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Preface

Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to 

promote bacterial pathogenesis. In this review we use prototype bARTTs, such as diphtheria and 

pertussis toxins, as references for the characterization of several new bARTTs from human, insect, 

and plant pathogens, which were identified recently through bioinformatic analyses. Several of 

these toxins, including Cholix toxin from Vibrio cholerae, SpyA from Streptococcus pyogenes, 

HopU1 from Pseudomonas syringae, and the Tcc toxins from Photorhabdus luminescens, ADP-

ribosylate novel substrates and possess unique organizations, which distinguish them from the 

reference toxins. The characterization of these toxins extends our appreciation for the variety of 

structure-function properties possessed by bARTTs and their roles in bacterial pathogenesis.

Protein toxins are potent bacterial virulence factors that disrupt host cell activity, often by 

modulating the activity of host proteins through covalent modifications. Bacterial ADP-

ribosyltransferase toxins (bARTTs) are encoded by a range of bacterial pathogens, including 

human pathogens, such as Corynebacterium diphtheriae, Vibrio cholerae, Bordetella 
pertussis, Clostridium botulinum, and Streptococcus pyogenes, the plant pathogen 

Pseudomonas syringae, and the insect pathogen Photorhabdus luminescens. bARTTs confer 

a single post-translational modification – the addition of ADP-ribose – on a variety of 

eukaryotic substrates, including Rho proteins (C. botulinum C3-exoenzymes1, 2), 

heterotrimeric G proteins (V. cholerae cholera toxin3, 4 and B. pertussis pertussis toxin5) and 

actin (C. botulinum C2 toxin6). Many of these modifications inhibit normal eukaryotic 

protein function; however, several novel bARTTs have recently been identified that activate 

eukaryotic proteins to promote bacterial pathogenesis.

ADP-ribosylation is one of the most prevalent covalent modifications, with examples of 

ADP-ribosyltransferases in both Gram-positive and Gram-negative bacteria, as well as 

eukaryotic organisms7, 8. These enzymes utilize a NAD donor molecule to catalyze the 

transfer of the ADP-ribose moiety to a substrate acceptor residue, which can be an Arg, Asn, 

Thr, Cys, or a Gln, depending on the individual toxin. The ADP-ribosylation reaction is 

proposed to follow a SN1 strain-alleviation mechanism9–11.
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The bARTT family consists of >35 members which can be divided into several discrete 

groups, catalogued by their structure-function properties, including AB domain organization 

and the eukaryotic protein target. Although bARTTs are typically organized into four AB 

groups, several recently characterized bARTTs have unique AB organizations (Table 1). The 

conservation of structure-function among bARTTs provides a basis for the identification of 

new bARTT family members through bioinformatics, rather than the identification of a 

disease state. In the past, identification of bARTTs required the detection and purification of 

the protein toxin and the extrapolation of a pathogenic phenotype to the purified protein, an 

often time-consuming process. Bioinformatics provides a mechanism to predict the presence 

of a candidate toxin within the genome of known pathogens, and more significantly, in 

bacteria not yet recognized as human or environmental pathogens (BOX 1).

Box 1

Using bioinformatics to identify candidate bARTTs

In early work, identification of the mechanism of action of a bacterial toxin required that 

genetic, cell biological and biochemical analyses all be used. Subsequently, classification 

of protein toxins into different toxin groups, including bARTTs, continued to utilize wet-

bench approaches. However, the development of weighted bioinformatics analyses, like 

Dayhoff matrices, allowed the identification of closely related bARTT variants based on 

primary amino acid sequence conservation. The continued development of software 

algorithms, such as PSI-BLAST187, allowed deeper mining for primary amino acid 

sequence conservation among related proteins. An increase in the number of solved 

protein crystal structures and the identification of protein folds and the conservation of 

amino acids within these folds through fold-recognition searches18 has advanced the 

ability to identify new members of the bARTT family. While the number of protein 

crystal structures continues to increase exponentially, only a limited number of new 

protein folds have been identified188, indicative of a finite number of structural 

organizations that yield stable and functional protein folds.

A bioinformatics approach can correctly predict new bARTT members based upon strict 

conservation of a function, like NAD binding, but is limited in its ability to correctly 

predict the host protein substrate. For example, the closely related Pseudomonas 
aeruginosa exoenzymes ExoS and ExoT, which share ~ 76% primary amino acid 

homology, target disparate substrates for ADP-ribosylation126, 127, 157. In fact, the 

locations of the substrate recognition sites within ExoS and ExoT are different189. A 

more detailed characterization of how bARTTs recognize the target host protein may 

provide better rules to predict substrates for subgroups of bARTTs. While this approach 

has primarily been used to identify new bARTTS, it may be extrapolated to other groups 

of virulence factors with conserved properties, ultimately leading to better 

characterization of bacterial pathogenesis.

Other reviews have focused on in-depth descriptions of the mode of action of specific 

subgroups of bARTTs12–14. In this review we present several of the newest members of the 

bARTT family that were identified through bioinformatic searches. Bioinformatics has been 
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used to identify virulence factors using different genomic screening approaches15–17. 

However, many bioinformatics approaches require a significant number of sequences or 

structures to generate data for a consensus protein folding domain or a conserved catalytic 

sequence that can then be used to predict new virulence factors. With more than 35 

identified members and targets in plants, animals, and insects, the bARTT family is uniquely 

suited for this branch of in silico analysis18, 19. Bioinformatic analyses recently identified 

Cholix toxin from V. cholerae, SpyA from S. pyogenes, HopU1 from P. syringae, and the 

Tcc toxins from P. luminescens. In this review we discuss the novel and conserved properties 

of these toxins compared with the established prototype toxins.

bARTT structure and function

bARTTs can be divided into two major groups based on both toxin domain organization and 

conserved active site motifs: the diphtheria toxin (DT) group and the cholera toxin (CT) 

group; the CT group can be further subdivided into the CT-like, C2-like, and C3-like 

bARTTs.

