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Abstract: Preoperative neoadjuvant treatment in locally advanced breast cancer is recognized 
as an effective adjuvant therapy, as it improves treatment outcomes. However, the potential 
complications remain a threat, so there is an urgent clinical need to assess both the tumor 
response and changes in its microenvironment using non-invasive and precise identification 
techniques. Here, two-photon microscopy was employed to detect morphological alterations 
in breast cancer progression and recession throughout chemotherapy. The changes in structure 
were analyzed based on the autofluorescence and collagen of differing statuses. Parameters, 
including optical redox ratio, the ratio of second harmonic generation and auto-fluorescence 
signal, collagen density, and collagen shape orientation, were studied. Results indicate that 
these parameters are potential indicators for evaluating breast tumors and their 
microenvironment changes during progression and chemotherapy. Combined analyses of 
these parameters could provide a quantitative, novel method for monitoring tumor therapy. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.3880) Medical and biological imaging; (180.4315) Nonlinear microscopy; (100.2960) Image 
analysis. 
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1. Introduction 

Breast cancer is the most common form of cancer in women, accounting for about 29% of all 
new female cancer diagnoses in the United States in 2016 [1]. The diagnosed breast cancer 
among women is increase of countries worldwide, and with increase per year [2]. It is also the 
main cause of the cancer-related death in women [2]. Surgical excision of malignant tissue is 
a central component of traditional breast cancer treatment. Nowadays, neoadjuvant therapy, 
including chemotherapy and radiotherapy before surgery, is recognized as effective [3, 4]. 
Researchers have shown that tumor degradation as a result of neoadjuvant therapy can lead to 
a higher tumor resection success rate, result in reducing the recurrence rate, and improving 
the survival rate of patients [4–6]. However, with the increasing number of drugs approved to 
treat cancer, the evaluation of optimal treatment dosage and course for an individual patient is 
challenging. The potential benefits of the drugs could be outweighed by the side effects in the 
patient. Therefore, the accurate monitoring of tumor response and the effective evaluation of 
tumor environment are vital to the individualized treatment of patients. The current gold 
standard in assessing breast tumor progress and its therapeutic effects is histopathological 
analysis performed days after surgery, which is invasive and time consuming. Moreover, it is 
hard to monitor the treatment response in a timely manner after therapy. Hence, there is a 
critical need for developing new technologies and evaluation methods to predict the efficacy 
of cancer treatment in individual patients. 

Currently, a variety of imaging techniques, such as computed tomography (CT) [7, 8], 
positron emission tomography (PET) [9, 10], and magnetic resonance imaging (MRI) [11, 12] 
are used to examine changes in the breast tumors after preoperative chemotherapy, but those 
examination results are inconsistent with the results of pathological analysis. CT involves a 
high dose of harmful radiation. PET is widely applied in clinics because of its high sensitivity 
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and specificity in tissue, but its low spatial resolution and precision limit its ability to reach 
the subcellular level. PET imaging also requires a contrast agent, which makes it difficult to 
diagnose many diseases. MRI is widely applied on soft tissue because it does not expose the 
patient to ionizing radiation and has higher potential for functional imaging than CT or 
standard radiographs. However, it requires longer scanning time and often results in 
misdiagnosis as a result of its low spatial resolution. Other limitations to MRI are that it 
cannot be used on most patients who have implanted medical devices, and some people are 
allergic to gadolinium contrast [12]. Because of its high false-positive rate, MRI is mainly 
used as an adjunct to mammography for screening high-risk women with dense breast tissue 
[13]. Therefore, having a non-invasive, real-time imaging technique that is comparable to 
pathological analysis is very important for the diagnosis and evaluation of cancers and their 
therapy. Optical coherence tomography (OCT) and optical coherence elastography (OCE) 
were applied to study the differences between normal and cancerous breast tissue and have 
successfully distinguished tumor margins [14–16]. Although OCT has a greater detectable 
depth, it can only obtain structural information. 

