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Abstract

Rapid improvements in the detection and tracking of early-stage tumor progression aim to guide 

decisions regarding cancer treatments as well as predict metastatic recurrence in patients following 

surgery. Mathematical models may have the potential to further assist in estimating metastatic risk, 

particularly when paired with in vivo tumor data that faithfully represent all stages of disease 

progression. Herein we describe mathematical analysis that uses data from mouse models of 

spontaneous metastasis developing after surgical removal of orthotopically implanted primary 

tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was quantified 

using bioluminescence and was then used to generate a mathematical formalism based on general 

laws of the disease (i.e. dissemination and growth). The model was able to fit and predict pre-/

post-surgical data at the level of the individual as well as the population. Our approach also 

enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a 

function of primary tumor size. In these data-based models, inter-individual variability was 

quantified by a key parameter of intrinsic metastatic potential. Critically, our analysis identified a 

highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting 

possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence. These 

findings represent a novel use of clinically relevant models to assess the impact of surgery on 

metastatic potential and may guide optimal timing of treatments in neoadjuvant (presurgical) and 

adjuvant (postsurgical) settings to maximize patient benefit.

Major findings—A mathematical model was used to connect presurgical primary tumor volume 

and postsurgical metastatic burden and survival in two clinically relevant animal models of 

spontaneous metastasis and one clinical dataset of metastatic relapse probability in breast cancer 

patients. This model used one specific parameter to quantify differential metastatic aggressiveness, 

which could be of help for personalizing adjuvant therapy. Simulations revealed a highly nonlinear 
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relationship between resected primary tumor size and metastatic recurrence. These results uncover 

a computable and patient-dependent threshold for evaluating the efficacy of surgery on overall 

survival.

Introduction

Surgical removal of an early-stage localized tumor remains one of the most effective 

strategies in reducing the probability of systemic metastatic disease spread (1). Improved 

technologies of early cancer detection aim to classify primary tumor stage to identify 

whether potential treatment modalities – such as presurgical ‘neoadjvuant’ or postsurgical 

‘adjuvant’ – should be considered to complement surgery and reduce metastatic potential. 

However the relationship between primary tumor growth and eventual metastasis remains 

enigmatic (2). Metastatic seeding was initially thought to occur only during late stages of 

primary tumor growth and invasion (3), however, recent evidence suggests systemic 

dissemination is a much earlier event (4). Indeed even the direction of tumor spread, initially 

thought to occur unidirectionally from primary to secondary sites, has been replaced by 

more complex and dynamic theories of interaction. These include models where primary and 

secondary lesions grow (and evolve) in parallel (2) and the possibility that cell seeding can 

be bi-directional, with metastasis potentially ‘re-seeding’ back to original primary location 

(5,6).

To assist in understanding this complexity, mathematical modeling has been used to 

determine the relationship between primary (localized) and secondary (metastatic) tumor 

dissemination and growth. Early studies used statistical analyses only (7,8), while later work 

included experimentally-derived data to validate models using biological information that 

aimed to more faithfully represent the metastatic process (9). In 2000, Iwata and colleagues 

used imaging data from one patient with metastatic hepatocellular carcinoma to introduce a 

more formalistic and biologically-based approach that relied on the description of the 

temporal dynamics of a population of metastatic colonies, with equations written at the 

organ or organism scale (10). In parallel, several studies have sought to include additional 

variables when modeling tumor growth, such as angiogenesis (11), stem cell behavior (12), 

tumor-immune interactions (13) and microenvironment influences (14), among numerous 

others. To date, the majority of mathematical studies in cancer modeling have focused on 

primary tumor and relatively few have investigated the metastatic development (15–22).

This dearth in metastatic data stems largely from the complexity of studying metastasis 

itself. Metastasis starts with localized primary tumor growth which then invades and 

intravasates into the bloodstream which, in turn, spreads systemically until extravating into 

tissue at a distant (hospitable) site (23,24). While clinical (retrospective) data has value 

(2,7,20,25,26), mouse tumor models have typically aimed to mimic (and distinguish 

between) several stages of the metastatic process. In certain mouse models, metastasis can 

derive from a tumor that is implanted ectopically or orthotopically into a primary or 

metastatic site (‘ectopic’, ‘orthotopic’ or ‘ortho-metastatic’ models, respectively (27)) and 

can involve various immune states (i.e., human xenograft or mouse isograft). Although more 

rarely performed, models can also include surgical resection of the primary tumor which 

allows for progression of clinically relevant spontaneous metastatic disease. These can 
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include surgery following ectopic implantation (i.e., ‘ecto-surgical’, such as tumors grown in 

the ear or limb that are later amputated), or orthotopic implantation and resection (i.e., 

‘ortho-surgical’), which more faithfully represent patient disease. To date, no studies have 

utilized data from ortho-surgical metastasis models for mathematical analysis.

