16� PB cells was shown. C–F,
data are representative of three independent experiments. G, CD14dimCD16� cells sorted from human PB were stimulated with plate-coated sphingomyelin
or vehicle in the presence of 20 �g/ml of either a soluble anti-hCD300e Ab (233812) or rat IgG2a Ab as a control. The levels of IL-6 released into the culture
supernatants were measured by ELISA. All data points correspond to the mean � S.D. of three independent experiments. Statistically significant differences are
shown. *, p � 0.05 or **, p � 0.01 (Student’s t test).
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to plate-coated sphingomyelin (data not shown), presumably in
part due to reduced viability of these monocytes in culture.
Nonetheless, we provided evidence that sphingomyelin could
act as a ligand for mCD300e at least in transduced BMMCs.
Next, we confirmed that two types of anti-hCD300e Abs
(233804 and 233812) specifically recognized hCD300e, but not
other members of human CD300 tested, on the transduced
Ba/F3 cells (Fig. 6C). To further delineate whether sphingomy-
elin acts as a ligand for hCD300e as well, we generated the
new reporter cells hCD300e–2B4-GFP in a similar way as
mCD300e–2B4-GFP and stimulated them with plate-coated
sphingomyelin. The results showed that plate-coated sphingo-
myelin or anti-hCD300e Ab (233804), but not other lipids
tested, induced GFP expression in hCD300e–2B4-GFP cells
like in mCD300e–2B4-GFP cells (Fig. 6D). In addition, pre-
treatment with the soluble anti-hCD300e Ab (233812), but
not with control Ab, significantly inhibited sphingomyelin-
induced GFP expression in hCD300e–2B4-GFP cells (Fig. 6E).
Flow cytometric analysis verified that hCD300e was expressed
in three subsets of human PB monocytes comprising
CD14�CD16�, CD14�CD16�, and CD14dimCD16� mono-
cytes (Fig. 6F) (46). Notably, plate-coated sphingomyelin
induced TNF-� production in CD14dimCD16� nonclassical
(patrolling) monocytes sorted from human PB (Fig. 6G). Pre-
treatment with the soluble anti-hCD300e Ab (233812) reduced,
but not completely, the cytokine production in sphingomyelin-
stimulated CD14dimCD16� monocytes (Fig. 6G), suggesting
that sphingomyelin can act as a ligand for hCD300e.

Discussion

In the present study, we characterized mCD300e as an
immune-activating receptor. Generation of monoclonal anti-
mCD300e Ab that specifically recognize mCD300e and not
other CD300 members enabled us to uncover expression pro-
files of mCD300e in mouse hematopoietic cells. Interestingly,
mCD300e was highly expressed in CD115�Ly-6Clow nonclas-
sical (patrolling) monocytes and moderately in CD115�Ly-
6Cint intermediate monocytes, but not in CD115�Ly-6Chigh

classical monocytes, in mouse PB. One of the characteristics of
CD115�Ly-6Clow/int monocytes expressing mCD300e was the
high expression levels of CD80, but not CD86. Notably, it was
difficult to detect mCD300e expression in cell populations
distinct from CD115�Ly-6Clow/int monocytes. Accordingly,
mCD300e expression might be tightly regulated by transcrip-
tion factors specific for intermediate and nonclassical (patrol-
ling) monocytes. One such possible candidate is the transcrip-
tion factor NUR77, also called NR4A1, that is essential for the
development of Ly-6Clow monocytes (39, 47). The higher
mRNA expression levels of mCD300e in the lung or spleen
compared with those in BM led us to speculate that CD115�Ly-
6Clow/int monocytes might preferentially reside in the vascula-
ture of lung or spleen. Alternatively, CD115�Ly-6Clow circulat-
ing monocytes might differentiate into specialized monocyte/
dendritic cell/macrophage lineage cells with mCD300e
expression in the spleen or lung (31–33, 48, 49). Notably,
CD300e expression profiles in hematopoietic cells differ
between humans and mice; hCD300e is expressed in three
subsets of monocytes and myeloid dendritic cells, whereas

mCD300e expression is restricted to nonclassical (patrolling)
and intermediate monocytes in PB and possibly to a small sub-
set of the related lineage cells in tissues. In addition, this selec-
tive expression of mCD300e suggested a specialized role of
mCD300e in patrolling monocytes.

