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Platelets regulate vascular integrity by secreting a host of mol-
ecules that promote hemostasis and its sequelae. Given the
importance of platelet exocytosis, it is critical to understand
how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11,
lack classical transmembrane domains (TMDs), yet both are
associated with platelet membranes and redistributed into
cholesterol-dependent lipid rafts when platelets are activated.
Using metabolic labeling and hydroxylamine (HA)/HCl treat-
ment, we showed that both contain thioester-linked acyl groups.
Mass spectrometry mapping further showed that syntaxin-11
was modified on cysteine 275, 279, 280, 282, 283, and 285, and
SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Inter-
estingly, metabolic labeling studies showed incorporation of
[3H]palmitate into the t-SNAREs increased although the protein
levels were unchanged, suggesting that acylation turns over on
the two t-SNAREs in resting platelets. Exogenously added fatty
acids did compete with [3H]palmitate for t-SNARE labeling. To
determine the effects of acylation, we measured aggregation,
ADP/ATP release, as well as P-selectin exposure in platelets
treated with the acyltransferase inhibitor cerulenin or the thio-
esterase inhibitor palmostatin B. We found that cerulenin pre-
treatment inhibited t-SNARE acylation and platelet function in
a dose- and time-dependent manner whereas palmostatin B had
no detectable effect. Interestingly, pretreatment with palmosta-
tin B blocked the inhibitory effects of cerulenin, suggesting that
maintaining the acylation state is important for platelet func-
tion. Thus, our work shows that t-SNARE acylation is actively
cycling in platelets and suggests that the enzymes regulating
protein acylation could be potential targets to control platelet
exocytosis in vivo.

Platelet exocytosis is critical for hemostasis; however, it is
increasingly obvious that platelets secrete components with

wide-ranging effects on vascular microenvironments (1, 2). The
diverse platelet secretome suggests that platelets can contribute
to angiogenesis, inflammation, innate immunity, and athero-
sclerosis (3–5). Thus, understanding the mechanics and regu-
lation of platelet exocytosis is critical. Previous work has shown
that platelets use soluble N-ethylmaleimide sensitive factor
attachment protein receptor (SNARE)3–mediated fusion of
granule and plasma membranes for granule cargo release.
SNAREs assemble into a trans-bilayer, four-helix bundle
that mediates fusion between target membranes and cargo-
containing vesicles (6, 7). Genetic and biochemical studies
have demonstrated roles for the vesicle/granule (v- or R-)
SNAREs, vesicle-associated membrane protein (VAMP) -7
and -8, and the target membrane (t- or Q) SNAREs, SNAP-23
(Qbc) and syntaxin-8 and -11 (Qa), in mediating cargo release
from all three classes of platelet granules (8 –14). Further
studies defined specific SNARE regulators, which control
when and where the v- and t-SNAREs interact. Aside from
the role that I�B kinase–mediated phosphorylation plays in
controlling SNAP-23/syntaxin-11 association (15), little is
known about other posttranslational modifications and their
effects on the platelet exocytosis.

Despite their importance to secretion, neither SNAP-23
nor syntaxin-11 contains a classical transmembrane domain
(TMD), nor any identifiable CAAX motifs. Instead, both pro-
teins contain cysteine-rich regions: human syntaxin-11 has
eight cysteines with six at its C terminus, and SNAP-23 con-
tains six cysteines with five in a central domain. These cysteine-
rich regions have been shown, in some cells, to be important for
membrane association and are potential sites for S-acylation
(16 –20). Protein S-acylation is a reversible posttranslational
modification that affects a protein’s ability to interact with
membranes. S-palmitoylation is the addition of a C16 fatty acid
to cysteines via a thioester linkage. Palmitoyl acyl transferases
(PATs) are a large family of enzymes, with a characteristic Asp-
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His-His-Cys (DHHC) motif, that uses fatty acyl-CoAs as a sub-
strate (21–23). Platelets contain at least 13 PAT isoforms (24).
The S-acyl linkage can be cleaved by a smaller family of acyl-
protein thioesterases (APT); platelets have four isoforms (25,
26), setting up a potential enzymatic cycle that can control the
extent and dynamics of this protein modification, much like
kinases and phosphatases. The physiological significance of
such a reversible modification is seen in RAS localization,
which is, in part, controlled by such a cycle. Several different
PAT and thioesterase inhibitors have been generated in an
attempt to modulate RAS function and dysfunction (27, 28).

Past studies have shown that acylation occurs in platelets
(29). Dowal et al. (30) characterized over 200 proteins in the
platelet “palmitoylome,” many of which appear to be involved
in platelet signaling pathways. Consistently, Sim et al. (25)
showed that PAT-inhibitor treatment blocked platelet activa-
tion in response to several hemostatic agonists. This group
also showed that treatment of permeabilized platelets with a
recombinant thioesterase released SNAP-23 from platelet
membranes. Despite these observations, the dynamics and
potential importance of t-SNARE acylation, specifically of syn-
taxin-11 and SNAP-23, is largely undefined in platelets. In this
manuscript, we showed that acylation SNAP-23 and syn-
taxin-11 are reversibly acylated in platelets and that acyl turn-
over is important for platelet secretion. We mapped the acyla-
tion sites in both t-SNAREs to specific cysteines in their
conserved, cysteine-rich regions. Consistent with their acyla-
tion, we showed that both t-SNAREs are enriched in detergent-
resistant, cholesterol-dependent membrane fractions or rafts,
which may be the sites for membrane fusion because the pri-
mary v-SNARE, VAMP-8, also localizes to these fractions upon
platelet activation. Finally, using PAT (cerulenin) and thioes-
terase (palmostatin B) inhibitors, we show that the cycling of
the acyl groups is important for platelet function because pal-
mostatin B pretreatment prevented the inhibitory effect of
cerulenin. Given the dynamic nature of t-SNARE acylation in
platelets, it may be possible to repurpose the acylation-directed
drugs, originally formulated to modulate RAS and RAS-related
proteins in tumors, for use as anti-thrombotic therapeutics.