Herein we describe a mathematical approach developed using data derived from two ortho-

surgical metastasis models representing competent and incompetent immune systems with 

luciferase-tagged human breast (LM2-4LUC+) and mouse kidney (RENCALUC+) cell lines. 

We first defined a mathematical formalism from basic laws of the disease (dissemination and 

growth). Then we confronted the mathematical outputs to longitudinal measurements of 

primary tumor size, metastatic burden and survival using a population approach (nonlinear 

mixed-effects) for statistical estimation of the parameters. Minimally parameterized models 

of each experimental system were generated and used to fit and predict pre-/post-surgical 

data at the individual and population levels. Next we used clinical datasets to assess 

metastatic relapse probability from primary tumor size and show that, in both cases 

(preclinical and clinical), one specific parameter (μ) allowed quantification of inter-animal/

individual variability in metastatic propensity. Critically, our models confirm a strong 

dependence between presurgical primary tumor size and postsurgical metastatic growth and 

survival. However, quantitative analysis revealed a highly nonlinear pattern in this 

dependency and identified a range of tumor sizes (either large or small) where variation of 

tumor size did not significantly impact on survival. These represent potential threshold limits 

for the utility of primary size as a predictor of metastatic disease (i.e., if small, then surgical 

cure; if large, then surgical redundancy). These findings represent the first time clinically 

relevant surgical models have been integrated with data-based mathematical models to 

inform the quantitative impact of presurgical primary tumor size on subsequent metastatic 

disease.

Quick guide to equations and assumptions

The metastatic modeling approach we employed follows the formalism initiated by Iwata et 

al. (10), which was further developed/expanded in recent works in two key ways: 1) effect of 

systemic therapies (28,29), and 2) use in a (non-surgical) in vivo human xenograft model 

involving orthotopic primary tumors (PTs) and metastasis (21). Metastatic development is 

reduced to two main components:

1. Growth: includes presurgical primary (gp) and secondary (g) tumor growth rates

2. Dissemination: includes metastatic dissemination rate (d).

A schematic description of the model is depicted in Figure 1. More complex considerations 

on the biology (1,30) and modeling (31) of the metastatic process have been considered 

elsewhere.

Growth dynamics

The PT volume Vp(t)P solves the following equations
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(1)

The initial condition for the PT, denoted by Vi, was determined either by the number of 

injected cells (preclinical case) or the initial tumor size at inception (clinical case, Vi = 1 

cell). Metastases were assumed to start from one cell. For each case, the optimal structure 

resulting from our investigations was to assume the same structural law for the PT and the 

metastases, although with possibly different parameter values.

Preclinical: Human breast (LM2-4LUC+) metastasis model—Growth dynamics were 

defined by

1. Gomp-Exp (32) growth model (see expression below)

2. Growth parameters for PT and metastases treated identically (g = gp)

In a previous study quantifying the descriptive power of several growth kinetics models 

using data from the same breast animal model (33), the Gompertz model accurately 

described primary tumor growth curves, in accordance with a large body of literature (see 

references in (33)). However, a limitation of this model is that the tumor doubling time could 

become arbitrarily small for small volumes, a feature that we considered biologically 

irrelevant for small volumes at metastatic initiation (of the order of the cell). A lower bound 

to this doubling time might be expressed by the in vitro doubling time of the cell line, which 

can be experimentally determined. Consequently, we adopted the Gomp-Exp model (32), 

defined by

(2)

Under this model, growth is divided between two phases: an initial exponential phase, 

followed by a Gompertz growth phase. Parameter λ is the maximal proliferation rate, taken 

here to be equal to the value inferred from in vitro proliferation assays (see supplementary 

Figure 1A and Table 2). The second term in the min function is the Gompertz growth rate, 

defined by two parameters. Parameter α is the intrinsic relative (specific) growth rate at the 

size V0 of one cell. Parameter β is the exponential decay rate of the relative (specific) growth 

rate.