Domain organization

DT-like toxins are ~60 kDa single-chain AB toxins, with a catalytic (A) domain and a 

binding (B) domain that contains both receptor binding and translocation activities (Figure 

1A)20–23. CT–like toxins are AB5 toxins with an ~28 kDa A domain, which is non-

covalently bound to a B oligomer comprising five non-covalently associated ~12 kDa 

proteins (Figure 1B)24, 25. C2-like toxins are binary toxins, synthesized as two separate 

proteins comprising an ~50 kDa A component (C2I)6 and an ~ 80 kDa B component 

(C2II)26, 27(Figure 1C). The C3-like exoenzymes are single-chain proteins consisting solely 

of an ~ 25 kDa A domain28, 29. The structural organization of the C3 A domain is 

remarkably similar to the catalytic domain of the C2-like toxins, despite the lack of a B 

component (Figure 1D).

While some recently described bARTTs display sequence and structural conservation to 

prototype toxins, like Cholix toxin and its homology to PE (Figure 1E), other recently 

identified bARTTs have a unique organization relative to the prototypical AB toxins. 

Salmonella enterica serovar Typhi expresses a novel A2B5 toxin (typhoid toxin (TT)) that 

comprises an A1 domain possessing DNase activity that is joined by a disulphide bond to an 

A2 domain with homology to the pertussis toxin S1 catalytic domain (Figure 1F). The A2 

domain is non-covalently bound to a pentameric B oligomer comprising a homologue of the 

pertussis toxin S2 binding subunit30. P. luminescens Tc proteins display a novel ABC 

organization that includes one of several A subunits31, 32. Despite the divergence in overall 

organization, the ADP-ribosyltransferase domains of these new bARTTS are remarkably 

conserved33 and include an invariant Glu, a key residue among the bARTTs34.

Active site residues

DT-like toxins possess an active site HYE motif that contains a His, two Tyr, and a Glu 

residue. The Glu residue was originally identified as the key catalytic residue in DT by the 

Collier group, and was eventually shown to be invariant in all bARTTs35, 36. Mutation of this 
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residue results in a several hundred-fold loss of ADP-ribosyltransferase activity and 10,000-

fold loss in cytotoxicity34, 37. The invariant Glu positions the NAD for hydrolysis and 

coordination of the NAD binding pocket for ADP-ribose transfer38. The HYE motif is also 

conserved in mammalian poly-ADP-ribosyltransferases39, 40. The CT group of bARTTs, 

comprising the CT-like, C2-like and C3-like toxins, possesses a different active site motif 

relative to DT, termed the RSE motif29, 41, 42, which consists of an Arg that positions NAD 

in the active site, a Ser-Thr-Ser that stabilizes the NAD-binding pocket, and a Gln/Glu-X-

Glu motif. The Gln/Glu promotes transfer of ADP-ribose to a substrate residue and, like the 

DT-like toxins, the second invariant Glu positions the NAD molecule to promote hydrolysis.

DT-like toxins

Diphtheria toxin, death after translation inhibition

DT was discovered in 1888 through examination of sterile culture filtrates of C. 
diphtheriae43; injection of the filtrate into animals resulted in lesions and death characteristic 

of diphtheria, with subsequent studies correlating this pathology to DT44, 45. DT is encoded 

on a lysogenic β-phage46 and is produced by C. diphtheriae colonizing the upper respiratory 

tract epithelium. Lysogenized C. diphtheriae release DT, which disseminates throughout the 

body and targets numerous tissues via binding to a ubiquitous cellular receptor, the heparin 

binding-epidermal growth factor (HB-EGF)47, 48 (Figure 2A). After receptor binding, the 

DT-receptor complex undergoes clathrin-mediated endocytosis and traffics to an early 

endosome49. Once internalized, DT is processed by host furin-like proteases, resulting in a 

nicked di-chain linked by a disulphide bond50. Endosomal acidification promotes the 

insertion of two hydrophobic helices from the translocation domain of the B subunit into the 

membrane to deliver the A domain across the endosome membrane where disulphide 

reduction releases the A domain into the cytosol 51, 52.

DT ADP-ribosylates eukaryotic elongation factor 2 (EF2)53, 54 at residue 71555, a post-

translationally modified histidine termed diphthamide, which to date has been found only in 

archaeal and eukaryotic EF256. ADP-ribosylation of dipthamide inhibits EF2 function and 

subsequently inhibits protein synthesis57. Diphthamide is located in the region of EF2 that is 

responsible for the interaction with the P-site of the ribosome58. ADP-ribosylated-

diphthamide may have several effects on protein synthesis including steric hindrance of EF2 

from binding the P-site, interference with mRNA positioning59, or decreased ribosome 

stability60. DT is extremely potent towards humans, with an estimated lethal dose of 

100ng/kg61.

P. aeruginose PE

P. aeruginosa exotoxin A (PE) is a closely related AB toxin of 613 amino acids62. Despite 

limited primary amino acid homology (~18% identity between PE and DT), the A domains 

of PE and DT are structurally conserved, both containing the HYE motif36, 62. However, PE 

displays an inverted domain orientation compared to that of DT, with the B domain at the N 

terminus and the A domain at the C terminus63, 64. PE utilizes low-density lipoprotein 

receptor-related protein 1 (LRP1) as a host receptor65 (Figure 2A). Like DT, PE is cleaved 

by a cellular protease66 and is internalized through clathrin-mediated endocytosis67, but 
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uniquely, PE undergoes retrograde trafficking through the Golgi to the ER via a C-terminal 

KDEL-like sequence. Within the ER, reduction of the disulphide bond and utilization of the 

cellular ER-associated degradation (ERAD) system allows the A domain to traverse the ER 

membrane into the cytosol6869. Once in the cytosol, PE utilizes the same killing mechanism 

as DT, the ADP-ribosylation of EF270.

Cholix, a new V. cholerae virulence factor

Cholix toxin (ChxA) was identified through bioinformatic analysis of V. cholerae genomes. 