Results

Syntaxin-11 and SNAP-23 are associated with membranes and
lipid rafts

Given their lack of identifiable TMDs, we first sought to
determine the extent to which syntaxin-11 and SNAP-23 asso-
ciate with platelet membranes. Disrupting the platelets by
freeze-thaw cycling, we generated a cytosolic and membrane
fraction by centrifugation. In Fig. 1A, cytosolic proteins, e.g.
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were
present in the supernatant (S1) and membrane proteins
(VAMP-2, -3, -8) in the pelleted fraction (STX � ITX). The two
syntaxins (syntaxin-2 and -4) with TMDs were pelleted, as were
syntaxin-11 and SNAP-23. Two peripheral membrane pro-
teins, Munc18b and Munc13– 4, were distributed between the
supernatant and pellet. The pelleted membranes were treated
with Triton X-100, which solubilized (STX) the TMD-contain-
ing syntaxins, but syntaxin-11 and SNAP-23 were found in both

Triton X-100 soluble and insoluble fractions (ITX). The Triton
X-100 insoluble fraction most likely contains actin cytoskeleton
and lipid rafts (31, 32). Because SNAP-23 has been found in
detergent-resistant lipid rafts in platelets (33), we fractionated
the ITX material on a sucrose density gradient. The sample was
loaded into the denser bottom of the gradient and the rafts were
floated to their lighter density during centrifugation. A signifi-
cant portion of SNAP-23 and syntaxin-11 from resting (R) and
thrombin-stimulated (S) platelets did migrate into these lighter
fractions (Fig. 1B, fractions 9 –11). Interestingly, upon stimula-
tion, more VAMP-8 was found in the raft fractions. This pri-
mary v-SNARE pairs with syntaxin-11 and SNAP-23 and is
important for platelet exocytosis (10, 34).

Cholesterol depletion affects t-SNARE localization

Because cholesterol is one of the major components in lipid
rafts, we sought to determine whether altering platelet choles-
terol affected syntaxin-11 and SNAP-23 distribution (Fig. 2).
Cholesterol was reduced by more than 50% (Fig. 2C) using
methyl-�-cyclodextrin (M�CD) and, consistent with previous
studies (35, 36), M�CD treatment negatively affected dense
granule secretion and platelet aggregation in response to both
thrombin and A23187 (Fig. 2B). M�CD-treated platelets
showed a decrease in syntaxin-11 and SNAP-23 in the lighter
density fractions of the sucrose gradients (Fig. 2A, fractions
9 –11), further supporting a lipid raft localization for the two
t-SNAREs. These data imply that the cholesterol-rich lipid rafts
in platelets serve as a SNARE-organizing structure that is
important for exocytosis.

Acylation of syntaxin-11 and SNAP-23

Given the membrane distribution and raft association of the
two TMD-deficient t-SNAREs and their lack of obvious CAAX-
box prenylation signals, we next sought to determine whether
they were acylated in platelets using both a chemical, acyl-bio-
tin exchange (ABE) and a metabolic labeling method. In Fig. 3A,
immunoprecipitated syntaxin-11 and SNAP-23 were labeled
with the maleimido-biotin compound, 1-biotinamido-4-[4�-
(maleimidomethyl) cyclohexanecarboxamido] butane (BMCC)-
biotin, only after neutral hydroxylamine (HA) treatment.
Because at neutral pH, HA specifically cleaves thioester bonds,
this labeling pattern was consistent with both t-SNAREs being
S-acylated. Note that free cysteines or those involved in disul-
fide bonds were capped with N-ethylmaleimide (NEM) prior to
HA treatment and BMCC-biotin labeling. To further charac-
terize this modification, we next used metabolic labeling with
[3H]palmitic acid (Fig. 3B). Both syntaxin-11 and SNAP-23
showed time-dependent incorporation of radiolabel (Fig. 3B).
The radiolabel was sensitive to neutral HA treatment (Fig. 3C).
Because anucleated platelets show only limited protein synthe-
sis under resting conditions (37), the time-dependent increase
in [3H]palmitate incorporation implies that t-SNARE acylation
is posttranslational.

Mapping of the acylation sites in syntaxin-11 and SNAP-23

To determine the potential sites of S-acylation in syntaxin-11
and SNAP-23, we used two alkylating reagents, iodoacetic acid
(IAA) and NEM, in combination with HA treatment and tryptic
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Figure 1. Syntaxin-11 and SNAP-23 are associated with membranes and lipid rafts. A, total lysates were prepared from washed platelets by five freeze-
thaw cycles and were subjected to centrifugation to separate membrane and cytosol (S1) fractions. The membrane fractions were treated with 1% Triton X-100
to generate Triton X-100-soluble (STX) and insoluble (ITX) fractions, which were separated by centrifugation. Equivalent amounts of each fraction were analyzed
by SDS-PAGE and probed by Western blotting with the indicated antibodies. B, resting (R) or thrombin-stimulated (S) platelets were lysed in 2� raft lysis buffer
and layered underneath a sucrose gradient. The samples were centrifuged and the gradients were fractionated from the bottom. The fractions were probed for
the indicated proteins by Western blotting. Quantification of the specific proteins in each fraction is shown. Data are representative of three independent
experiments.
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peptide mass spectrometry (Fig. 4). Immunopurified proteins
were first treated with tris(2-carboxyethyl)phosphine (TCEP)
to reduce disulfide bonds and the freed cysteines were exhaus-
tively modified with NEM. The proteins were subsequent-
ly treated with neutral HA to cleave thioester-linked moieties.
Those exposed cysteines were modified with IAA. Finally, the
proteins were cleaved with trypsin and subjected to liquid
chromatography–tandem mass spectrometry (LC-MS/MS)
analysis. In our analyses of syntaxin-11 from human platelets,
we found evidence of NEM modifications on Cys-102
(GEVIHNEMC102K; monoisotopic m/z � 455.7301 Da) and
Cys-157 (QRDNNEMC157KIR; monoisotopic m/z � 579.3026
Da). No other NEM-modified peptides were detected.
After neutral HA treatment and modification with IAA,
we detected two tryptic peptides that had been modified:
KAVQYEEKNPIAAC275R (monoisotopic m/z � 507.9244 Da,
data not shown) and TLIAAC279