Preclinical: Mouse kidney (RENCALUC+) metastasis model—Growth dynamics 

were defined by

1. Exponential growth model.

2. Growth parameters for PT and metastases treated differently.

In mathematical terms, this is expressed by
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(3)

Clinical: Human metastatic breast data—Growth dynamics were defined by

1. Gompertz growth model

2. Growth parameters for PT and metastases treated identically (gp = g)

Metastatic dissemination

The formation of new metastases was assumed to occur at a PT volume-dependent rate 

d(Vp) having the following parametric expression

(4)

where parameter μ is an intrinsic parameter of metastatic aggressiveness. This critical 

coefficient is the daily probability for a given tumor cell to successfully establish a 

metastasis. Therefore it is the product of several probabilities: 1) the probability of having 

evolved the necessary genetic mutations to ensure the phenotypic abilities required at each 

step of the metastatic process, 2) the survival probability of all adverse events occurring in 

transit including survival in the blood or immune escape, among others, and 3) the 

probability to generate a functional colony at the distant site. Following reported 

observations (34), we assumed that all the metastases were growing at the same volume (v)-

dependent rate g(v) and that they all started from the same volume corresponding to the 

volume of one cell. The population of metastases was then formalized by means of a time 

(t)-dependent volume distribution ρ(t,v), solving the following problem (10):

(5)

The first equation is a continuity equation expressing conservation of the number of 

metastases when they grow. The second equation is a Neumann boundary condition on the 

flux of entering metastases at size V = V0. The third equation describes the initial condition 

(no metastases at the initial time). From the solution of this problem two main macroscopic 

quantities can be derived, the metastatic burden M(t) and the number of metastases N(t). In 

the convolution formula for M(t) (35), V(s)represents a solution to the Cauchy problem (1) 

with g instead of gp and V0 as initial condition. This formula allows fast simulation of the 

model using the fast Fourier transform algorithm (35), which was essential for estimation of 

the parameters that required a very large number of model evaluations.
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Materials and methods

Preclinical Methodology

Cell lines—The human LM2-4LUC+ cells are a luciferase-expressing metastatic variant of 

the MDA-MB-231 breast cancer-cell line derived after multiple rounds of in vivo lung 

metastasis selection in mice, as previously described (see (36) (37)). Mouse kidney 

RENCALUC+ cells expressing luciferase were a kind gift from R. Pili, Roswell Park Cancer 

Institute and described previously (38). LM2-4LUC+ and RENCALUC+ were maintained in 

Dulbecco’s modified Eagle’s medium (Corning, Cat. #MT10-013-CV) and in RPMI 

(Roswell Park Memorial Institute) medium (Corning, Cat. #MT15-041-CV), respectively, 

with 5% heat-inactivated fetal bovine serum (Corning, Cat. #MT35-010-CV). Cells were 

authenticated by STR profile comparison to ATCC parental cell database (for LM2-4LUC+) 

or confirmation of species origin (for RENCALUC+) (DDC Medical, USA). All cells were 

incubated at 37°C and 5% CO2 in a humidified incubator.

Cell Proliferation assay—LM2-4LUC+ cells were plated in 35mm plates (5×105 cells per 

plate) and were manually counted using trypan blue staining every 24 hours for 72 hours 

total (cellgro, Cat. #25-900-CI).

Photon-to-cell ratio—LM2-4LUC+ cells were trypsinized and counted. 5×106 cells were 

serial diluted 2 fold down to 9.77×103 cells and processed with Bright-Glo Luciferase Assay 

System (Promega, Cat. #E2610) following manufacture’s protocol.

Ortho-surgical models of metastasis—Animal tumor model studies were performed 

in strict accordance with the recommendations in the Guide for Care and Use of Laboratory 

Animals of the National Institutes of Health and according to guidelines of the institutional 

Animal Care and Use Committee (IACUC) at Roswell Park Cancer Institute (Protocol: 

1227M, to JMLE).

The optimization and use of animal models of breast and kidney metastasis orthotopic 

primary tumor implantation and surgical resection have been extensively detailed elsewhere 

(39). Briefly, LM2-4LUC+ cells (2×106 cells in 50μL) and RENCALUC+ (4×104 cells in 5μL) 

were implanted, respectively, into the right inguinal mammary fat pad (right flank) or kidney 

(subcapsular space) of 6–8 week old female CB-17 SCID or Balb/c mice(39). Primary breast 

tumor size was assessed regularly with Vernier calipers using the formula 

width2(length×0.5) and in both tumor models animals were monitored bi-weekly for 

bioluminescence to quantify tumor growth (40). See Supplementary preclinical methodology 

section for more details.