Analysis of mCD300e-transduced BMMCs definitely dem-
onstrated that similar to hCD300e, mCD300e can transmit an
immune-activating signal (12, 13). However, unlike hCD300e
that couples with DAP12 (12), mCD300e required both FcR�
and DAP12 as its adaptor proteins to fully transmit an acti-
vating signal. Similar to LMIR2 (CLM-4) (50), the relative
contribution of FcR� versus DAP12 to the activating signals
through mCD300e might be affected by the cellular environ-
ments. It is important to note that the loss of these adaptor
proteins did not influence the surface expression levels of
transduced mCD300e, but reduced those of endogenous
mCD300e in the intermediate and nonclassical monocytes.
Collectively, these results suggest that FcR� and DAP12 are
required not only for delivering the maximum activating sig-
nal but also for maintaining the maximum surface expres-
sion of mCD300e in intermediate and nonclassical
monocytes.

Importantly, we identified sphingomyelin as a candidate
ligand for both mouse and human CD300e by binding and
reporter assays. In fact, plate-coated sphingomyelin stimulated
significant cytokine production in transduced BMMCs via
mCD300e; however, the same treatment did not do so in the
case of CD115�Ly-6Clow/int monocytes from mouse PB. Dif-
ferent expression levels of mCD300e between transduced
BMMCs and CD115�Ly-6Clow/int monocytes might account
for such different responses. Alternatively, the low viability of
CD115�Ly-6Clow/int monocytes in the culture possibly masked
their activation in response to sphingomyelin. To gain evidence
that sphingomyelin acts as a ligand for mCD300e in
CD115�Ly-6Clow/int monocytes, further examination will be
required. On the other hand, it is possible that sphingomy-
elin-like lipids, either endogenous or exogenous, with stron-
ger affinity to mCD300e might serve as its physiological
ligands, which also remain to be further investigated. Sphin-
gomyelin being abundant in lipoproteins or the CNS, the
binding of sphingomyelin-containing lipoprotein or sphin-
gomyelin released from injured CNS to mCD300e in patrol-
ling monocytes might regulate vascular inflammation in
arteriosclerosis or the pathogenesis of the CNS diseases,
respectively (30, 39 – 43). Moreover, it is interesting to spec-
ulate that mCD300e contributes to the engulfment of sphin-
gomyelin-containing debris from damaged tissues by the
patrolling monocytes (31–34). Ultimately, analysis of
CD300e-deficient mice will be needed to completely under-
stand the physiological significance of the CD300e-sphingo-
myelin interaction.

In conclusion, mouse CD300e is an activating receptor cou-
pled with FcR� and DAP12, which is selectively expressed in
nonclassical and intermediate monocytes in circulating mono-
cytes, implicating CD300e in the disease pathogenesis involving
non-classical monocyte activation.
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Materials and methods

Cells and mice

Murine cell lines Ba/F3 and 2B4-GFP (a kind gift from
Takashi Saito, RIKEN Research Center for Allergy and Immu-
nology, Yokohama, Japan) and human cell line HEK 293T were
previously used (7, 15, 27, 28). BM, spleen, or thymus cells
were isolated from C57BL/6 mice or FcR��/�, DAP12�/�, or
FcR��/�DAP12�/� mice (25, 26). BMMCs were generated and
cultured as described (15, 45). All the procedures were
approved by the Institutional Review Committee of University
of Tokyo and Juntendo University. CD14dimCD16� monocytes
were sorted from human PB. All human subjects provided writ-
ten informed consent in accordance with the Helsinki Declara-
tion of the World Medicine Association. The study was
approved by the Ethics Committee of and University of Tokyo
and Juntendo University.