Two-photon microscopy (TPM) provides a tool to noninvasively visualize dynamic events 
and has many advantages, including high resolution, deep penetration depth, and low-level 
damage to biological tissues [17–19]. There are also many substances in the breast tissue, 
such as nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and 
elastic fibers that can produce a two-photon excitative fluorescence signal without any 
external contrast agent [20]. Fluorescence information is useful for characterizing the 
metabolic properties of normal and abnormal tissues. Cancer metastasis involves complex cell 
behavior and interactions with the extracellular matrix (ECM) by metabolically active cells. 
The metabolic rate with autofluorescence (AF) is an important marker for the diagnosis and 
treatment of breast cancer, and can serve as a general marker of healthy tissue. For example, 
Skala’s group focused on the metabolic changes of cancer drug response [21, 22]. The special 
noncentral symmetric structure can directly stimulate a second harmonic generation (SHG) 
signal, such as stromal collagen and tumor-stroma interactions [23]. The tumor 
microenvironment is composed of ECM proteins, most notably collagen, as well as a wide 
range of tumor-associated cells [24], including fibroblasts, macrophages, and neutrophils, 
along with the vasculature. Collagen, which is known to have a significant effect on both 
mammary morphogenesis and tumor progression, playing an important role in maintaining 
normal cell behavior due to its control over tumor microenvironment [25–28]. These 
endogenous signals can be visualized using two-photon imaging to reveal tumor tissue 
pathological changes, including degradation and stromal fibrosis, which, in turn, could be 
used to evaluate the effects of treatment after receiving neoadjuvant therapy. This would have 
a significant effect on tumor prognosis. 

In our study, TPM was employed to study normal breast tissue and tumor progression and 
recession. Study tissue included the normal breast, ductal carcinoma in situ, and invasive 
ductal carcinoma and after neoadjuvant chemotherapy (shortened within text as post-
chemotherapy). We analyzed the changes in the tumor microenvironment to reveal the 
characteristics of the tumor progression and recession. The metabolic activity was obtained 
from studying NADH intensity, FAD intensity, and optical redox ratio, which are based on 
endogenous tissue fluorophores that do not require exogenous stains were studied. Then, the 
collagen content, such as ratio of SHG divided by AF, and collagen density, were calculated 
to illustrate the tumor progression and recession. Finally, the collagen orientation in different 
tumors status were extracted to describe collagen distribution. 

2. Materials and methods 

2.1 Samples 

Twenty-three breast tissue samples (seven normal breast samples, six ductal carcinoma in situ 
samples, six invasive ductal carcinoma samples, and four post-chemotherapy samples) were 
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obtained from 17 patients with ages between 39-to-60 years of age undergoing excision 
surgery in the Fuzhou First Hospital affiliated to Fujian Medical University. Our protocol was 
approved by the Institutional Review Board governing clinical investigation of human 
subjects in biomedical research, and informed consent was obtained from the patients. The 
neoadjuvant chemotherapy was as follows: docetaxel (75 mg/m2), doxorubicin (50 mg/m2), 
and cyclophosphamide (500 mg/m2) were combined for intravenous injection. The patients 
received the drugs on the first day of each of the six 21-day sessions. After chemotherapy, the 
patients underwent surgery, and the tumor was removed. All the excised tissues taken from 
each patient was divided into two parts. One part was used for histological diagnoses as the 
gold standard for reference. The other part was immediately frozen in liquid nitrogen (–
196°C) immediately for TPM study. Before the TPM experiment, the samples were cut into 
20-μm-thick slices by freezing microtome and then placed on a microscope slide under a 
cover glass for imaging. To avoid dehydration or shrinkage of samples during the experiment, 
a few drops of phosphate buffer solution were added before observation. 

2.2 TPM system 

The experimental system employed in this study has been described previously [29]. The 
TPM system is a commercial device combined with a Zeiss LSM 510 META laser scanning 
microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) and a Coherent Mira 900-F 
mode-locked femtosecond Ti:sapphire laser (Coherent Inc, Santa Clara, CA, USA). 
Excitation was achieved using a tunable Ti:sapphire laser emitting 110 fs pulses at 76 MHz. 
The excitation wavelengths at 810 nm, 830 nm, and 850 nm were all good to obtain collagen 
images in our experiments. It was verified that the 810 nm excitation wavelength was the 
optimal excitation wavelength for producing a mitochondrial signal of NADH and FAD [30]. 
So, the excitation wavelength was set at 810 nm with an average power ~10 mW. To 
eliminate the influence of experimental conditions, all the experiment settings were consistent 
for each sample. An oil immersion objective (Plan-Apochromat 63 NA 1.4, Zeiss; Carl Zeiss 
Microscopy GmbH) was used. The SHG signal was detected at 404 nm with a bandwidth of 
20 nm, while the AF signal was detected from 430 nm to 714 nm. 