V. cholerae infections are typically associated with O1 or O139 strains, which produce the 

CT responsible for the rice water diarrhoea associated with this disease71, 72. Genome 

analyses of environmental73 and clinical74 strains of V. cholerae identified chxA, which has 

homology to the PE coding gene, toxA. Further analysis showed that roughly one-third of 

non-O1 and non-O139 strains encoded chxA, while O1 and O139 strains did not encode 

chxA, suggesting that chxA may contribute to non-CT-mediated virulence75.

chxA encodes the prototype cholix toxin (ChxA-I), a 666 residue protein with an AB 

organization similar to PE76, with N-terminal receptor binding and C-terminal ADP-

ribosyltransferase domains (Figure 1E)77. Although Cholix shares 32% amino acid identity 

with PE, the GC content of chxA is 43% (the GC content of the chxA-containing V. cholerae 
NRT36S genome is 47%74) and the GC content of toxA is 69% (the GC content of the P. 
aeruginosa PAO1 genome is 67%78). This suggests that chxA was not the product of 

horizontal transfer between P. aeruginosa and V. cholerae. Cholix maintains the conserved 

HYE triad, a property of the DT-like toxins, with the catalytic Glu at position 58176. Full-

length alignment with PE shows strong conservation of structure and function, and this was 

confirmed by ChxA-mediated ADP-ribosylation of EF276. Although ChxA can utilize the 

PE receptor (LRP1)65 to enter cells, ChxA also intoxicates cells deficient in LRP, indicating 

there may be a second toxin receptor76. Further examination into ChxA trafficking to 

determine whether ChxA follows the PE intoxication pathway is needed (Figure 2A). 

Additionally, ChxA has extended the potential of the DT-subfamily of toxins for therapeutic 

applications through its use as a potential cancer therapeutic agent (BOX 2). Recently, two 

chxA variants have been identified with substantial differences in amino acid sequence 

within the B domain (ChxA-II) and A domain (ChxA-III)75. In vitro, ChxA and ChxA-II are 

toxic to multiple cultured cell lines, whereas ChxA-III is non-toxic despite containing the 

catalytic Glu residue. Loss of toxicity may instead be due to replacement of the KDEL ER-

targeting sequence with an HDEL sequence which could disrupt trafficking or processing 

steps, although this requires further testing. Injection of mice with Cholix or ChxA-II 

resulted in severe necrosis of the liver and death75.

Box 2

Double edged swords: utilization of bARTTs for therapy and research

Although often considered damaging to human health, bARTTs also possess a 

remarkable capacity to contribute to positive health outcomes. The ability of bARTTs to 

kill cells at low doses, and particularly the extreme toxicity of DT-like toxins, has led to 

their use in a variety of novel therapeutic and basic science applications. The toxic effects 
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of DT ADP-ribosyltransferase activity have been used for cell ablation in transgenic 

mice190 that do not express the DT receptor47. Expression of the DT receptor under 

control of a cell- or tissue-specific promoter results in loss of that cell type upon 

expression or injection of DT191, 192, allowing examination of cellular functions. Other 

DT-like toxins have been used in the development of immunotoxins. Fusion of the 

catalytic domain of PE to the variable domain of antibodies193 allows targeting of 

diseased-cell markers194. Immunotoxins targeting CD22195, which is upregulated in B-

cell malignancies, have shown promise in clinical settings196. Immunotoxins engineered 

with the CD4 domain that binds the HIV envelope protein have been used to kill HIV 

infected cells197 and may be used in combination with other therapies198. Newer 

immunotoxins have been generated using the catalytic domain of Cholix toxin, which is 

non-reactive to PE-neutralizing antibodies199. bARTTs also play a role in neuron-specific 

applications. Fusion of DT to the binding domain of tetanus toxin demonstrated delivery 

of cargoes to neuronal cell lines, suggesting a mechanism for administering neuron-

specific therapies200. Additionally, application of C3bot enhances growth and 

regeneration of neurons in cells201–203 and in vivo204, 205. Increased neuron growth and 

motility in a model of spinal contusion205 indicates that this toxin could serve as a 

therapy to promote regrowth of neurons in patients with damaged nervous systems. With 

the wide variety of receptors, entry mechanisms, eukaryotic substrates, and phenotypes, 

bARTTs will continue to be utilized to advance basic scientific knowledge and medical 

therapies.

CT-like toxins

CT, cAMP signalling and fluid secretion

In 1886, Koch predicted the existence of a secreted CT79, 80 that was eventually identified in 

1959, after injection of a sterile spent culture filtrate of V. cholerae into rabbit intestines 

yielded a “rice water” fluid accumulation similar to the pathology elicited by V. cholerae 
infection81. CT is the prototype AB5 toxin. The CT B subunit binds up to 5 molecules of 

ganglioside GM182 on the membrane of intestinal epithelial cells83, which may result in 

receptor clustering and stimulation of endocytosis84. Upon delivery to the cytosol, A1 is 

activated by binding the small GTPase ADP-ribosylation factor(ARF)85–87 and ADP-

ribosylates Gα of the heterotrimeric G-protein Gs
88, 89. ADP-ribosylation locks Gα in a 

GTP-bound state to constitutively stimulate host adenylate cyclase3, 88. This leads to 

elevation of cAMP, which activates protein kinase A and in turn stimulates the action of a 

chloride ion efflux channel, leading to secretion of ions and water into the intestinal lumen, 

resulting in the watery diarrhoea associated with cholera. The closely related heat-labile 

enterotoxin from Escherichia coli also ADP-ribosylates the Gα subunit of the heterotrimeric 

Gs, causing activation of adenylate cyclase90–92.

Pertussis toxin, cAMP accumulation through Gi signalling

Bordetella pertussis produces pertussis toxin (PT), another member of the AB5 family of 

bARTTs, and of current relevance given the resurgence of pertussis in the developed world 

and worldwide infection of more than 16 million people annually93. PT consists of an ADP-

Simon et al. Page 6

Nat Rev Microbiol. Author manuscript; available in PMC 2018 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ribosyltransferase domain (S1) noncovalently bound to a heteropentamer composed of 4 

distinct subunits (S2–S5)94, 95. The B5 component of PT consists of two molecules of S4 

and one molecule each of S2, S3, and S5. PT utilizes oligosaccharide receptors present on a 

variety of eukaryotic proteins, with separate carbohydrate binding sites within S2 and 

S396–98. PT is delivered to the ER99, where a disulphide bond that locks S1 in an inactive 

conformation is reduced100, 101 allowing delivery into the cytosol. S1 ADP-ribosylates 

Cys3475 on Gα of the heterotrimeric Gi-protein102, 103, uncoupling signalling from the G-

protein coupled receptor104. This uncoupling prevents Gαi from regulating adenylate cyclase 

stimulation, resulting in amplification of cAMP signalling upon G-protein coupled receptor 

activation. Thus, although both stimulate cAMP production, CT and PT use disparate 

signalling pathways to achieve this end result, with unique physiological and clinical 

outcomes.