IAAC280FIAAC282
IAAC283

PIAAC285LK (monoisotopic m/z � 759.8106 Da) (Fig. 4A).
These data are consistent with Cys-102 and -157 being either as
free sulfhydryls or in disulfide bonds and Cys-275, -279, -280,
-282, -283, and -285 being modified by an HA-sensitive, thio-
ester-linked moiety. For SNAP-23, we found evidence of a NEM

modification on Cys-112 (TTWGDGGENSPNEMC112NVVSK;
monoisotopic m/z � 938.4195 Da). No other NEM modified
peptides were detected. After neutral HA treatment and mod-
ification with IAA, we detected one tryptic peptide that had
been modified with IAA: IAAC79

IAAC80GLIAAC83VIAAC85

PIAAC87NR (monoisotopic m/z � 728.2787 Da) (Fig. 4B). These
data are consistent with Cys-112 being a free sulfhydryl and
Cys-79, -80, -83, -85, and -87 being modified by an HA-sensi-
tive, thioester-linked moiety.

[3H]palmitate incorporation into syntaxin-11 and SNAP-23
from activated and passivated platelets

We further examined the incorporation of [3H]palmitate
into platelet proteins under both passivated (treated with pros-
taglandin I2 (PGI2)) and activated (treated with thrombin) con-
ditions. Fig. 5, A and B, show that [3H]palmitate incorporated
into syntaxin-11 and SNAP-23 in the presence of PGI2.
[3H]palmitate incorporation was not affected upon platelet
activation with 0.1 units/ml of thrombin. Treatment of platelets
with diethylamine NONOate, to generate nitric oxide (NO),
also did not affect t-SNARE acylation as determined with the
ABE assay (data not shown). This suggests that cysteine

Figure 2. Cholesterol depletion affects t-SNARE localization and platelet function. A, washed platelets were treated with 10 mM M�CD for 15 min at 37 °C.
Untreated (R) or M�CD-treated platelets were lysed in 2� raft lysis buffer and lipid rafts were separated as in Fig. 1. The gradients were fractionated and probed
for the indicated proteins by Western blotting. Quantification of specific proteins in each fraction is shown. B, platelets were treated with M�CD and their
thrombin-stimulated aggregation and ATP-release were measured by lumi-aggregometer. C, the lipids from washed human platelets were extracted with
chloroform:isopropanol:Nonidet P-40 (7:11:0.1) and cleared by centrifugation. Platelet cholesterol was determined using a cholesterol oxidase assay and
converted into �g/109 platelets. Data are statistically significant (p � 0.0001) as determined using an unpaired Student’s t test.
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nitrosylation and acylation were not competitive in resting
platelets.

Treatment of platelets with a general PAT inhibitor, ceru-
lenin, significantly reduced [3H]palmitate incorporation into
platelet proteins in general as well as the two t-SNAREs. Total
levels of syntaxin-11 and SNAP-23 were unchanged, as
detected by Western blotting, consistent with no new protein
being made and no adverse effect on protein levels being caused
by cerulenin. To further demonstrate the effects of cerulenin,
the ABE method was used to assess acylation (Fig. 5C). Com-
pared with vehicle-control, cerulenin treatment reduced the

level of BMCC-biotinylation of syntaxin-11 and SNAP-23, con-
sistent with reduced acylation of the two t-SNAREs. Again,
there was no significant change in total levels of the two pro-
teins. Taken together, these data support the conclusion that
the acyl groups on the t-SNAREs turn over, suggesting that
dynamic remodeling of their hydrophobicity is occurring in
platelets, in absence of new protein synthesis.

PAT and APT inhibitors affect human platelet secretion

Previous reports showed that cerulenin treatment affected
platelet activation (25). To further define these observations
and focus on the t-SNAREs, platelets were pretreated with
cerulenin, then aggregation, ATP release, and P-selectin expo-
sure were monitored as metrics of dense and �-granule release.
Platelets treated with cerulenin for 1 h showed a dose-depen-
dent decrease in aggregation, ATP release (Fig. 6A), and P-se-
lectin exposure (Fig. 6C) in response to thrombin, which signals
through the PAR receptors, and A23187, which circumvents
platelet signaling steps and directly increases intraplatelet cal-
cium to trigger exocytosis. Cerulenin treatment did affect I�B
kinase (IKK)-dependent phosphorylation of SNAP-23 at Ser-95
in response to thrombin (Fig. 6G) and A23187; however, it did
not affect the calpain cleavage of SNAP-23 induced by A23187
stimulation (Fig. 6F; data not shown). Our previous studies (15)
showed that this modification is critical for ternary SNARE
complex formation and exocytosis in platelets. Cerulenin treat-
ment had no effect on t-SNARE heterodimer formation (Fig.
6F) nor was there any effect on intracellular calcium increases
seen in response to thrombin (data not shown). Although ceru-
lenin treatment has been shown to affect platelet signaling (25),
the similar inhibition of A23187-induced dense and �-granule
exocytosis suggests that cerulenin treatment directly affects the
secretory machinery.