Mathematical Methodology: Fit procedures

Preclinical data: primary tumor and metastatic burden dynamics—Three fit 

procedures were investigated: 1) fitting the population average time series, 2) individual fits 

of each mouse’s primary tumor (PT) and metastatic burden (MB) kinetics and 3) a mixed-

effect population approach. Due to the high variability in the data, the first approach was not 

considered relevant. The second approach showed that the model was able to describe 
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individual dynamics but, due to the relative scarcity of the data in a given animal, led to very 

poor identifiability of the coefficients, in particular the metastatic dissemination parameter μ. 

The third approach was considered the most appropriate to our case. Indeed, nonlinear 

mixed-effect modeling (41) is a statistical technique specifically tailored for sparse serial 

measurements in a population. It assumes that inter-animal variability can be described by a 

parametric distribution on the model’s parameters (here assumed to be lognormal, 

consistently with other works (20,42)). Multiple strategies were tested in order to find the 

appropriate formalism to fit the data. These included fitting PT and MB separately or 

together. The strategy fitting PT and MB was ultimately selected because it resulted in more 

accurate fits and allowed for possible correlations between the primary and secondary 

tumors growth parameters in a same animal.

One of the model parameters for Gomp-Exp growth was the in vitro proliferation rate, which 

was determined by an exponential fit to an in vitro proliferation assay. Maximization of the 

likelihood function under nonlinear mixed-effect formalism was solved using the function 

nlmefitsa implemented in Matlab (43), which is based on the stochastic approximation of 

expectation maximization (SAEM) algorithm. Specific assumptions were: log-

transformation of the parameters (i.e. log-normal population distribution), proportional error 

model and full covariance matrix. For individual fits, weighted least squares minimization 

corresponding to individual likelihood maximization was performed using the function 

fminsearch of Matlab (Nelder-Mead algorithm), following previously reported methods (33).

Clinical data: Calculation of metastatic relapse probability—Our methodology for 

fitting the clinical data followed the same format as (44), although here the model was 

simplified (only parameter μ was allowed to vary among individuals) and PT size at 

diagnosis was considered to be uniformly distributed within each size range. Parameters for 

the growth of the primary and secondary tumors were fixed (not subject to optimization) and 

corresponded to a maximal volume of 1012 cells (≃ 1 kg) and a doubling time of 7.5 months 

at 1 g, consistently with clinical values reported in the literature (8,25).

The data reported in (26) consisted of metastatic relapse probabilities during the next 20 

years post-surgery, for patients stratified by PT size (see Table 1). Diameter data from PT 

sizes at diagnosis were converted into volumes under the assumption of a spherical shape 

and then converted to number of cells using the conversion rule 1 mm3 ≃ 106 cells (45). 

Parameter μ was assumed log-normally distributed in the population, with mean μm and 

standard deviation μσ.

The probability of having a metastatic relapse in the next 20 years for a primary tumor 

diagnosed with a given size was assumed to be equal to the probability of already having 

one distant tumor at the time of diagnosis. For a given volume range of PT sizes at diagnosis 

(Vk,Vk+1), k ∈ {1, …, 7}, we considered the diagnosis volume  as a random variable 

uniformly distributed in (Vk,Vk+1). Then, we computed the corresponding age of the tumor 

at diagnosis (i.e. the time elapsed from the first cancer cell) from the assumption of 

Gompertzian growth with the parameter values previously mentioned. This quantity was 
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denoted . Under our formalism, the probability of having a disseminated metastasis 

at time  then writes

(6)

where Metk stands for the event of having one metastasis at diagnosis when the PT volume 

is in (Vk,Vk+1). For any volume range and value of μm and μσ, this formalism allowed us to 

compute a probability to be compared to the respective empirical proportion of relapsing 

patients reported in (26), by simulating the two random variables involved ( and μ). We 

then determined the best-fit parameters by minimizing the sum of squared errors to the data, 

using the function fminsearch from Matlab.

Results

Quantitative and differential modeling of metastasis in ortho-surgical models

To mimic clinical progression of spontaneous systemic metastatic disease, two models 

involving orthotopic tumor implantation and surgical resection (ortho-surgical) were 

employed. These included a xenograft breast model (LM2-4LUC+ cells implanted into the 

mammary fat pad) and an isograft kidney model (RENCALUC+ implanted into the 

subcapsular kidney space) (38) (see Methods). Presurgical primary tumor (PT) and 

postsurgical metastatic burden (MB) were tracked by bioluminescence (BL) emission, 

expressed in photons/second (p/s) (Figure 2A).