Antibodies and other reagents

Armenian hamster anti-mouse CD300e monoclonal IgG Ab
was generated by immunizing Armenian hamster with mouse
CD300e-Fc, as previously described (51, 52). The following
antibodies were used in this study: rat anti-human CD300e
monoclonal IgG2a Abs (233804 and 233812) (R&D Systems);
anti-FLAG Ab (M2) and mouse IgG1 Ab (MOPC21) (Sigma);
anti-Myc Ab (9E10) (Roche Diagnostics); Armenian hamster
IgG Ab, FITC-conjugated anti-mouse Fc�RI� Ab, and R-phy-
coerythrin (PE)-conjugated anti-mouse c-Kit Ab, CD11b, and
B220 Abs or streptavidin (eBioscience); PE-conjugated anti-rat
IgG goat F(ab�)2 Ab (Jackson ImmunoResearch); FITC-conju-
gated anti-human CD16 Ab (Miltenyi Biotech); rat IgG2a and
FITC-conjugated anti-mouse CD3, CD19, Ly-6G, CD11b,
CD11c, F4/80, Ly-6C, CD80, CD86, and MHC class II Abs
(BioLegend); allophycocyanin (APC)-conjugated anti-hu-
man CD14 Ab (eBioscience); and PE-conjugated anti-mouse
IgG goat F(ab�)2 Ab (Beckman Coulter). Anti-mCD300e Ab
and Armenia hamster IgG Ab were biotinylated by sulfo-NHS-
LC-biotin (Pierce, Thermo Fisher Scientific) according to the
manufacturer’s instructions. Other reagents used in this study
include cytokines (R&D Systems); peptide-N-glycosidase F
(New England Biolabs); sphingosine, sphingomyelin, and
sphingosylphosphorylcholine (BIOMOL); C-24 ceramide
(Toronto Research Chemicals, Inc.); lipid A, lysophosphatidyl-
choline (lysolecithin), and cholesterol (Avanti Polar Lipids,
Inc.); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-di-
palmitoyl-sn-glycero-3-phosphoserine, and 1,2-dipalmito-
yl-sn-glycero-3-phosphoethanolamine (Echelon Biosciences
Inc.). All other reagents were from Sigma unless stated
otherwise.

Gene expression analysis

Relative expression levels of mouse CD300e and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) among samples
were measured by real-time RT-PCR as described (9).
The following primers were used: 5�-GTCCATCAGAGACC-
ATGCTTCG-3� and 5�-ACGTGACCACGAATCCCAG-3� for
mCD300e and 5�-GAAGGTGAAGGTCGGAGTCA-3� and
5�-GACAAGCTTCCCGTTCTCAG-3� for GAPDH. Relative

gene expression levels were calculated using standard curves
generated by serial dilutions of cDNA and normalized to
GAPDH expression levels. Product quality was checked by
melting curve analysis via LightCycler software (Roche
Diagnostics).

Plasmid constructs

cDNAs of mouse CD300e (GenBankTM accession number
NM_172050.3) were isolated by PCR from a cDNA library of
mouse BM cells. The cDNA fragment of mouse CD300e, lack-
ing the signal sequence, was tagged with a FLAG epitope at the
N terminus. The resultant FLAG-tagged mouse CD300e was
subcloned into pME vector containing the signaling lympho-
cyte-activating molecule (SLAM) signal sequence (a gift from
Hisashi Arase, Osaka University, Osaka Japan) (53). The result-
ant SLAM signal sequence–FLAG–mCD300e was subcloned
into pMXs-internal ribosome entry sites (IRES)–puromycinr