C2-like toxins

Actin ADP-ribosylating binary toxins

The reference C2-like toxins, including C. botulinum C2 toxin6, C. perfringens iota toxin105, 

C. difficile toxin106, C. spiroforme toxin (CST)107, and Bacillus cereus vegetative 

insecticidal protein (VIP)108, are binary toxins that ADP-ribosylate actin. C2-like toxins 

consist of A and B proteins secreted independently that associate on the surface of host cells. 

The B components are structurally and functionally related to protective antigen (PA), the 

binding component of anthrax toxin, and form PA-like heptamers109 which translocate A 
proteins into target cell cytosol. Iota toxin, C. difficile toxin, and CST B proteins bind the 

same cell membrane receptor, lipolysis-stimulated lipoprotein receptor (LSR)110, thereby 

comprising a subfamily of iota-like toxins13. The A component comprises two ADP-

ribosyltransferase domains, likely resulting from gene duplication, one of which is inactive 

(unable to bind NAD) and used as an adaptor for interaction with the binding component111. 

bARTTs from this family ADP-ribosylate monomeric G-actin at Arg177, thereby inhibiting 

actin polymerization, inducing F-actin depolymerization and destruction of the actin 

cytoskeleton112–114.

Interestingly, destruction of the actin cytoskeleton may not be the only pathogenic role of 

these binary toxins. C. difficile toxin, which is frequently found in hypervirulent C. difficile 
strains115, causes unexpected effects at moderate toxin concentrations. C. difficile toxin-

induced ADP-ribosylation of actin is accompanied by formation of microtubule-based cell 

protrusions116, which form a network of tentacle-like processes on the cell surface. This 

network embeds C. difficile toxin-producing bacteria and increases their adherence and 

colonization. Additionally, C. difficile toxin-induced ADP-ribosylation of actin results in re-

routing of Rab11-positive vesicles containing fibronectin from the basolateral to the apical 

side of epithelial cells, where fibronectin is released at microtubule protrusions to generate a 

binding site for C. difficile117. Similar effects on microtubules were obtained with the other 

binary actin-ADP-ribosylating toxins116, suggesting more sophisticated consequences of 

actin ADP-ribosylation for host-pathogen interaction than mere destruction of the 

cytoskeleton.

Simon et al. Page 7

Nat Rev Microbiol. Author manuscript; available in PMC 2018 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Actin ADP-ribosylating toxins with novel organization

In addition to the binary actin-ADP-ribosylating toxins, several single-chain secreted 

effectors including Salmonella SpvB118, 119, Aeromonas hydrophila exoenzyme T 

(AexT)120, 121, and P. luminescens Photox122 possess ADP-ribosyltransferase domains that 

modify eukaryotic actin with similar functional consequences for the actin cytoskeleton. 

These effectors were identified through bioinformatics, with this strategy exemplified by the 

discovery of SpvB. spvB was a gene of unknown function until it was identified through 

PSI-BLAST analyses of known mono-ADP-ribosyltransferases119. SpvB is secreted by the 

Salmonella Type III secretion system and is required for full virulence in mice and human 

macrophages118. The C terminus of SpvB has only 19% sequence identity to the ADP-

ribosyltransferase domain of VIP2, the closest bARTT relative, but the typical RSE motif of 

C2-like ADP-ribosyltransferases was easily identified. Function was confirmed by 

demonstrating ADP-ribosylation of actin at Arg177123. AexT was identified by 

bioinformatics through similarities to P. aeruginosa ExoS, as it is secreted through a Type III 

secretion system and possesses an N-terminal RhoGAP domain and a C-terminal ARTT 

domain120, 124, 125. However, unlike ExoS126, 127, AexT only displays ADP-

ribosyltransferase activity towards actin, modifying actin at Arg177121. AexT also shows 

potent RhoGAP activity towards Rho, Rac, and CDC42, resulting in synergistic 

enhancement of actin cytoskeleton depolymerization128. Photox, a two-domain protein from 

P. luminescens, was identified through BLAST analysis, which revealed 39% overall 

sequence identity with SpvB122. The C-terminal domain shares 61% identity with the ARTT 

domain of SpvB and, similarly, Photox modifies Arg177 of actin. Photox secretion is 

through an as-yet-unidentified mechanism; however, Photox contains a unique N-terminal 

domain of unknown structure and function which may contribute to secretion.

C3-like toxins

C3bot, uncoupling Rho signaling

C3 exoenzymes have a single domain organization, consisting solely of an ADP-

ribosyltransferase A domain. C3-like toxins ADP-ribosylate RhoGTPases, primarily RhoA, 

RhoB, and RhoC1, 129, 130. Rho GTPases are small-molecular weight G-proteins, which 

modulate the state of actin polymerization by cycling between GTP-bound active and GDP-

bound inactive states though interactions with guanine nucleotide exchange factors (GEFs) 

and GTPase activating proteins (GAPs) (Figure 3A). GTP binding promotes association with 

downstream effector proteins, primarily resulting in CDC42 modulation of cellular polarity, 

Rac modulation of cell motility, and Rho modulation of actin stress fibres131. However, Rho 

proteins also affect changes in adhesion, morphogenesis, vesicular trafficking, microtubule 

dynamics, and gene expression132. C3bot ADP-ribosylates Rho on Asn41 at the edge of the 

Switch-I region133 which typically undergoes conformational change with GDP/GTP 

nucleotide cycling. Unlike other bARTTs that inhibit interactions with effector proteins, 

ADP-ribosylated Rho can still interact with effectors134, but has an increased affinity for 

RhoGDI135, which sequesters Rho in the cytoplasm and prevents activation by RhoGEFs136 

(Figure 3A). High affinity binding to RhoGDI blocks actin-stress fiber polymerization and 

collapses the cytoskeleton. C3bot also interacts with the Ras-related GTPase Ral. C3bot 

does not ADP-ribosylate Ral, but through high-affinity binding prevents nucleotide 
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exchange and activation of Ral in a GDI-like manner137. The functional consequences of the 

C3-Ral complex formation are unclear.