2.3 Data analysis 

2.3.1 Spectrum and oxidation-reduction (redox) ratio 

The AF spectrum provides powerful information that contains various endogenous 
fluorophores, such as NADH, NADPH, elastin, flavins, and others. The endogenous 
fluorophores NADH and FAD are two AF cofactors that act as electron donors and acceptors 
in cellular metabolism [31, 32]. Their concentrations can be detected using TPM. The 32 
META channels detector recorded some peaks in the spectrum with 405 nm, 475 nm, 511 nm, 
and 540 nm, which indicated collagen, NADH (NADPH), elastin, and FAD, respectively 
[30]. As first reported by Chance, the mitochondrial redox state can be obtained by measuring 
the NADH and FAD [33]. The optical redox ratio is defined as the intensity of NADH 
divided by the intensity of FAD, and represents cellular metabolism [22]. The NADH and 
FAD redox index reflects the activity of the mitochondrial electron transport chain, as well as 
tissue metabolism [31]. In our study, we focused on optical redox in the ductal tissues, 
including normal ductal tissue, ductal carcinoma in situ, and ductal carcinoma in situ post-
chemotherapy (the samples included in the invasive ductal carcinoma samples). 

2.3.2 Collagen content with SHG/AF and collagen density 

Collagen is an important and abundant ECM component that can generate intrinsic contrast 
via SHG, which has been used to visualize collagen structures in many disease states [34]. 
Collagen content can be used to identify the degree of tissue abnormality. In our study, the 
intensity of SHG divided by the intensity of AF was obtained [35]. This value shows the 
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content of SHG and AF, and can reflect changes in the microenvironment. Collagen density is 
another parameter for testing collagen content, which is similar to mammary gland density 
because collagen is an important component of normal breast tissue [36]. The collagen 
density reflects the changes in collagen in different tissues. The collagen density value was 
obtained by calculating the ratio of the number of pixels containing collagen divided by the 
number of pixels in the whole image in the extent scale image obtained from TPM in the 
SHG channel. The SHG images only contain only SHG information, while the AF 
information, including about the other endogenous fluorophores, was displayed in black in the 
SHG images. 

2.3.3 Collagen orientation based on a center line 

Quantitative analysis of collagen fiber shape orientation is key to characterizing abnormal 
tissue [37]. There are some methods available for obtaining the collagen shape or alignment 
[37]. In this paper, the fiber orientation is derived from a center line-based algorithm [38]. 
This algorithm first skeletonizes a binary image of the fibers. Orientation was then estimated 
using the tangent line of each pixel along the skeleton (center line). The orientation of the 
tangent line was estimated using the positions of the start and end points of the center line 
intersecting the window boundaries. Compared with other methods, such as Fast Fourier 
Transform, the center line method is better at ignoring the crudeness or fineness of the 
collagen fiber. The results ignore the collagen dimension and can be automatically computed. 

Otsu’s threshold is an unbiased threshold that optimizes the ratio of between-group to 
within-group variance, and it was employed to generate the binary image and segment the 
fiber bundles [39]. The binary image of fiber bundles was then shrunk to a center line based 
on the thinning algorithm and became a skeletonized image [38]. After that, a small square 
window of size (2N + 1) × (2N + 1) was created to evaluate the tangent orientation at each 
pixel in the skeleton, where 2N is the number of directions around the center. The line passing 
through the start and end points of the center line on the window edge can be treated as the 
tangent line when the window center is (N + 1, N + 1) because of the small window size. 
Then, a start point (x1, y1) and an end point (x2, y2) were applied for extracting the slope k of 
the tangent line, which can be expressed as: 

 ( ) ( ) ( )2 1 2 1 2 1, , 0k i j y y x x if x x= − − − ≠  (1) 

The corresponding orientation θ was given by: 

 

2 1

tan ( , ), 0

( , ) tan ( , ), 0

/ 2, 0

arc k i j if k

i j arc k i j if k

ifx x

θ π
π

≥
= + <
 − =

   

   

              

 (2) 

All orientation values are within the range of (0, 180] deg. 
The size of the fiber could be quantified using the radius, where the local radius for every 

pixel (s) on the skeleton was defined to be the minimal distance between the skeleton and 
pixel b on the boundary set (B) in the binary image, 

 ( ) min ( , ).
b B

R b s bdist
∀ ∈

 =   
 (3) 

For pixels located between the boundary and the skeleton, the orientations were 
approximated as the corresponding orientation at the point S extracted in the skeletonized 
image. Thus, the orientations between the boundary and skeleton were equal and the number 
of orientations could be calculated using the areas between the boundary and skeleton, which 
was R × L, where L is pixel size. When the skeleton set S fell at the ends of the skeleton, the 
number of orientations (No) was approximated as 
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 2 / 2o aN Rπ=  (4) 

Where Ra is the radius at the ends of the skeleton. Thus, the orientation was merged with 
the skeletonized image by combining it with the number of corresponding orientations for 
quantifying the orientation distribution in the whole image. The probability density function 
was estimated from a histogram of spatially resolved orientations ranging from 0 deg to 180 
deg, and statistical parameters including the mean and the standard deviation of orientation 
were also calculated. 