Cerulenin’s effects were time-dependent (Fig. 6B), suggest-
ing that acyl cycling, in the absence of protein turnover, is
occurring in platelets and is functionally relevant. To examine
the role of deacylation, we examined the effects of an APT
inhibitor, palmostatin B. A second APT inhibitor, bromopalmi-
tate, had significant off-target effects on resting platelets and
was not used further (data not shown). Treatment with palmo-
statin B had no effect on platelet exocytosis (Fig. 6D; data not
shown) but significantly increased the acylation of both syn-
taxin-11 and SNAP-23, as measured with the ABE assay (Fig.
6E). These data confirm that deacylation is occurring and sug-
gest that the acylated state of the t-SNAREs is important for
exocytosis. To further address this point, we performed a stag-
ing experiment in which the two inhibitors were added in
different sequences. When cerulenin was added first (before
palmostatin B), the level of inhibition of ATP release was
approximately equal to that seen when only cerulenin was
added (Fig. 6D). When palmostatin B was added first, subse-
quent cerulenin addition had no inhibitory effect. Thus, pre-
treatment with palmostatin B counteracted the effects of ceru-
lenin, but cerulenin pretreatment could not be reversed. These
data are consistent with an active acylation/deacylation cycle in
platelets and point to its functional relevance in platelet exocytosis.
Because part of cerulenin’s inhibitory effect is likely because of

Figure 3. Syntaxin-11 and SNAP-23 are acylated in platelets. A, washed
platelets (1 � 109) were lysed with cold 1� lysis buffer containing 50 mM NEM
for 60 min. Anti–syntaxin-11 and anti–SNAP-23 antibodies were added and
the immunoprecipitated proteins were treated with 100 mM HA for 30 min
prior to biotinylation with BMCC-biotin. The omission of HA was used as the
background control. The samples were separated by SDS-PAGE and probed
for syntaxin-11 and SNAP-23 by Western blotting and for biotinylation with a
streptavidin-HRP conjugate. B, washed human platelets were incubated with
[3H]palmitate for 1 or 2 h and platelet lysates were subjected to immunopre-
cipitation with anti–SNAP-23 and anti–syntaxin-11 antibodies. The immuno-
precipitated proteins were visualized by autoradiography. C, labeled samples
were incubated with HA prior to separation by SDS-PAGE and visualization by
autoradiography. The HA-treated samples were also probed by Western blot-
ting with anti–syntaxin-11 and anti–SNAP-23 antibodies.
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t-SNAREs deacylation without reacylation, these data suggest
that the acylated form is the one needed for platelet exocytosis.

Exogenous fatty acids affect [3H]palmitate incorporation in
platelets

Given the evidence for an acylation/deacylation cycle in
platelets, we asked whether the addition of exogenous fatty
acids might compete with [3H]palmitate. Three dietary fatty

acids (stearate, C18:0; oleate, C18:1; and linoleate, C18:2)
were added into metabolic labeling reactions and the [3H]
incorporated into the two t-SNAREs was evaluated by immu-
noprecipitation and autoradiography. The saturated stearate
and monounsaturated oleate did reduce [3H]palmitate into
both t-SNAREs with the oleate being more effective (Fig. 7).
The diunsaturated linoleate had only a limited effect. These
data show competition for incorporation into the t-SNAREs,

Figure 4. Detection of acylation sites by mass spectrometry. LC-MS/MS was used to detect the palmitoylation sites of syntaxin-11 and SNAP-23 and the
peptides’ identities were confirmed by tandem MS/MS fragmentation patterns. A, a schematic of syntaxin-11 and its features: Habc domain, SNARE motif, and
cysteine-rich domain. The MS/MS of the IAA-modified tryptic peptide from syntaxin-11 is shown to demonstrate acylation sites: TLC279C280FC282C283PC285LK.
B, a schematic of SNAP-23 and its features: SNARE motifs and cysteine-rich domain. The MS/MS spectrum of the IAA-modified peptide from SNAP-23 is shown
to demonstrate acylation sites: C79C80GLC83VC85PC87NR of SNAP-23. Modification sites were identified based on MS/MS fragmentation patterns. For clarity,
only y and b ions are labeled, with y ions in blue and b ions in red. This analysis was performed twice and identical results were obtained.

Figure 5. Acylation of t-SNARE in activated and passivated human platelets. A and B, platelets were incubated with [3H]palmitate in the presence or
absence of cerulenin. Some were stimulated with thrombin and others were treated with PGI2. Lysates were prepared for immunoprecipitation with anti–
syntaxin-11 (A) or anti-SNAP-23 antibodies (B). Total protein (top) or immunoprecipitated proteins (middle) were separated by SDS-PAGE and visualized by
autoradiography. Total protein and immunoprecipitated samples were also probed by Western blotting with anti–syntaxin-11 or anti–SNAP-23 antibodies. C,
washed platelets (1 � 109) were incubated in the presence or absence of cerulenin for 2 h and then lysed. The immunoprecipitation/ABE assay was used to
detect acylation of syntaxin-11 and SNAP-23.
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but at this stage the mechanism is unclear. Some fatty acids may
be directly incorporated into the t-SNAREs replacing palmi-
tate; others may reduce the pools of available CoA to produce
palmitoyl-CoA or inhibit the relevant PATs, thereby reducing
the overall acylation of the t-SNAREs. Further examination of
the acyl-CoA pools present in platelets and the fatty acids

attached to the t-SNAREs will be required before this dynamic
process can be completely understood.

Discussion

In this manuscript, we built on previous work (25, 30) and
examined the modification of two platelet t-SNAREs, syn-
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taxin-11 and SNAP-23, which lack typical TMDs. Both behave
as membrane proteins and partition into cholesterol-depen-
dent lipid rafts. Both are S-acylated in their cysteine-rich
domains. Based on mapping studies, all the available cysteines
in these domains can be modified. A PAT inhibitor blocked
[3H]palmitate incorporation into the two t-SNAREs and
blocked platelet secretion from dense and �-granules. An APT
inhibitor had no effect on platelet secretion but did reverse the
inhibitory effects of the PAT inhibitor. These data imply that
t-SNARE acylation is highly dynamic in platelets and cycles
because of the actions of PATs and APTs, much like phosphor-
ylation is controlled by kinases and phosphatases. Although the
cycling of acyl groups has been reported on other proteins in
other cells (38 –40), our data are the first to demonstrate its
importance in platelets.

