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Abstract: Chondroitin sulfate (CS), derived from cartilage tissues, is an important type of 
biomacromolecule. In this paper, the terahertz time-domain spectroscopy (THz-TDS) was 
investigated as a potential method for content detection of CS. With the increase of the CS 
content, the THz absorption coefficients of the CS/polyethylene mixed samples linearly 
increase. The refractive indices of the mixed samples also increase when the CS content 
increases. The extinction coefficient of CS demonstrates the THz frequency dependence to be 
approximately the power of 1.4, which can be explained by the effects of CS granular solids 
on THz scattering. 
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1. Introduction 

Articular cartilage (AC) is a transparent connective tissue covering the articular connection 
surface. It is extremely important in all human activities involving bone joints. The change of 
chemical composition and structure is believed to be the major cause of cartilage 
degeneration and the related joint diseases [1, 2]. Therefore, the investigation of chemical 
composition of AC is essential. AC is mainly composed of type-II collagen, proteoglycan, 
water and a small amount of inorganic ions. Chondroitin sulfate (CS) is a sulfated 
glycosaminoglycan and an important structural component of AC. It is mostly living in 
combination with proteins, existed in the form of proteoglycan. The content and structure of 
chondroitin sulfate in different varieties, age and animal types is different [3]. As a kind of 
important biomacromolecules, CS has many important pharmacological and clinical 
applications [4]. For instance, it can decrease the blood lipids level and has a certain effect on 
preventing and treating cardiovascular diseases, so it is mainly used in clinical treatment of 
coronary heart disease, rheumatism, arthritis, nephritis etc [5, 6]. In addition, it can be used 
for adjuvant therapy of hearing impairment caused by streptomycin and hepatitis [7]. 
Therefore, the study and characterization of CS have drawn increasing attention of 
researchers. Conventional measurement technologies include chromatography [8], 
photometry [9], as well as infrared [10] and Raman spectroscopy [11]. 

Terahertz time-domain spectroscopy (THz-TDS) is a coherent and non-ionizing 
measurement technique that can measure the intensity and phase of the spectrum 
simultaneously. A remarkable advantage of THz-TDS over other techniques is its potential to 
provide spectral information and quantify the refractive index, absorption coefficient, 
dielectric constant of a sample under one test [12]. Many substances in the terahertz band 
show distinctive spectral signatures, which means terahertz spectrum could potentially be 
used to identify them. Moreover it can detect low frequency vibrational modes of 
biomolecules, and provide structural information of samples [13, 14]. All these features make 
THz-TDS particularly suited for spectroscopic investigations of AC. 

To date, a variety of biomacromolecules (i.e. bovine serum albumin proteins and 
collagen) have been examined using THz-TDS, demonstrating that this technique is an 
excellent complement to conventional techniques [15]. However, no literature is available on 
the quantitative analysis of chondroitin sulfate content using THz-TDS. In this paper, the 
content detection of chondroitin sulfate by using THz-TDS was demonstrated, and the 
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experimental results have shown that this technique can be applied to obtain spectral 
properties of CS. 

2. Materials and methods 

2.1 Sample preparation 

Chondroitin Sulfate A powder was purchased from Sangon Biotech Co. Ltd (Shanghai, 
China) and the polyethylene powder (PE) was obtained from Sigma-Aldrich Group, China 
(Shanghai, China), whose purity are all above 99%. CS and PE powder was uniformly mixed 
in various proportions (1:0, 3:1, 1:1, 3:5, 1:3, 1:7, 0:1). The samples of each proportion were 
pressed by a tablet press into circular disk-shaped pellets, containing different quantities of 
the mixture (60mg, 80mg, 100mg, and 120mg). Each type was made into three samples, and 
each sample was measured at least three times. While all the circular pellets have a diameter 
of 13 mm, due to slight variations of the sample-making procedure, it is difficult to ensure 
that each group of samples has the same thickness. Therefore, each sample was measured at 
least ten times by a micrometer, whose accuracy is 1 um. The thickness parameter is shown in 
the Table 1. As polyethylene has a low and flat absorption spectrum in the terahertz band, it 
was employed as a passive filler and played a role of adhesion and dilution in the samples 
only. 

Table 1. The mean thickness (mm) of nine pellet samples. 