In the breast model, simultaneous BL and gross tumor volume measurements (caliper) were 

performed. The former only quantifies living cells whereas the latter computes a total 

volume indifferently of its composition. Volume and BL emission were significantly 

correlated (supplementary Figure 1B), as observed by others (46). Determination of the 

signal corresponding to one cell was required in our modeling for the value assigned to V0. 

Based on linear regression between BL emission and tumor volume, we established that BL 

= 2.19·106 V + 7.89·107, where BL is the bioluminescence in p/s and V is the volume in 

mm3. This relationship, evaluated at V = 10 mm3 ≃ 107 cells gives 1 cell ≃ 10.08 p/s, which 

was approximated to 10 p/s. Using this value gave reasonable fits to the PT growth data 

(supplementary Figure 2).

Validation and calibration of the mathematical model—We assessed the ability of 

the models to describe and predict the experimental data of postsurgical MB dynamics. 

Several model designs were evaluated to define the optimal structure and methodology that 

would allow accurate and reliable data description. Specifically, for each in vivo 
experimental system, multiple structural expressions and parametric dependences between 

the growth rate of the PT and MB were tested. We refer to supplementary Figures 3 and 4 

for direct comparison of goodness-of-fit and identifiability under different modeling setups. 

Population and individual fits of the best models to the data are shown in Figures 2B–C (and 
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supplementary Figure 5), and Figure 3, respectively. The parameter values inferred from the 

population fits are reported in Table 2. The mathematical models – combined with the 

population distribution of the parameters inferred from the nonlinear mixed-effects statistical 

procedure – were able to give reasonable descriptions of the presurgical PT and postsurgical 

MB growth. Importantly, these combinations could quantify the dynamics of the process as 

well as the inter-animal variability. The latter was better characterized by the metastatic 

potential parameter μ (large coefficients of variation in Table 2). The models could also fit 

individual dynamics of longitudinal data of pre-surgical PT and post-surgical MB (see 

Figure 3 for some representative examples of growth dynamics in particular mice and 

supplementary Figures 6 and 7 for fits of all mice).

In addition to their descriptive power, the models were able to predict growth dynamics in 

external data sets that were not employed for estimation of the parameters (Figure 2D–E). 

These results emphasize the ability of our general modeling structure to capture MB growth 

dynamics. Additionally, the modeled post-surgical MB could also be related to empirical 

survival by means of a lethal burden threshold, which was estimated to be 4×109 p/s 

(supplementary Figure 8).

Qualitative and quantitative differences across ortho-surgical models

Xenograft Model: Breast metastasis: Using the same growth model (Gomp-Exp) and 

parameters for both presurgical PT and postsurgical MB, we were able to adequately fit the 

data, while ensuring reasonable standard errors on the parameters estimates (Table 2). 

Although more complex structures (e.g. models with one parameter differing between 

primary and secondary growth) provided marginally better fits, robustness in estimating μ 
was impaired (supplementary Figure 3). Quantitative inference of μ revealed small 

metastatic potential (Table 2), which translated into late development of metastases 

following xenograft and growth of the MB mostly dominated by proliferation (Figures 2B, 

3A–C).

Isograft Model: Kidney metastasis: In contrast, the kidney model MB growth curves 

exhibited a different behavior, with a marked change of regimen at the time of surgery. In the 

context of the model, this means that most of the presurgical MB increase was driven by the 

dissemination process, and not by proliferation of the metastases themselves. This was 

reflected by a very large value of μ (Table 2), with nine orders of magnitude of difference 

compared to the breast model. This feature was not directly visible, nor quantifiable, by 

direct examination of the data, and reflects the large metastatic aggressiveness of isograft 

spontaneous metastasis animal models, since overpassing the immune surveillance is a 

major challenge in the metastatic process (4). When the PT was removed, dissemination 

stopped and only proliferation remained for further growth of the MB, which happened at a 

slower rate than at the primary site (Figures 2C and 3D–F). In some cases, growth of the MB 

remained constant or even decreased after surgery (see supplementary Figure 7). This result 

reflects the fact that the competent immune status of the mice might have an important 

impact on the establishment of durable, fast-growing metastatic colonies at the secondary 

sites (47).
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Together, our data-based quantitative modeling analysis of presurgical PT and postsurgical 

MB growth kinetics demonstrated the descriptive power of the models, unraveled distinct 

growth patterns between the two animal models and emphasized the critical role of the 

parameter μ for quantification of the inter-animal variability.

Clinical data of metastatic relapse probability

Clinical data reported in the literature generally do not provide detailed information about 

the untreated growth of the metastatic burden, either because the residual disease is invisible, 

or because the patients benefit from adjuvant therapy after resection of their PT. 