Acylation’s effects on t-SNAREs

Previous studies clearly demonstrated roles for syntaxin-11
and SNAP-23 in the membrane fusion events required for
platelet granule release (10, 12, 15). It is unclear if SNAP-23
acylation is required for fusion. Studies with model proteolipo-
some systems clearly show that unmodified SNAP-23 can
mediate membrane fusion (15) and similarly, acylation of
SNAP-25 is not required in vivo (7). Alternatively, syntaxin-
type t-SNAREs typically need their TMDs to progress from
hemifusion of the outer leaflets to complete the bilayer fusion
(41). However, longer, more hydrophobic moieties, such as
artificially added C45 and C55 prenyl groups, are sufficient to
promote full fusion in absence of a TMD. In contrast, C15 and
C20 groups are not (42, 43). Acylation of SNAP-23 and syn-
taxin-11 has been shown to be important for exocytosis in other
nucleated cell types, but the contribution to fusion versus a
membrane targeting or trafficking role has been debated (20,
44 – 46). It seems possible that acylation of these two t-SNAREs
must impart sufficient hydrophobicity to compensate for the
loss of the syntaxin TMD. Full or even partial deacylation would
be expected to limit fusogenicity, which perhaps accounts for
part of the secretion defect we observed in the cerulenin-
treated platelets (Fig. 6).

Acylation may also promote t-SNARE partitioning into lipid
raft-like structures (47, 48). Clustering of t-SNAREs has been
reported to be important for promoting membrane fusion and
these clusters are cholesterol-dependent (49). Consistently, the
Haynes group (50) showed that platelet membrane cholesterol
directly affects cargo release from platelets by affecting fusion

pore formation, dilation, and full fusion. The precise roles of
lipid rafts in platelet exocytosis remains to be determined; how-
ever, it should be noted that stimulation with thrombin did
increase the levels of VAMP-8 in platelet rafts (Fig. 1B). In mast
cells, these lipid subdomains are sites of SNARE complex for-
mation and perhaps membrane fusion. IKK/SNAP-23 associa-
tion and SNAP-23 phosphorylation occur in rafts (51) as does
the formation of ternary SNARE complexes (52) IKK is also
found in the rafts of T cells (53). Interestingly, in platelets,
cerulenin treatment not only inhibited secretion but also
reduced the IKK-dependent phosphorylation of SNAP-23 (Fig.
6G). These data are suggestive of a mechanism by which defi-
cient t-SNARE acylation, in platelets, would affect raft parti-
tioning, ternary complex formation, and membrane fusion.
Future super-resolution microscopy analysis will be needed to
define the roles of rafts relative to the sites of granule/plasma
membrane fusion and cargo release.

Extent of t-SNARE acylation

Our mass spectrometry analysis (Fig. 4) clearly detects all the
cysteines in both t-SNAREs and distinguishes those which are
free or in reducible, disulfide bonds (NEM modified) from
those which are exposed upon HA treatment (IAA modified).
These latter cysteines are likely the sites of acylation, because
HA treatment completely removed metabolically incorporated
[3H]palmitate (Fig. 3C). The acylated sites from syntaxin-11
were found on two peptides from the C-terminal domain. All
were labeled with IAA, suggesting that six cysteines were mod-
ified. Despite exhaustive analysis of the MS/MS spectra, we did
not detect any partially modified peptides (i.e. those containing
both IAA and NEM). Similarly, for SNAP-23, one IAA-modi-
fied peptide was detected, which accounted for all five potential
acylation sites in the central cysteine-rich domain. Again, no
partially modified peptides were detected. Studies with a PEG-
derivatized maleimide (54) were inconclusive, in part because
the cysteines may be too close together, sterically impeding
modification with the bulky PEG derivatives (data not shown).
Click chemistry methods (55) using platelets incubated with
17-octadecynoic acid (ODYA) were also ineffective, perhaps
because the platelet PATs failed to use the C17 fatty acid.
Because no partially modified peptides were detected, our data
argue that most of the two t-SNARE molecules are maximally
acylated under steady-state conditions. However, treatment
with palmostatin B did increase total acylation (Fig. 6E), so it is
likely that there is a population of t-SNAREs that is dynamically

Figure 6. PAT and APT inhibitors affect human platelet secretion and activation. A, platelet suspensions (4 � 108/ml, 500 �l) were treated with cerulenin
(0, 56, 167, or 500 �M) for 2 h at 37 °C. Aggregation traces and ATP release were monitored. Tracings are representative of three separate experiments. B,
platelets were treated with cerulenin (56 or 500 �M) for the indicated times and aggregation in response to thrombin was measured by light transmission/
aggregometry. Data are expressed as mean � S.D. (n � 3 for each group). C, washed platelets (1 � 108/ml) were treated with cerulenin at 37 °C for 2 h and
stimulated with thrombin (0.1 units/ml) or A23187 (4 �M) for 3 min. FITC-conjugated, anti–P-selectin antibody was added for 10 min. Fluorescent intensities
were measured by FACS. The data were graphed using geometric mean fluorescence intensity: P-selectin. Data are representative of two different experiments.
D, washed platelets were treated with cerulenin or palmostatin B alone or treated with both drugs sequentially: cerulenin- or palmostatin B–treated for 1 h then
the other drug for an additional 1 h. ATP release in response to A23187 or thrombin was monitored. Quantification of the ATP release was expressed as mean �
S.E. (n � 3). E, washed platelets (1 � 109) were incubated in presence or absence of cerulenin or palmostatin B and then lysed with lysis buffer. The ABE assay
was used to detect palmitoylation of the immunoprecipitated syntaxin-11 and SNAP-23. F, washed platelets (1 � 109) were incubated in presence or absence
of cerulenin, stimulated with thrombin (0.1 units/ml (�) and 1 units/ml (��)) or A23187 (4 �M) and the t-SNARE heterodimer was immunoprecipitated (IP) with
anti–syntaxin-11 antibody and the immunoprecipitates were analyzed by Western blotting with the indicated antibodies (Co-IP). Total extracts were also
probed by Western blotting (LC) and the bands indicated by arrowheads in the right panel indicate calpain-mediated SNAP-23 cleavage products. G, washed
platelets (1 � 109) were incubated in presence or absence of cerulenin, stimulated with thrombin and then probed by Western blotting with anti-SNAP-23 and
anti–phospho-Ser-95 SNAP-23 antibodies.
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underacylated in resting platelets. Shifts in the steady-state acy-
lation of the two t-SNAREs could alter their hydrophobicity
and thus their fusogenicity or their partitioning into lipid rafts.
In pathogenic states, such as dyslipidemia, increased fatty acid
availability could shift the balance toward greater acylation
making the t-SNARE more hydrophobic.