Quality(mg) 
Content Ratio(CS:PE) 

1:0 3:1 1:1 3:5 1:3 1:7 0:1 

60mg 0.3176 0.3677 0.4397 0.4492 0.5133 0.5139 0.5949 

80mg 0.4313 0.5075 0.6024 0.6426 0.7087 0.7071 0.7762 

100mg 0.5051 0.5961 0.7308 0.7477 0.8289 0.8366 0.9625 

120mg 0.6156 0.7192 0.8765 0.9433 0.9664 1.0333 1.1442 

2.2 Terahertz time-domain spectroscopy 

THz-TDS were performed in transmission geometry using the T-Ray 5000 system (Advanced 
Photonix, Inc. USA). The THz pulse is generated by a biased photoconductive switch pumped 
by a femtosecond-pulsed laser beam with the center wavelength of 1064 nm. This 
femtosecond laser pulse has 80 fs duration and a 100 MHz repetition rate. The spectral 
bandwidth of the THz-TDS system is 0.1 to 3.5 THz, with a spectral resolution of 12.5 GHz, 
and its dynamic range can reach 70 dB. In the experiment, the sample was placed at the focal 
point of two high density polyethylene lenses. As water vapor has strong absorptions across 
the whole THz frequency range, the experimental apparatus including THz emitter, receiver 
as well sample frames were placed into a sealed container filled with dry nitrogen. The air 
humidity around the sample was controlled to 2%. The time domain waveforms of references 
and samples were acquired, and then the discrete Fourier transform was used to obtain the 
frequency-domain information of the terahertz transmission spectrum. 

2.3 Data analysis method 

The samples were studied by a terahertz time-domain spectroscopy system, which obtained 
the time-domain signal ( )eA t and the corresponding reference signal ( )rA t . The signal 

spectra ( ) exp[ ( )]e eA iω ϕ ω−  and the reference spectra ( ) exp[ ( )]r rA iω ϕ ω−  of the sample were 

obtained by Fourier transform of the time domain signal. In the experimental data analysis, 
the THz signals of empty sample holder and pure PE were both used as reference signal in the 
different processes. According to the THz optical parameters extraction model proposed by 
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Duvillaret et al. [12, 16] (see Eqs. (1)-(3) below), the refractive index n , absorption 
coefficient α can be measured. 
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where ( )ρ ω  and ( )ϕ ω are amplitude ratio and phase difference between reference and sample 

THz electric fields, respectively. ( )n ω and ( )α ω are the refractive index and absorption 

coefficient of the sample. c is the speed of light and d is the thickness of sample. 

3. Results and discussion 

3.1 THz refractive index of CS 
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Fig. 1. Refractive indices for samples containing various amounts of the CS-PE mixed power. 
Total weight of pellet: (a) 60 mg, (b) 80 mg, (c)100 mg, and (d)120 mg. 

Figure 1 shows the refractive indices of samples with different CS concentrations. The THz 
signal of empty sample holder was used as reference signal. Samples containing different 
amounts of mixed powders are represented by Fig. 1(a), 1(b), 1(c), and 1(d). Within the 
frequency range of 0.2 THz-1.6 THz, the refractive index of pure CS is about 2.0 and the 
refractive index of pure PE is about 1.4, which shows good agreement with previous studies 
[17]. The mixed samples have the refractive indices between 1.4 and 2.0. In Fig. 1(c) and 
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1(d), the refractive indices of pure CS and 3-1 samples show some significant declines after 
1.6 THz due to the strong THz signal attenuation in the thick samples. 

3.2 THz absorption coefficient of CS 

According to experimental measurements of the thickness and the spectral data of terahertz 
wave spectrum, the absorption coefficients of the samples were calculated. The THz signal of 
empty sample holder was applied as reference signal. Figure. 2 shows actual absorption 
coefficient curves (solid lines) and theoretical absorption coefficient curves (dotted lines) of 
seven samples. In order to obtain the theoretical absorption coefficient curves, we used the 
measured absorption coefficients of pure CS and PE powder as two references to calculate 
theoretical values for all mixtures following the linear relationship between the THz 
absorption coefficient and CS to PE ratio in the mixtures. All the legends in Fig. 1 represent 
the weight ratios of CS to PE. For example, 3-1 means the weight ratio of CS to PE is 3:1. 
The results demonstrate that the experimental absorption coefficient curves are in good 
agreement with the theoretical curves. Some errors may be caused by the nonuniformity of 
the powder mixture, or measurement errors [18]. The pure CS powder has an absorption 
coefficient of 140 cm−1 at 1.6 THz and the absorption coefficients of pure PE is close to 0 
cm−1 over the whole THz frequency band considered here. The slopes of absorption 
coefficient curves of mixed samples gradually increase with increasing CS contents. The 
relationship between the slope of absorption coefficient curves and CS concentration is 
further discussed in the following section. The total weight of pellets has little effect on the 
THz absorption coefficients [Fig. 2(a)-2(d)]. The measurements on the samples with higher 
CS concentration and higher weight or larger thickness may have higher error at higher THz 
frequency range (i.e., beyond 1.6 THz) due to the strong THz signal attenuation. 
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Fig. 2. Absorption coefficient in THz frequencies for samples containing various amounts of 
mixed PE and CS powder. Total weights of pellet: (a) 60 mg, (b) 80 mg, (c)100 mg, and 
(d)120 mg. 
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3.3 The relationship between the THz absorption coefficient and CS concentration at 
certain frequencies 