As C3 exoenzymes do not have a B domain, entry into host cells occurs through other 

pathways. For example, C3Stau (EDIN)138 from Staphyloccus aureus is proposed to be 

secreted into the host cytoplasm following bacterial internalization by HeLa cells139, while 

other C3 homologues are taken up by macrophage-like cells140. The entry of each C3 may 

represent a directed mechanism to inhibit phagocytic activity of specific cells. Intriguingly, 

C3bot also appears to play a role in stimulating neuron growth and regeneration, suggesting 

it may have therapeutic potential (BOX 2). Recent bioinformatics surveys have discovered 

new C3-like toxins with novel substrate specificities and pathogenic mechanisms.

SpyA, a membrane-anchored bARTT

S. pyogenes is a Gram-positive human pathogen and the primary agent of Group A 

streptococcal infections, which cause a spectrum of diseases encompassing mild pharyngitis 

(“strep throat”) to streptococcal toxic shock syndrome, which if untreated can be fatal within 

hours. Recognized S. pyogenes virulence factors include adhesion-like molecules, a 

hyaluronic-acid-containing capsule, and superantigen toxins141. Genome sequencing has 

identified >40 putative virulence-associated genes, including a gene encoding a candidate 

ADP-ribosyltransferase, termed spyA142. Genomes of multiple clinical isolates of S. 
pyogenes encode spyA, suggesting that SpyA may have a role in pathogenesis in humans143.

Sequence analysis predicted that SpyA would exhibit C3-transferase activity; spyA encodes 

a 25-kDa protein consisting of 250 amino acids and a putative 30-residue leader sequence. 

Unexpectedly, SpyA was not detected in S. pyogenes culture supernatants; instead the 

predicted leader sequence formed a transmembrane helix and was inserted into the 

bacterium outer membrane144. SpyA contains a C3-like RSE motif with the predicted 

catalytic Glu at position 187143. Despite bioinformatics data suggesting that SpyA was a C3-

like toxin, recombinant SpyA did not ADP-ribosylate RhoGTPases, but rather ADP-

ribosylated vimentin, with actin a minor substrate143. These substrates are also targeted by 

other bARTTs; C2-like toxins ADP-ribosylate actin6 and ExoS of P. aeruginosa ADP-

ribosylates vimentin126. Vimentin is a highly conserved multifunctional intermediate 

filament protein involved in promoting cell adhesion and integrating signalling pathways, as 

well as being key in the organization of cellular architecture145. Vimentin consists of a 

central coil domain, flanked by head and tail domains, and forms anti-parallel dimers and 

tetramers dependent on the head-tail phosphorylation state. Vimentin also plays a role in 

migration of immune cells, and loss of vimentin function results in impaired wound 

healing146.

Stoichiometric analysis showed that SpyA ADP-ribosylated vimentin at two arginine 

residues, Arg44 and Arg49147. These residues are located in the head domain of vimentin, 

and modification of residues in the head domain prevents vimentin from forming higher 

order structures148. ADP-ribosylation likely blocks vimentin oligomerization into 

intermediate filaments, resulting in disruption of vimentin filaments and cytoskeletal 

collapse147. SpyA contributes to S. pyogenes pathogenesis in vivo, as a SpyA-deficient 
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mutant is internalized more readily by HeLa cells and causes smaller bacterial lesions than 

those caused by SpyA-containing bacteria in a mouse cutaneous infection model149.

SpyA is an excellent example of both the strengths and limitations of bioinformatics. 

Bioinformatics correctly predicted that SpyA was a bARTT but its initial classification as a 

C3-like transferase was not entirely correct. SpyA ADP-ribosylates a different subset of 

eukaryotic proteins to promote bacterial survival and virulence and, unlike other C3-like 

toxins, is anchored in the bacterial membrane to promote bacterial pathogenesis.

HopU1, modulator of plant immunity

bARTTs are not limited to human pathogens. Pseudomonas syringae infects >50 species of 

plants, utilizing >30 type-III secreted effector proteins150–152, most of which are of unknown 

function. Bioinformatic analysis of the P. syringae genome, which was sequenced in the 

early 2000s153, 154, identified a putative bARTT, denoted HopU1, which was predicted to be 

a 264 amino acid protein with a conserved RSE motif155 (Figure 3B). Although the domain 

fold of HopU1 displays high overall similarity to C3bot, the two proteins share only 19% 

amino acid identity. Additionally, HopU1 contains two unique loops, L1 and L4 (Figure 3B), 

which are not present in other bARTTs and have been implicated in substrate recognition 

and binding156. Mutation of key residues in L1 or L4 results in loss of substrate binding and 

ADP-ribosylation, suggesting that unique loops outside the core NAD-binding pocket may 

define substrate specificity in these toxins156. This is similar to Crk recognition by another 

C3-like toxin, ExoT of P. aeruginosa157, where an α-helix adjacent to the NAD binding 

pocket encodes the site of substrate recognition158.

Like SpyA, HopU1 does not ADP-ribosylate Rho proteins. Instead, HopU1 ADP-ribosylates 

glycine-rich RNA-binding protein-7 (GRP7)155. GRP7 is involved in processing mRNA and 

promoting mRNA stability within plant cells159, as well as interacting with components of 

the translational machinery160. Loss of GRP7 function results in increased susceptibility to 

pathogens155, 156, suggesting a role in mediating the immune response to infection. HopU1 

ADP-ribosylates GRP7 at Arg49155, which is located in conserved ribonucleoprotein 

consensus sequence 1 (RNP1), which has been implicated in RNA binding in other 

proteins161, 162. Arg49 forms a salt-bridge with the RNA phosphate backbone, promoting 

transcript stability163, 164, and a point mutation at Arg49 results in a decrease in GRP7 

mRNA binding affinity165. In vivo, GRP7 binds various mRNA transcripts, including 

mRNA encoding the pattern recognition receptors (PRRs) FLS2 and EFR160. PRRs are a 

part of the plant innate immune system166, 167, responsible for recognizing pathogen-

associated molecular patterns (PAMPs) such as LPS, peptidoglycan, and bacterial proteins 

like flagellin and bacterial elongation factor-Tu. Bacterial activation of PRRs results in a 