Exogenous dietary fatty acids did modulate the acylation of
the two t-SNAREs (Fig. 7), suggesting that they could compete
with [3H]palmitate for incorporation into the SNAREs. The
nature of the competition is likely complex; however, two

potential mechanisms are plausible, but not mutually exclusive.
The excess exogenous fatty acids could affect the CoA charging
step skewing the platelet pools of available acyl-CoAs and thus
reducing the effective concentrations of palmitoyl-CoA. Fatty
acid binding proteins and fatty acid–CoA ligase/synthetases are
detectible in platelets, by mass spectrometry, thus the machin-
ery to convert free fatty acids into acyl-CoAs is present (56, 57).
Unfortunately, our attempts to monitor platelet acyl-CoA pools
by mass spectrometry have so far proved inconclusive. Alterna-
tively, some fatty acids may generate acyl-CoAs that are pre-

Figure 7. Exogenous fatty acids affect [3H]palmitate incorporation into syntaxin-11 and SNAP-23. A and B, human platelets (1 � 109) were incubated
with [3H]palmitate in the presence or absence of the indicated fatty acids: C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid or cerulenin. Lysates were
prepared for immunoprecipitation with anti-syntaxin-11 (A) or anti-SNAP-23 (B) antibodies. Total proteins (total) or immunoprecipitated proteins (IP) were
separated by SDS-PAGE and visualized by autoradiography.
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ferred substrates for the t-SNARE–modifying PATs. Given that
13 different PATs have been detected in platelets (24), it is
difficult to even guess which transferases modify the two
t-SNAREs. Adding to the complexity, there could be acyl-CoA
substrate preference overlaps between the PATs. Thus, further
experimentation and technology development are required
before we completely understand the dynamic nature of these
substrate pools in platelets and the effects that pathologies such
as dyslipidemia have on them.

Therapeutic value of platelet acylation

Our work (58) clearly shows that modulating secretion can
be an effective tool to control occlusive thrombosis. Genetic
studies suggest that the useful therapeutic window is �50 –70%
inhibition to control thrombus growth without causing bleed-
ing.4 Targeting enzymes with critical activities is a more effec-
tive drug-development strategy than trying to selectively dis-
rupt SNARE complexes. I�B kinase inhibitors, which block the
phosphorylation of SNAP-23 and thus secretion, are an exam-
ple of such a strategy (15). Can acylation be targeted to control
platelet function? Perhaps. Our studies describe a combination
of platelet function inhibitor (cerulenin) and antidote (palmo-
statin B) that could be valuable in managing hemostasis. Ceru-
lenin-treated platelets showed a marked defect in their ability to
form thrombi in vivo (25). However, neither drug is sufficiently
specific for effective use at present. To realize the potential of
targeting acylation, further studies to determine which PATs
acylate the two t-SNAREs in platelets are needed to develop and
test specific therapeutics.

Experimental procedures

Antibodies

Anti–syntaxin-11 rabbit polyclonal antibody was from Syn-
aptic Systems GmbH (Goettingen, Germany). Anti-syntaxin-2
and -4 and SNAP-23 polyclonal antibodies were generated in
our laboratory (13). Anti-Munc18b antibody (sc-14563) was
purchased from Santa Cruz Biotechnology (Dallas, TX). The
polyclonal rabbit–anti-human VAMP-8 and anti-Rab GDI
polyclonal antibodies were as described previously (10, 34, 59).
The anti–SNAP-23 phospho–Ser-95 antibody was described in
Ref. 15. Fluorescein isothiocyanate (FITC)– conjugated PAC-1
and phycoerythrin (PE)-conjugated anti-human CD41a monoc-
lonal antibodies were from BD Biosciences. Alkaline phos-
phatase– conjugated secondary anti-mouse, anti-rabbit, anti-
sheep, and anti-goat IgG were from Sigma. Horseradish
peroxidase (HRP)– conjugated anti-rabbit IgG was from Sigma.
HRP-conjugated streptavidin was purchased from R&D Sys-
tems (Minneapolis, MN). Anti-GAPDH was from GeneTex
(Irvine, CA).

General reagents

Acid citrate dextrose (ACD) blood collection tubes were
from BD Vacutainer�. Apyrase, cerulenin (2,3 epoxy-4-oxo-
7,10 dodecadienoylamide), urea, and NEM were purchased
from Sigma. BCATM Protein Assay Kit, EZ-link� BMCC-biotin,

HA, iodoacetamide, and Pierce� ECL plus Western blotting
substrate were from Thermo Fisher Scientific. Complete,
EDTA-free protease inhibitor mixture was obtained from
Roche. A23187, the calcium ionophore, was from Calbiochem.
Palmostatin B [(3S,4S)-3-decyl-4-[2-(3,4-dimethoxyphenyl)-
ethyl]oxetan-2-one] was purchased from EMD Millipore. PGI2
was from Cayman Chemical Company (Ann Arbor, MI). [9,10-
3H(N)]palmitic acid was purchased from Perkin Elmer.