Nevertheless, before the generalization of adjuvant therapy for breast cancer, Koscielny et al. 

(26) reported data from a cohort of 2648 patients followed for 20 years after surgery of the 

PT, without additional treatment. Their data (reproduced in Table 1) demonstrated that, 

despite a clear association between PT size at diagnosis and the probability of metastatic 

relapse, not all the patients having a given PT size were relapsing. For instance, only 42% of 

patients with a PT diameter at diagnosis between 2.5 and 3.5 centimeters developed 

metastasis. Based on this observation, we used our model to describe inter-individual 

variability by means of a limited number of parameters. We considered that the probability 

of developing a metastasis in the next 20 years was equal to the probability of already having 

one at the time of diagnosis (see Methods). Using a lognormal population distribution of 

parameter μ we were able to obtain a significant fit to the data of metastatic relapse for all 

size ranges (Table 1, p = 0.023). Interestingly, the median value of μ resulting from these 

human data was close to the value from the preclinical breast data, in comparison to the 

kidney model.

These results demonstrated that, within our semi-mechanistic modeling approach, parameter 

μ was able to capture the inter-individual metastatic variability, not only in animal models, 

but also for patient data.

Assessing the impact of surgery on metastasis and survival: a simulation study

When diagnosis detects only a localized primary tumor, distant occult disease might already 

be present. In our model, the extent of this invisible metastatic burden depends on: 1) the PT 

size at diagnosis and 2) the patient’s metastatic potential μ. For instance, if the PT size (or μ) 

is small then the occult MB might be negligible and surgery would substantially benefit to 

the patient in terms of metastatic reduction, by stopping further spread of new foci. 

Conversely, if the PT size (or μ) is large, then the occult MB might already be consequent 

and removing the PT might only have a marginal impact.

Virtual simulation of two breast cancer patients: We simulated the quantitative impact of 

PT surgery in two virtual breast cancer patients having a PT diagnosed at 4.32 cm and two 

values of μ (median and 90th percentile within a population distributed according to our 

previous estimate). Results are reported in Figure 4 and supplementary movies 1 and 2. A 

discrete and stochastic version of the metastatic dissemination was employed here for the 

simulations (see supplementary methods for details). Interestingly, our simulation revealed 

that at the time of diagnosis, no metastasis was detectable (i.e. below the imaging detection 

limit, taken here to 108 cells), in both cases (Figure 4A–B). In clinical terms, this means that 
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both patients would have been diagnosed with a localized disease. However, the two size 

distributions were very different, with a much larger residual burden in the “large μ” case, 

illustrative of the increased metastatic potential.

For the “median μ” case, our model predicted the presence of two small metastases, with 

respective sizes 6 and 278 cells. Not surprisingly, when no surgery was simulated, this 

number continued to increase, reaching 160 secondary lesions after 15 years (Figure 4C). 

However, most of the metastatic burden (126 tumors, i.e. 78.8% of the total burden) was 

composed of lesions smaller than 109 cells (≃1g). Panels E and G of Figure 4 demonstrate 

that a substantial relative benefit (larger than 10%) in MB reduction was eventually obtained, 

but only after 7.8 years. Nevertheless, at the end of the simulation (15 years after surgery), 

the predicted two occult metastases at diagnosis had reached substantial sizes (1.41×1011 

and 1.89×1011 cells). Therefore, for this patient with median metastatic potential, the model 

indicates an important benefit in using adjuvant therapy.

For a patient with higher metastatic potential (at the level of the 90th percentile, see Figure 4 

panels B, D, F and H, and supplementary movie 2), even with a PT diagnosed at the same 

size, the predicted metastatic burden at diagnosis was considerably more important, with 76 

lesions and the largest comprising 6.23×106 cells. This consequent occult burden translated 

into poor outcome and the metastatic mass would have reached a lethal burden of 1012 cells 

9.3 years after the initial diagnosis if no therapy would have been administrated.

These results illustrate the potential of the model as a diagnosis and prognosis numerical 

tool for assessment of the occult metastatic burden and post-surgery growth. In this, it could 

help to determine the extent of adjuvant therapy necessary to achieve a long-term control of 

the disease.