PAMP-mediated immune response that upregulates production of reactive oxygen species 

and expression of innate immunity genes168. HopU1, therefore, inhibits GRP7 binding and 

stabilization of the PRR transcripts, resulting in downregulation of PRR protein expression 

and suppression of plant immunity160. The ability to limit inhibition of translation to 

proteins of the innate immune system contrasts with the total inhibition of protein synthesis 

and cell death caused by the DT-like bARTTs. In this way, P. syringae, a biotrophic 

pathogen, suppresses the host immune response while sparing the life of the host cell. As 

Simon et al. Page 10

Nat Rev Microbiol. Author manuscript; available in PMC 2018 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with SpyA, while bioinformatics analyses correctly identified HopU1 as a novel bARTT, the 

substrate and mechanism of HopU1 activity were solved by conventional cell biology and 

biochemical approaches.

Novel bARTTs

Typhoid toxin, a novel chimera with dual activities

Salmonella enterica serovar Typhi is the causative agent of typhoid fever which kills ~ 

200,000 people annually169. Until recently, the virulence factors that contribute to systemic 

infection with S. Typhi were not well understood. Bioinformatic analysis of the S. Typhi 

genome identified a gene (cdtB) with similarity to genes encoding cytolethal-distending 

toxins (CDTs) expressed by several other bacterial pathogens170. However, although the 

putative A component CdtB possessed DNase activity when transiently expressed within 

cultured cells, a corresponding B component was not apparent. Deeper sequence analysis of 

the pathogenicity islet containing cdtB identified two additional genes exhibiting similarity 

to the sequences of the pertussis toxin S1 (pltA) and S2 (pltB) subunit genes171. 

Unexpectedly, all three proteins were produced during S. Typhi intracellular infection of 

mammalian cells, and deletion of pltA or pltB eliminated cdtB-mediated pathology, linking 

the three gene products. The holotoxin was termed “typhoid toxin” (TT), after the disease 

caused by S. Typhi. Crystallization of TT showed a novel 2AB5 domain organization, with 

2A comprising one unit of CdtB and one unit of PltA and B5 comprising 5 PltB subunits30 

(Figure 1F, left). CdtB and PltA are joined by a disulfide bond created by two unique 

cysteine residues not present in PT or other CDTs; PltA and PltB interact through the 

insertion of a short PltA α-helix into the PltB B5 pentamer (Figure 1F, right). PltB and CdtB 

do not appear to have direct contact30. Purified TT binds a broad range of gangliosides as 

cellular receptors, with a preference for the disialic acid moiety on GD2.

Intoxication of mice with TT elicited symptoms similar to typhoid fever, including weight 

loss, depletion of neutrophils, and death30. While PltA possessed significant structural 

homology to the pertussis S1 subunit, PltA ADP-ribosyltransferase activity targets an as-yet-

unidentified protein. Each of the three components of TT are expressed by intracellular S. 
Typhi, but not by S. Typhi cultured alone in liquid media171. Interestingly, growth media 

from S. Typhi infected cells contained CDT-toxicity, which indicates that full-length TT is 

secreted into the extracellular media171. Subcellular studies showed that each of the three 

components of TT colocalized in membrane-bound vesicles, which presumably contribute to 

the delivery of the toxin to the extracellular media171. Addition of a TT-neutralizing 

antibody blocked toxic effects on neighboring cells and toxicity within S. Typhi infected 

cells, indicating that TT may utilize both autocrine and paracrine intoxication pathways 

(Figure 4). A recent report suggests that TT is packaged into LPS-positive vesicles, which 

are then released into the extracellular medium; the TT-containing vesicles are then taken up 

by neighboring cells through dynamin-dependent endocytosis and TT is delivered via a 

Golgi-mediated pathway 172.

While the bioinformatics prediction that TT was similar to the CDTs and pertussis toxin was 

confirmed by crystallographic analyses, the novel structural organization and toxin delivery 

mechanism were not predicted. Additionally, the cellular target of PltA ADP-
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ribosyltransferase activity has not been identified, despite homology to pertussis toxin S1, 

again illustrating the limits of current bioinformatics analysis.

TccC proteins

bARTTs also exist in insect pathogens. Large (>1.5 MDa) tripartite toxin complexes, called 

Tc or ABC toxins, are produced by entomopathogenic P. luminescens, which lives in 

symbiosis with nematodes (e.g., Heterorhabditis species)173–175. Nematodes harbouring the 

bacteria in their intestine invade insect larvae and release the bacteria by regurgitation. Once 

released into the insect haemocoel, the bacteria produce an array of toxins to kill the insect, 

generating an enormous source of nutrients for proliferation of bacteria and nematodes. 

When the larvae have been depleted, the nematodes take up the bacteria then invade new 

insect prey175.

Tc toxin, which consists of three components, TcA, TcB and TcC, is one of the most potent 

toxins produced by P. luminescens176, 177. TcA (285 kDa) is the cell binding and 

translocation B component and forms B pentamers178. TcC (~105 kDa) is the biologically 

catalytic A component. Like TcA and TcB, TcC occurs in several isoforms179 and consists 

of a highly conserved N-terminal region of 660–680 amino acids and a C-terminal variable 

region of about 300 residues. TcB (170 kDa) is a linker between TcA and TcC.