(pMXs–IP) (54) to generate pMXs–FLAG–mCD300e-IP.
pMXs–FLAG–mouse LMIR1, LMIR2, LMIR3, LMIR4, LMIR5,
or LMIR7-IP was used previously (7–9). pMXs–FLAG– human
CD300a, CD300b, CD300c, CD300e, or CD300f-IP was previ-
ously used (19). To generate the chimeric receptor mCD300e–
CD3�, SLAM signal sequence–FLAG–mCD300e, excluding
transmembrane and intracellular domains, was fused to the
transmembrane domain of LMIR3 followed by the intracellular
domain of human CD3� (Naoki Matsumoto, The University
of Tokyo, Tokyo, Japan). To generate the chimeric receptor
hCD300e–CD3�, SLAM signal sequence–FLAG– hCD300e,
excluding transmembrane and intracellular domains, was fused
to the transmembrane domain of human CD300f followed by
the intracellular domain of human CD3� (Naoki Matsumoto,
The University of Tokyo, Tokyo, Japan). mCD300e–CD3� or
hCD300e–CD3� was subcloned into pMXs–IP to generate
pMXs–FLAG–mCD300e–CD3� or FLAG– hCD300e–CD3�–
IP (15, 19, 21). To generate the mCD300e–N84Q mutant, two-
step PCR mutagenesis was performed using pMXs–FLAG–
mCD300e–IP as a template. pMXs–Myc–mouse DAP12 or
FcR�–IRES– blasticidinr (IB) was used as described previously
(19). All constructs were verified by DNA sequencing.

Flow cytometry

Cells were stained as described (7–9, 15). Flow cytometric
analysis was performed with FACSCalibur (BD Biosciences)
equipped with CellQuest software and FlowJo software (Tree
Star).

Transfection and infection

Retroviral transfection and infection were performed as
described (7–9, 54, 55). Retroviruses were generated by tran-
sient transfection of PLAT-E packaging cells (55). Selection
with 1 �g/ml of puromycin was started 48 h after infection.

Biochemistry

Western blotting was performed as described (7–9). Equal
amounts of cell lysates of Ba/F3 transfectants or HEK 293T cells
were immunoprecipitated with mouse anti-FLAG Ab or anti-
Myc Ab, and immunoblotted with rabbit anti-FLAG Ab or anti-
Myc Ab.
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Binding assay using solid-phase ELISA

Solid-phase ELISA was performed to carry out the binding
assays (14, 15). The Fc fusion proteins mCD300e–Fc and Fc
were purified. The indicated lipids in methanol (50 �g/ml) or
methanol as a control was added to ELISA plates and air-dried.
After washing, the plates were incubated with 10 �g/ml of
mCD300e–Fc or Fc in the presence of 0.5 mM CaCl2 for 120 min
before incubating with peroxidase-conjugated anti-human Ig
(Sigma). Absorbance at 450 nm was measured.

Measurement of cytokines

To stimulate cells with plate-coated Ab, plates were coated
overnight with 20 �g/ml of Ab before stimulation (15). To stim-
ulate cells with plate-coated sphingomyelin, sphingomyelin in
methanol (10 �g/ml) or methanol as control was added to
plates and air-dried before stimulation (15). CD14dimCD16�

monocytes sorted from human PB were stimulated with plate-
coated sphingomyelin or vehicle for 24 h in the presence or
absence of 10 �g/ml of a soluble anti-hCD300e Ab (233812) or
rat IgG2a as control. BMMCs transduced with FLAG-tagged
mCD300e were stimulated with plate-coated anti-FLAG Ab or
mouse IgG1 Ab as control, plate-coated anti-mCD300e Ab or
Armenian hamster IgG Ab as control, or 100 nM PMA for 24 h.
Concentrations of human TNF� or mouse IL-6 (R&D Systems)
in culture supernatants were measured by ELISA.

Statistical analysis

Data are shown as mean � S.D., and statistical significance
was determined by Student’s t test with *, p � 0.05 or **, p �
0.01 considered to indicate statistical significance.
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