Impact of tumor size on postsurgical survival: To further examine the relationship 

between the PT size at surgery and survival, we performed simulations for 1) an individual 

with fixed value of μ (the population median, see Figure 5A) or 2) an entire population 

(simulated survival curves in Figure 5B), for three PT sizes. Numerical survival was defined 

by the time to reach a lethal burden of 1 kg (≃ 1012 cells) (2) from the time of cancer 

inception. Interestingly, we observed a highly nonlinear relationship between the PT size and 

the survival, which suggested three size ranges delimited by two thresholds (Figure 5A). The 

lower threshold — termed ‘recurrence’ threshold (4 cm in Figure 5A) — was defined as the 

maximal limit whereupon no metastasis was present at surgery (number of metastases lower 

than 1). The upper size threshold — termed ‘benefit’ threshold (5.2 cm in Figure 5A) — was 

defined as the size above which surgery had a negligible (< 10%) impact on survival time. 

Above and below these ‘recurrence’ and ‘benefit’ thresholds, PT size had no important 

correlative value. Conversely, within the PT size range delimited by these two bounds, the 

relationship between presurgical PT and postsurgical MB/survival was highly correlative, 

with a large derivative and a sharp transition between the two extremes. The same qualitative 

PT size/survival relationship was obtained for any value of μ sampled within the population 

distribution (see supplementary Figure 9).
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In Figure 5C, we present quantitative estimates of the recurrence and benefit thresholds for 

various percentiles of μ within the population distribution (see also supplementary Figure 9). 

Our simulations predicted that for the first half of the population, surgery was almost always 

leading to negligible metastatic recurrence risk, with large values of the recurrence threshold 

(larger than the usual detection levels). On the other hand, the patients with large metastatic 

potential were predicted not to substantially benefit from the surgery, as far as reduction of 

future MB was concerned. For instance, a patient with μ at the level of the 90th percentile 

and a PT diagnosed at 4 cm would have an increase in absolute survival time of only 1.9% 

following surgery (Figure 5C).

Discussion

Using a formalism based on simple laws of metastatic development (including dissemination 

and proliferation), we derived mathematical models able to connect presurgical PT growth to 

postsurgical development of the MB in two ortho-surgical animal models (with two immune 

states) as well as one clinical data set. These quantitative models allowed identification of 

different metastatic growth patterns and characterization of the metastatic potential (and 

associated inter-animal/individual variability) as a critical parameter, μ. Our results also 

revealed a nonlinear quantitative relationship between the PT size at diagnosis and post-

surgical survival improvement.

Previous studies have utilized experimental data derived from mouse metastasis models to 

inform mathematical analysis. For instance, Hartung and colleagues used human MDA-

MB-231 breast cancer cells implanted orthotopically in mice in order to validate a 

mathematical model for longitudinal data of metastatic burden growth (21). This animal 

model was non-surgical and utilized severe immunocompromised Nod SCID γ mice to 

improve the low metastatic potential observed in the MDA-MB-231, a phenomena recently 

reported elsewhere (47). In our studies, we utilized a variant of the MDA-MB-231 

previously selected for increased metastatic potential by repeated orthotopic implantation 

and metastatic resection in SCID mice (36). Since the selection of cells and immune state 

could influence analysis, we also included an immunocompetent mouse kidney model to 

confirm (and compare) findings. While these and other modifications to the metastatic 

systems could significantly influence mathematical modeling (i.e., different mouse strain 

and cell line, different bioluminescence technique, etc…), the impact of surgery appears to 

be the most significant factor. In this regard, several technical discrepancies likely impair a 

relevant comparison between surgical and non-surgical models presented by Hartung, et al. 

(21) and the current study. For instance, in surgical models we found it unnecessary to 

assume different growth between the primary and secondary lesions in surgical models. 

Additionally, we considered a less complex dissemination rate (expression  and 

 was used in (21)). Notably, we could fit our data equally well with various values of γ 
and thus concluded that it cannot be identified from combined PT growth and MB dynamics 

data alone (supplementary Figure 10). Future studies would require more data, especially on 

the number and size distribution of the secondary lesions, to precisely determine the shape 

of the dissemination coefficient. When using the dissemination and growth terms from (21) 

and fitting the resulting model to our surgical data, we found a much larger metastatic 
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potential μ and a significantly faster metastatic growth kinetics parameter than computed in 

the non-surgical model (21) (see supplementary text). While the former probably illustrates 

higher metastatic propensity due to a more permissive immune state, the latter possibly 

suggests post-surgery metastatic acceleration (48–50).