In order to investigate the relationship between THz absorption coefficient and CS 
concentration, the absorption coefficient of samples with different weight ratios of CS to PE 
at three selected frequencies (0.5, 1.0 and 1.5THz) were plotted. The THz signal of pure PE 
was applied as reference signal. The results show that the THz absorption coefficient of 
samples increases linearly as the CS concentration increases (see Fig. 3). The concentrations 
of CS and PE in the samples are given by: 

 
PE

PE

CS PE

100% 100%

+ 1

CS
CS

Total Total

m m
C C

m m

C C

= × = ×

=

      

                    

 (4) 

where CSm and PEm are the weights of CS and PE in a given sample, and Totalm is the total 

weight of the pellet. CSC and PEC are the concentrations of CS and PE. The quantitative 

relationship between a material and its light absorption is governed by the basic law of light 
absorption (i.e. the Beer-Lambert-Bouguer Law). If the sample thickness is normalized, the 
absorption coefficient, α , representing the material’s light absorption per unit thickness 
should be linearly proportional to the concentrations of attenuating species, which can be 
given by: 

 CS PE CS CS PE PEK C K Cα α α= + = +  (5) 

Where CSα and PEα  represent the absorption coefficients of CS and PE; CSK and PEK  

represent the extinction coefficient of CS and PE, respectively. Compared to the CS, the THz 
attenuation contributed by PE is very low, so PEK is assumed to be zero. Equation (5) is 

rewritten as: 

 CS CS CSK Cα α= =  (6) 

Figure. 3 shows the relationship between the THz absorption coefficient and CS 
concentration in the mixed samples at three specific THz frequencies (i.e., 0.5 THz, 1.0 THz, 
and 1.5 THz). Linear curve-fittings are conducted to calculate the extinction coefficient CSK  

in Eq. (6). The values of CSK , and R2 of curve-fittings are listed in Table 2. The values of 

CSK  increase as the selected frequency increases. The values of R2 are all close to 1, thus 

affirming a linear relationship between absorption coefficient and CS concentration. The 
linear relationships between THz absorption coefficient and CS concentration at different 
THz frequencies can be utilized to quantitatively determine the CS concentration in the 
mixtures by using those “standard curves”. 
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Fig. 3. THz absorption coefficient vs. CS concentration at 0.5 THz,1.0 THz and 1.5 THz. (a) 
60 mg, (b) 80 mg, (c) 100 mg, and (d)120 mg. 

Table 2. Values of 
CS

K  and R2 at 0.5 THz, 1.0 THz, and 1.5 THz in different samples. 

Frequency 
60mg 80mg 100mg 120mg 

CS
K  R2 

CS
K  R2 

CS
K  R2 

CS
K  R2 

0.5THz 24.66 0.99 25.65 0.99 27.74 0.97 25.58 0.99 
1.0THz 73.41 1.00 72.66 1.00 76.58 1.00 73.17 1.00 
1.5THz 134.80 1.00 129.16 1.00 141.36 0.99 135.08 1.00 

3.4 Relationship between the extinction coefficient of CS and the frequency from 0.2 
THz to 1.6 THz 

Actually, beside 0.5 THz, 1.0 THz and 1.5 THz, the linear relationship between the 
absorption coefficient and CS concentration exists at each frequency within range from 0.2 
THz to 1.6 THz, and the values of R2 are all more than 0.95 (Data available but not shown). 
Figure 4 shows the curves of CSK  vs. frequency (0.2 THz~1.6 THz with spectrum resolution 

of 12.5 GHz) in different samples. The extinction coefficient CSK  is the result of the 