Platelet preparation

Blood from healthy donors was collected into acid citrate
dextrose collection tubes at the University of Kentucky Clinic.
After collection, all were transferred into 50-ml conical tubes
and centrifuged at 250 � g for 20 min at room temperature to
generate platelet-rich plasma. The platelet-rich plasma was
carefully transferred to a 15-ml tube containing 0.2 units/ml
apyrase, 10 ng/ml PGI2 and after 10-min incubation at room
temperature, was centrifuged at 900 � g for 10 min. The pel-
leted platelets were resuspended with HEPES-Tyrode buffer
(pH 6.5, 20 mM HEPES/KOH) containing apyrase, PGI2 for
10 min at room temperature. Finally, washed platelets were
obtained by centrifugation at 850 � g for 8 min and resus-
pended with HEPES-Tyrode buffer pH 7.4. Platelets were
counted with a Z2 Coulter Particle Count and Size Analyzer
(Beckman-Coulter) and adjusted to 1–2 � 109/ml.

Subcellular fractionation of platelets

Subcellular fractionation of platelets was performed as in Ref.
12. Briefly, washed human platelets (1 � 109) in HEPES-Tyrode
buffer (pH 7.4) with protease inhibitors were disrupted by five
freeze-thaw cycles. Membranes were recovered by centrifuga-
tion at 100,000 � g for 1 h at 4 °C. The supernatant (cytosol) was
kept and the pellet was treated with 1% Triton X-100 on ice for
30 min. Triton X-100 soluble and insoluble material were sep-
arated by centrifugation at 100,000 � g. The fractions were
analyzed by Western blotting.

Fractionation of lipid rafts

Washed platelets (1 � 109) were lysed with 2� lysis buffer (50
mM MES/NaOH, pH 6.5, 300 mM NaCl, 2% CHAPS, protease
inhibitor mixture, and 4 mM Na3VO4) and mixed with 80%
sucrose to make 40% sucrose-lysate mixture. The mixture was
added to ultracentrifuge tubes (12 ml, 14 mm � 89 mm, Beck-
man), and then overlaid with 30% sucrose (6 ml) followed by 5%
sucrose (2 ml). The gradients were centrifuged at 200,000 � g at
4 °C for 18 h in an SW Ti 41 rotor (Beckman). After centrifuga-
tion, fractions (1 ml) were collected, from the bottom, using
peristaltic pump (Mettler-Toledo Rainin, Oakland CA). Tri-
chloroacetic acid precipitation was used to concentrate each
sample and they were subjected to Western blot analysis.

Lumi-aggregometry

Lumi-aggregometry was measured in a Model 460Vs Lumi-
Dual aggregometer (Chrono-log, Havertown, PA). Washed
platelets (500 �l, 4 � 108/ml) were stirred at 800 rpm at 37 °C
in siliconized glass cuvettes (Chrono-log). ATP release from
dense granules was measured by preincubating platelets with
Chrono-Lume� reagent (Chrono-log) for 1 min at 37 °C. Ago-

4 S. Joshi, M. Banerjee, J. Zhang, A. Kesaraju, S. M. Dymecki, and S. W. White-
heart, manuscript in preparation.
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nists were added and the data were collected using a Model 810
Aggro/Link computer interface and analyzed with Aggro/Link
software (Chrono-log).

Flow cytometry analysis

Washed human platelets were treated with inhibitors at
37 °C for 2 h. Calcium (1 mM) was added and the platelets were
incubated for 30 min prior to assay. Poststimulation, FITC–
anti-human CD62P (P-selectin), FITC-PAC1, or PE–anti-hu-
man CD41a were added for 10 min and the samples were trans-
ferred to tubes for analysis. Analysis was performed using a BD
FACSCalibur flow cytometer (BD Biosciences) and geometric
mean fluorescence intensity (GMFI) was measured. In the cho-
lesterol-depletion studies, washed platelets were pretreated
with methyl-�-cyclodextrin (10 mM) for 15 min at 37 °C, and
then FACS analysis was performed.

Metabolic labeling with [3H]palmitate

The fatty acids and bovine serum albumin (BSA) were
allowed to incubate prior to addition to the platelets. For met-
abolic labeling, washed platelets were incubated with 200
�Ci/ml [9,10-3H(N)]palmitic acid for 1 or 2 h at 37 °C, in
HEPES-Tyrode buffer, pH 7.4 containing 1% fatty acid–free
BSA.

Measurement and manipulation of platelet cholesterol

To measure platelet cholesterol, washed human platelets
(1 � 108) were resuspended in HEPES-Tyrode buffer (pH 7.4)
and lipids were extracted with chloroform:isopropanol:Non-
idet P-40 (7:10:0.1, 400 �l). The extracts were clarified by cen-
trifugation at 15,000 � g at room temperature and dried to
remove organic solvents. The cholesterol assay was performed
with the Amplex Red Cholesterol Assay Kit (Thermo Fisher
Scientific) following manufacturer’s instructions. The dried lip-
ids were dissolved in 1� reaction buffer containing 300 �M

Amplex Red reagent, 2 units/ml HRP, 2 units/ml cholesterol
oxidase, and 0.2 units/ml cholesterol esterase. After incubation
for 30 min 37 °C, the fluorescent reaction product was mea-
sured at excitation of 544 nm and emission at 590 nm.

For cholesterol depletion, washed platelets were incubated
with M�CD (10 mM) at 37 °C for 30 min. After incubation,
platelets were washed and resuspended at 4 � 108/ml in
HEPES-Tyrode buffer (pH7.4). The treated platelets were used
for aggregation and subcellular fractionation studies.