Using bioinformatics, the variable regions of TcC were identified as bARTTs with typical 

RSE motifs31. In the presence of TcA and TcB, TccC3 induces clustering of F-actin in 

insect and mammalian cells. TccC3 ADP-ribosylates actin at Thr148, with the ADP-ribose 

attachment located in the binding site of thymosin-β4, which normally sequesters 

monomeric actin180, 181. Thus, ADP-ribosylation blocks thymosin-β4 binding and 

polymerization of actin is induced. Component TccC5 also induces strong stress fiber 

formation in the presence of TcA and TcB, although through a different mechanism31 

(Figure 3A). In contrast to the C3 toxins, which inactivate Rho signaling through ADP-

ribosylation of Asn41 in the Switch-I region of Rho proteins, TccC5 ADP-ribosylates 

RhoGTPases at Gln61/63, located in the Switch-II region31. Switch-II conformational 

changes are crucial for GTP hydrolysis182 and TccC5 ADP-ribosylation locks Rho proteins 

into a constitutively active form, resulting in activation of Rho kinase and/or formins to 

induce stress fiber formation31. The Tcc proteins, therefore, act antagonistically to the other 

bARTTs that act on the Rho proteins or actin, which inhibit protein function and block actin 

polymerization. TccC3- and TccC5-induced actin polymerization also inhibits functions of 

immune cells (e.g., blockade of phagocytosis) present in the hemocoel of insects.

Recently, the crystal structures of the components of the Tc toxin have been solved183, 

showing that TcA forms a pentameric prepore structure consisting of a central channel 

shaped like a flared funnel, with an outer shell compartment, resulting in a bell-like 

structure. The crystal structure of the TcdB2-TccC3 complex shows a huge β-barrel-shaped 

cage, with the ADP-ribosyltransferase domain in an unfolded form within the cage. The top 

of the barrel is closed by highly conserved rearrangement hot spot (RHS)-repeat associated 

domain. An aspartate protease domain is located in this region, which likely cleaves the 

already unfolded C-terminal ADP-ribosyltransferase domain of the TcC component and is 
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released into the β-barrel-shaped cage. Once released, TcC can be injected into host cells by 

the TcA B pentamer syringe.

CONCLUSIONS

This research area has changed dramatically over the past decade with the advent of 

bioinformatics. bARTTs can be identified from genome sequences and can be 

experimentally tested without any prior association with disease. However, although 

bioinformatics provides a starting platform for the identification of putative virulence 

factors, Falkow’s molecular Koch’s postulates should still be considered for definitive 

identification184, 185. Ensuring that the putative virulence factor exists only in a pathogenic 

genus or strain and that deletion or mutation of the gene encoding the proposed virulence 

factor results in loss of pathogenicity must be demonstrated to show that the bioinformatics-

identified determinant has a role during infection. Replacement or restoration of the wild-

type gene should then be shown to restore the pathogenic phenotype. These guidelines 

should be utilized to triage the increasing number of putative toxins and other virulence 

factors that are being identified through bioinformatic methods. Following these guidelines 

will ensure that the most important virulence determinants are investigated and therapies or 

vaccines targeted against the most important molecules.

With the large number of identified members allowing rigorous formulation of conserved 

structural and sequence determinants to identify new toxins from sequenced genomes, the 

bARTT family demonstrates the power of bioinformatics to identify new toxins based on in 
silico analyses. While bioinformatics has been used to identify other putative virulence 

factors16, the number of available data sets for each group of virulence factors is limited 

when compared to the number of identified bARTT sequences and available crystal 

structures186. However, although the ability to predict a bARTT is strongly supported, this 

predictive capability wanes when he aim is to identify the substrate. In the near future, the 

“discovery” of new members of the family of bARTTs through fold-recognition searches 

based upon the conserved NAD binding domain and key amino acid residues will play an 

increasingly important role in advancing the field. The increasing number of bARTT family 

members will provide greater power to predict and study the properties of these toxins and 

may establish more defined rules for these determinations and better prediction of toxin 

substrates. Eventually, these rules may be extrapolated to other less-well characterized 

families of protein virulence determinants and increase our understanding of bacterial 

pathogenesis.
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Glossary

SN1 strain-alleviation mechanism
This proposed electrophilic reaction mechanism starts with the hydrolytic release of 

nicotinamide from the NAD donor, followed by formation of an oxocarbenium cation 

intermediate in a “strained” conformation. Rotation around the phosphodiester bond forms a 
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second oxocarbenium cation, resulting in strain relief and moving the ribose moiety near the 

acceptor residue to complete the ADP-ribose transfer.

P (peptidyl) site
Site on the small ribosomal subunit that holds the tRNA molecule linked to the growing end 

of the polypeptide chain.

Retrograde trafficking
Trafficking of vesicles in a direction that starts from the host cell surface and ends in the 

endoplasmic reticulum (ER); for example, trafficking from the Golgi complex to the ER.

ER-associated degradation (ERAD)
A cellular pathway that targets misfolded proteins in the endoplasmic reticulum for 

ubiquitylation and subsequent degradation by the proteasome.

Intermediate filaments
Filaments formed by coiled-coil-rich cytoskeletal proteins, such as keratin.

Pattern-recognition receptor
Soluble or membrane-associated receptor displayed by the metazoan host that can recognize 

complex molecular patterns on the surface of microorganisms.

Autocrine
Activation of cellular receptors on the same cell that produces the ligand.

Paracrine
Activation of cellular receptors on cells adjacent to the cell producing the ligand.
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Online Summary

• The advent of bioinformatics has changed how the study of microbial 

pathogenesis is performed, allowing for development of “reverse proteomics” 

strategies. No longer do researchers need to identify a pathogen clinically 

before identifying putative virulence factors.

• These analyses can be used to identify new bARTTs based on conserved 

function, even with novel structural organizations. This strategy has been 

proven through identification of putative bARTTs followed by experimental 

confirmation of ADP-ribosyltransferase activity. Multiple novel protein toxins 

have been identified and characterized in this manner.

• New toxins such as Cholix, SpyA, HopU1, SpvB, and the TcC proteins have 

been identified through this strategy of “reverse proteomics” and shown 

experimentally to display the predicted ADP-ribosyltransferase enzymatic 

activity.

• However, this strategy still has limitations. Many of the novel toxins display 

unique substrate, structure, or delivery properties not predicted by 

bioinformatic methods. Experimental confirmation of the significance of a 

putative virulence factor according to Falkow’s molecular postulates also 

needs to be considered.