In this regard, this raises another critical consideration of the impact of surgery on metastatic 

potential in mathematical modeling. Preclinical and clinical works have suggested that 

removal of the PT might provoke acceleration of metastatic growth (50,52). There are 

various biological rationales that could explain this, including inhibition of secondary 

growth by the presence of a primary neoplasm as a result of nutrient availability, 

concomitant immunity, or even systemic inhibition of angiogenesis (53). Such a theory 

could conceivably be assessed within the context of our model by defining different pre- and 

post-surgical metastatic growth rates g(v) and comparing goodness of fit. However, this 

would add at least one degree of freedom (thus deteriorating the reliability of the estimation) 

and invalidate the convolution formula used for computation of the metastatic burden in a 

model with non-autonomous g(t,v) (instead of g(v)), and therefore was not considered here. 

Importantly, theoretical integration of higher order phenomena for the biological dynamics 

of metastatic development has been considered elsewhere (14,16,18,54) and recent findings 

in the organism-scale dynamics of metastases (such as the self-seeding phenomenon (5,6) or 

the influence of the (pre-) metastatic niche (55)) could be embedded within the general 

formalism developed in our model. This could lead to complex models, however, and given 

the amount of information contained in our present data, reliable identification of such 

dynamics was not realistic. Instead, we only considered metastatic dynamics as reduced to 

its most essential features: dissemination and proliferation. Future studies should examine 

the potential of metastases to metastasize, as has been extensively debated in the past (56–

58), particularly with the recent demonstration that some metastases are able to re-seed the 

primary tumor (5,6). Although not included in this study, preliminary tests using our model 

suggest negligible differences in the simulations and no impact on our results, however a 

more extensive analysis is required.

Our modeling philosophy elaborates on Fisher’s theory (59) of cancer as a systemic disease 

and relates also to the parallel progression model (2). The dissemination rate d, characterized 

by parameter μ, quantifies the metastatic potential and allows for a continuum of 

possibilities between early and late dissemination. Our results seem to parallel clinical 

evidence of the impact (and importance) of early surgery – particularly in the case of breast 

cancer. For example, in a retrospective study of 2838 breast cancer patients, the post-surgical 

residual recurrence-free survival rate at 5 years for Stage I disease was 7% (60). 

Consistently, our quantitative analysis demonstrates that in this case, for most patients, 

metastases that could have been shed before diagnosis would not develop into overt clinical 

disease during the remaining life history of the patient. For Stage IV breast cancer (that 

would correspond, in our formalism, to a large value of μ), our analysis predicts only 

negligible benefit of the surgery (if only considering reduction of metastatic shedding), in 

accordance with preliminary results of a recent clinical trial (61). In order to use our model 

as a practical diagnosis and prognosis tool that could help to refine and individualize 

adjuvant therapy, the critical next step is to find a way to estimate the parameter μ, in a 

patient-specific manner. One of the main challenges will be to do so using data derived from 
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the primary tumor only, since metastases are often undetectable at the time of diagnosis. 

While the value of μ might very likely depend on the combination of several phenomena 

(including some genetic alterations or the immune status of the patient which could be 

linked to different biomarkers (62)), recent successes of genetic signatures as prognosis 

factors for metastasis might allow for patient-specific estimation of μ (63).

Any mathematical modeling attempt is limited by the intrinsic measurement error of the 

experimental technique. For monitoring the dynamics of total metastatic burden, 

bioluminescence imaging represents one of the best methods so far (51). However, 

measurement variability is hard to assess due to inherent issues, such as the long half-life of 

luciferin that prevents immediate replication of the measurements. Comparison of 

bioluminescence with caliper measurements showed large variance (supplementary Figure 

1B), which increased with tumor size. This justified our assumption of a proportional 

measurement error model. Standard deviation of the relative error could in turn be estimated 

from the fit procedure and yielded a value of 0.72. This high degree of uncertainty should be 

taken into account as an inevitable limitation for quantitative modeling studies of 

bioluminescence data. We therefore put a strong emphasis on using a minimal number of 

parameters and assessed the robustness of our results on various assumptions, such as the 

shape of d and the value of V0 (supplementary Figures 10 and 11).

Together, our mathematical methodology provides a quantitative in silico framework that 

could be of valuable help for preclinical and clinical aims. Indeed, validation of our 

modeling methodology allows us to address in future works the differential effects of 

systemic therapies on primary tumor growth and metastases (39,40). Clinically, our 

methodology could be used to refine/optimize therapeutic strategies for patients diagnosed 

with a localized cancer and inform on the timing of surgery, extent of occult metastatic 

disease and probability of recurrence. In turn, this may impact decisions on duration and 

intensity of presurgical neoadjuvant or postsurgical adjuvant treatments (64).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
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Figure 3. 

Benzekry et al. Page 20

Cancer Res. Author manuscript; available in PMC 2018 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
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Figure 5. 
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