Immunoprecipitation

Washed unlabeled or [3H]palmitate–labeled platelets (500
�l) were warmed at 37 °C for 5 min and held resting or stimu-
lated with thrombin. Platelets were lysed with 2� lysis buffer
(40 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM EDTA, 2 mM

EGTA, 2% Triton X-100, 2% sodium deoxycholate, 5 mM

Na4P2O7, 2 mM Na3VO4, and protease inhibitor mixture) for 45
min on ice. The lysates were clarified by centrifugation at
13,000 rpm, for 5 min and the supernatants were incubated
with rabbit IgG and Protein A Sepharose 4 Fast Flow (GE
Healthcare). After preclearing, the lysate was incubated with
anti–syntaxin-11 or –SNAP-23 antibodies were added for 2 h at
4 °C. Protein A Sepharose 4 Fast Flow was added for 1 h at 4 °C,

and then washed thrice. The bound proteins were eluted with
2� SDS loading buffer for 8 min at 95 °C. For [3H]-labeled
platelets, proteins were eluted with 2� SDS-PAGE loading
buffer (no �-mercaptoethanol) at 95 °C. The immunoprecipi-
tates were analyzed by SDS-PAGE and either immunoblotting
or autoradiography using EN3HANCE (PerkinElmer) following
manufacturer’s instructions.

Acyl-biotin exchange analysis

The degree of S-acylation was measured using the ABE
method as described in Ref. 60. Washed platelets (1 � 109) were
incubated in presence or absence of cerulenin or palmostatin B
and washed in HEPES-Tyrode buffer (pH 7.4). The platelets
were lysed with cold 1� lysis buffer (with protease inhibitors, 1
mM PMSF, 2 mM Na3VO4, 2% Triton X-100, 2% sodium deoxy-
cholate, 50 mM Tris-HCl pH7.5, 150 mM NaCl) containing 50
mM NEM. After clearing, anti–syntaxin-11 and SNAP-23 anti-
bodies were added and the two t-SNAREs were immunopre-
cipitated. The precipitated proteins were treated with 100 mM

HA in lysis buffer (pH 7.4) for 30 min at 37 °C and the exposed
cysteines were biotinylated with the maleimido-biotin com-
pound, BMCC-biotin (1.5 �M) for 1 h at 4 °C. Omission of HA
treatment was used as the negative control. The samples were
thenseparatedbySDS-PAGE,transferredtopolyvinylidenefluo-
ride (PVDF) membranes, and probed with streptavidin-HRP.

Mass spectrometry analysis

Immuno-purified syntaxin-11 and SNAP-23 were first
treated with tris(2-carboxyethyl)phosphine and NEM treat-
ment to reduce the cysteines involved in disulfide linkages. The
t-SNAREs were then sequentially treated with HA and IAA to
modify acylated cysteines. After trypsin digestion, peptides
were extracted, concentrated, and analyzed as described in
Yang et al. (61).

LC-MS/MS analysis was performed using a LTQ-Orbitrap
mass spectrometer (Thermo Fisher Scientific) coupled with a
cHiPLC™-nanoflex system (Eksigent, Dublin, CA) through a
nano-electrospray ionization source. The peptide samples were
separated with a reversed phase cHiPLC column (75 �m � 150
mm) at a flow rate of 300 nl/min. Mobile phase A was water
with 0.1% (v/v) formic acid whereas B was acetonitrile with 0.1%
(v/v) formic acid. A 50-min gradient was applied: initial 3%
mobile phase B was increased linearly to 40% in 24 min and
further to 85 and 95% for 5 min each before it was decreased to
3% and re-equilibrated. The MS/MS analysis method consisted
of one segment with eight scan events. The first scan event was
an Orbitrap MS scan (300 –1800 m/z) with 60,000 resolution
for parent ions followed by data-dependent MS/MS for frag-
mentation of the seven most intense ions with collision-in-
duced dissociation method.

The LC-MS/MS data were submitted to a local MASCOT
server for MS/MS protein identification via Proteome Discov-
erer (version 1.3, Thermo Fisher Scientific) against a custom-
ized database containing syntaxin-11 or SNAP-23. Typical
parameters used in the MASCOT MS/MS ion search were tryp-
sin digestion with a maximum of two miscleavages, cysteine
carbamidomethylation, cysteine N-ethylmaleimide modifica-
tion, methionine oxidation, a maximum of 10 ppm MS error
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tolerance, and a maximum of 0.8 Da MS/MS error tolerance.
Modifications on cysteines of interest in the tryptic peptides of
syntaxin-11 or SNAP-23 proteins were manually inspected and
confirmed based on the ladder of the b- and y-type fragment
ions in the MS/MS spectra.

[Ca2�]i measurements

Intraplatelet calcium was measured using Fura-2-acetoxym-
ethyl ester (Fura-2 AM, Thermo Fisher Scientific) as described
(34). Washed platelets (4 � 108/ml) in HEPES-Tyrode buffer
(pH 7.4) were incubated in presence or absence of cerulenin at
37 °C for 1 h. Then 1 �M Fura-2 AM was added to platelets at
37 °C for 1 h. After incubation, the Fura-2–loaded platelets
were washed and resuspended in HEPES-Tyrode buffer (pH
7.4). The platelet concentration was adjusted to 2 � 108/ml.
Calcium chloride (0.7 mM) and platelets (750 �l) were added to
siliconized cuvettes and stimulated with 0.1 units/ml thrombin
with stirring. Fluorescence was analyzed by excitation at 340
nm and 380 nm, and emission was measured at 509 nm using a
model LS55 Luminescence Spectrometer (Perkin-Elmer). The
ratio of emissions was calculated simultaneously using FL Win-
Lab4.0 software (Perkin-Elmer) and used to calculate free cal-
cium levels.
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