• Continuing growth of the family of bacterial ADP-ribosylating toxins should 

allow greater ability to create “rules” to properly identify substrates and 

structural organization of novel toxins. Extrapolation of this technique to 

other toxins or families of proteins may greatly enhance the field of 

microbiology.
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Figure 1. Structure-function organization of bARTT family members
A. Diphtheria toxin (DT)-like toxins are single chain polypeptides possessing a catalytic A 
domain linked by a disulphide bond to a B domain that includes translocation and binding 

capacity. The figure shows the domain organization of DT (PDB:1MDT) B. Cholera toxin 

(CT)-like toxins are dual chain proteins, with catalytic A1 and A2 domains that insert into a 

pore in the pentameric binding (B) domain. The figure shows the domain organization of CT 

(PDB:1XTC) C. C2-like toxin catalytic A and receptor binding B domains are expressed 

separately. The figure shows the domain organization of C2 toxin (A domain; PDB:2J3Z) 

and B domain PDB:2J42). D. C3-like transferases consist solely of a catalytic A subunit. 
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The figure shows the A subunit of C3bot-transferase (PDB:1G24) E. Domain organization 

and crystal structure of Cholix toxin. Cholix is organized similar to PE, with the binding 

domain at the N terminus and the disulfide linked translocation and catalytic domain at the C 

terminus. (PDB:3Q9O) F. Domain organization and crystal structure of Typhoid toxin (TT). 

(PDB:4K6L). TT has A2B5 organization, with two catalytic subunits (Left). CdtB shows 

structure-function homology to the Cytolethal distending toxins and is linked to PltA by a 

disulfide bond. Displaying structure-function homology to the pertussis toxin S1 and S2 

subunits, respectively, PltA inserts into a PltB pentamer (Right).
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Figure 2. Diphtheria toxin-like cellular intoxication pathways
A. Cellular intoxication of DT-like toxins. DT-like toxins bind host membrane-bound 

receptors and enter via receptor-mediated endocytosis. Protease cleavage of the peptide 

backbone results in a single disulfide-linked chain. Upon endosomal acidification, the A 

domain of DT is translocated into the cytosol by insertion of the translocation domain into 

the endosomal membrane and reduction of the disulfide bond. Conversely, PE undergoes 

retrograde trafficking to the ER, where reduction of the disulfide and interactions with ER-

associated chaperone proteins like PDI promote translocation of the A domain through a 

Sec61-like channel into the cytosol. Once in the cytosol, the A domains of DT-like toxins 

ADP-ribosylate EF2, inhibiting protein synthesis and killing the cell. Cholix can utilize 

LRP1 to enter cells and may follow the PE intoxication pathway.
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Figure 3. Modulation of Rho signalling by bARTTs
A. Rho proteins cycle between active (GTP-bound) and inactive (GDP-bound) states at the 

plasma membrane, or can be bound by RhoGDI in the cytoplasm. GTP-bound Rho interacts 

with downstream proteins to effect signal transduction and actin stress fiber polymerization. 

C3 ADP-ribosylation of Rho results in an increased affinity for RhoGDI and sequestration of 

Rho in the cytoplasm, resulting in cytoskeletal collapse. Conversely, TccC5 ADP-

ribosylation of Rho inhibits GTP hydrolysis and promotes constitutive Rho activation and 

stress fiber polymerization. B. Crystal structure of HopU1. HopU1 shows a conserved C3-

like ADP-ribosyltransferase core structure (see Figure 1D) with unique regions responsible 

for substrate recognition. The “RSE” motif residues (red) and the novel substrate recognition 

loops L1 and L4 (green) are denoted (PDB:3U0J).
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Figure 4. Typhoid toxin utilizes a unique intoxication mechanism
Salmonella Typhi (orange) produce TT within the Salmonella Containing Vacuole (SCV) 

and package TT into outer-membrane vesicles [1]. TT is delivered into the extracellular 

space and binds to ganglioside-containing proteins on infected or uninfected cells [2]. TT is 

taken up by endocytic pathway and is delivered into the cytoplasm via the Golgi [3]. CdtB 

enters the nucleus and cleaves DNA to promote cytopathology [4].
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Table 1
Characterization of the subfamilies of bacterial ADP-ribosyltransferase toxins (bARTTs)

Toxins initially identified through bioinformatic approaches are marked with *.

Toxin Bacteria Eukaryotic substrate Cellular receptor/delivery Reference

Diphtheria-like toxins

Diphtheria toxin Corynebacterium diphtheriae eukaryotic Elongation Factor 
2 (eEF2)

Heparin-binding epidermal growth 
factor

51

Exotoxin A Pseudomonas aeruginosa eEF2 Low Density lipoprotein-receptor 
related protein (LRP1)

68

*Cholix toxin Vibrio cholerae eEF2 LRP1 74

Cholera-like toxins

Cholera toxin Vibrio cholerae Gαs Ganglioside: GM1 86

Heat-labile enterotoxin E. coli (ETEC) Gαs Ganglioside: Various 89

Pertussis toxin Bordetella pertussis Gαi Ganglioside: Various 101

C2-like binary toxins

C2 toxin Clostridium botulinum G-actin N-linked carbohydrates 6

Iota toxin Clostridium perfringens G-actin Lipolysis-stimulated lipoprotein 
receptor (LSR)

104

CDT Clostridium difficile G-actin LSR 105

CST Clostridium spiroforme G-actin LSR 106

VIP Bacillus cereus G-actin Unknown 107

*SpvB Salmonella sp G-actin Type-III secreted 117

*AexT Aeromonas hydrophila G-actin Type-III secreted 120

*Photox Photorhabdus luminescens G-actin Type-VI secreted (putative) 121

C3-like toxins

C3bot Clostridium botulinum RhoA,B,C N/A 1

C3Stau (EDIN) Staphylococcus aureus RhoA,B,C,E N/A 137

C3cer Bacillus cereus RhoA,B,C N/A 129

ExoS Pseudomonas aeruginosa Ras, ERM proteins, vimentin Type-III secreted 125,126

ExoT Pseudomonas aeruginosa CrkI/II Type-III secreted 156

*HopU1 Pseudomonas syringae GRP7 Type-III secreted 154

*SpyA Streptococcus pyogenes vimentin, actin N/A 142

Novel toxins

*Typhoid toxin Salmonella Typhi Unknown Ganglioside: Various, GD2 
preferred

29

*PTC3 Photorhabdus luminescens G-actin Secreted 30

*PTC5 Photorhabdus luminescens RhoA,B,C Secreted 30
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