absorption coefficient divided by CS concentration. There are no clearly discernible peaks at 
any frequency in Fig. 4. The results may indicate that the THz attenuation caused by CS is 
mainly related to the scattering of THz radiation in the granular samples [19]. Several studies 
have been reported regarding the effects of granular solids on THz scattering [17, 20–23]. The 
equation below could be used to curve-fit the experimental data relating CSK  (unit: cm−1) and 

frequency f (unit: THz) [22]: 

 q
CSK p f= ×  (7) 
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The curve-fitting results are shown in Fig. 4 and Table 3. The extinction coefficient CSK  

demonstrates the frequency dependence, among different samples, 1.4
CSK f∝ . Similar 

relationships between attenuation and terahertz frequency were found for other 
biomacromolecules, for example, THz attenuation in Cytoplex increases as 1.3f  [20]. 
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Fig. 4. Relationship between 
CS

K  and frequency from 0.2 THz to 1.6 THz. 

Table 3. Curve-fitting results of 
CS

K  and frequency. 

 
60mg 80mg 100mg 120mg 

p 74.3071 72.6341 76.8685 74.0095 
q 1.4378 1.4460 1.4314 1.4025 
R2 0.9976 0.9953 0.9948 0.9910 

 
Actually, the particle size for CS and PE powders were measured by using scanning 

electron microscopy (SEM), and the grain sizes were approximately 10 μm and 40 μm for CS 
and PE, respectively (see Fig. 5). Theoretically, the Rayleigh scattering ( 4attenuation f∝ ) 

could be the dominate mechanism for the terahertz scattering in the granular solids when the 
grain size is much less than the terahertz wavelength (e.g. 200 μm at 1.5 THz, 300 μm at 1 
THz, and 600 μm at 0.5 THz). However, the curve-fitting results ( 1.4

CSK f∝ ) show that the 

theory of Rayleigh scattering does not hold here. The possible reason could be that all the 
pellet samples were prepared by using 20 MPa pressure in the tablet press machines. So the 
pressing pressure may decrease the air voids and increase the effective CS grain sizes which 
may become comparable to terahertz wavelength. In this case, Mie’s scattering theory may be 
used to explain the attenuation intensity changing with frequency. Due to the relatively large 
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THz detection range (wavelength ranging from 188 ~1500 μm) and non-uniform particle size 
distribution in the pellet samples, the relationship between the extinction coefficient and 
frequency is not quite Mie-like ( 1attenuation f∝ , when the particle size is about the same as 

the wavelength) either, but close to it. The changes of CS grain size and air void content are 
primarily responsible for the complex THz scattering effects in the mixed pellet samples. 

Fig. 5. SEM images of CS and PE powders. (a) CS powder (particle diameter ≈8.2 ± 3.1μm), 
(b) PE powder (particle diameter ≈36.1 ± 13.4μm).

4. Conclusions

In this study, we have demonstrated that the THz absorption coefficient of the mixed CS/PE 
powder samples increases linearly as the CS content increases, and that the experimental and 
theoretical absorption coefficient curves are remarkably consistent. The pure CS powder has a 
large absorption in terahertz band whose absorption coefficient can reach about 140 cm−1 at 
1.6 THz. All the absorption coefficients of samples gradually increase along with the 
frequencies. However, the refractive index decreases slightly with increasing frequency. The 
refractive index of pure CS is between 1.97 and 2.1. Furthermore, the ratio of the absorption 
coefficient and CS concentration (i.e., the extinction coefficient) increases with frequency. 
The extinction coefficient of CS can be modeled by a frequency dependent scattering process. 
However, due to the effective large size of the CS grains in the samples, such a process is not 
Rayleigh-like (where particle size is much smaller than the wavelength, and 

4attenuation f∝ ), nor is it quite Mie-like (where particle size is about the same as the 

wavelength, with 1attenuation f∝ ), but close to the latter, having a frequency exponent of 

1.4. 
In summary, we have demonstrated experimentally that THz-TDS is very sensitive to the 

changes of CS content. And we have seen how this technique can be used to make a precise 
assessment of CS content in samples. We were able to obtain the substance content and its 
change accurately and quantitatively from the data of terahertz spectroscopy. In future work, 
we plan to measure other constituents in cartilage besides chondroitin sulfate using THz-TDS. 
Combined with different THz spectral and scattering analysis methods, we will study the 
other principal components in cartilage and its distribution expediently and precisely to 
accomplish rapid and efficient assessment of the state of health of articular cartilage and its 
degradation, in order to develop a novel clinical diagnostic method for joint diseases. 
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