2.3.4 Statistical analysis 

Five images from regions of interest (ROI) in different positions of each sample were 
obtained for quantitative analysis. A two-sample t-test with unequal means was completed to 
determine whether the difference was significant in the statistical parameters between any two 
sample groups. Differences were regarded as statistically significant when p<0.05. 

3. Results and discussions 

3.1 Breast cancer structure 

Representative images of normal breast tissue, ductal carcinoma in situ, invasive ductal 
carcinoma, and invasive ductal carcinoma post-chemotherapy obtained from TPM are 
displayed in Fig. 1. 

The images in the first column (A1, B1, C1, and D1) were obtained from the intrinsic 
fluorescence resulting mainly from fluorophores such as NADH, elastin, or FAD in the above 
four types of tissues, respectively. In Fig. 1(A1), the high intensity region (red) is the 
mammary gland lobule, which has strong AF signals. In the extraductal stroma, there is very 
little AF signal. From Fig. 1, it is obvious that the intensity of AF in the stromal region 
increases with tumor progression (e.g. ductal carcinoma in situ [B1] and invasive ductal 
carcinoma [C1]), and decreases slightly post-chemotherapy (D1). These changes indicate that 
cancer progression causes more AF signals. Because the nuclei are largely devoid of any AF, 
they appear as empty within the cell. Thus, information about cell nucleus cannot be obtained 
from TPM imaging, as the nuclei appeared black in images. 

The collagen obtained from SHG microscopy of the four different samples status is 
displayed in the second column (A2, B2, C2, and D2). The morphology of collagen differs in 
each of the sample status, especially in intensity and fiber shape. Collagen is an indicator of 
tissue lesion, and collagen structure/character play an important role in maintaining normal 
tissue function [40]. Thus, SHG has been used to visualize collagen structures in many 
disease states. Collagen is generally rod-like, and the differences in shape among the four 
tissues types (normal breast, ductal carcinoma in situ, the invasive ductal carcinoma, and 
post-chemotherapy) are easy to distinguish [37, 41]. It is evident that the collagen fiber is 
bundled and has a large degree of curvature in the normal extraductal breast tissue. The 
mammary gland lobule is surrounded by collagen, as shown in Fig. 1(A2), and the intensity of 
SHG is very strong where the AF signal intensity is low. However, in the ductal carcinoma in 
situ sample, the collagen fiber shape became thinner, longer, and less curvature (Fig. 1(B2). 
The collagen near the duct is fractured in some regions, most likely because of the destruction 
and loss of collagen during tumor progression. This phenomenon is more evident in invasive 
ductal carcinoma, as the carcinoma cells can break through the duct to invade the stromal 
matrix, as shown in Fig. 1(C2). The collagen here is thin, long, and straight. The strong 
collagen signal intensity decreases sharply, while the AF signal increases in the extraductal 
stromal region in this tissue status. Collagen structure in invasive ductal carcinoma post- 
chemotherapy is seen in Fig. 1(D2). The collagen is more bundled than in invasive ductal 
carcinoma. The intensity and quantity of collagen in invasive ductal carcinoma and post-
chemotherapy are greatly changed, although the tumor structure characteristic is still 
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preserved in the tissue. The phenomena could be explained by the destruction of collagen by 
carcinoma cells and its collagen regeneration due to chemical drug therapy. 

The combination of AF and SHG is displayed in the third column of the Fig. 1(A3, B3, 
C3, and D3). It provides a more comprehensive view of the changes in SHG and AF images 
during breast cancer progression and chemotherapy. 

The fourth column in the Fig. 1(A4, B4, C4, and D4) are the corresponding hematoxylin 
and eosin (H&E) stained histological images of the four samples status. The pink areas are 
collagen. The structures from TPM match well with the histopathological images. 

 

Fig. 1. TPM images and histological images of the structures of breast tissues in four samples 
status. The first column (A1, B1, C1, and D1) was obtained by AF, which reflects endogenous 
fluorophore. The second column (A2, B2, C2, and D2) was obtained by the second harmonic 
generated, which reflects the collagen. The third column (A3, B3, C3, and D3) combines AF 
and SHG. The fourth column (A4, B4, C4, and D4) is the corresponding H&E stained images. 
(A1) -(A4) Normal breast, (B1) -(B4) Ductal carcinoma in situ, (C1) -(C4) Invasive ductal 
carcinoma, and (D1) -(D4) Invasive ductal carcinoma post-chemotherapy. The scale bar is 100 
µm. 
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3.2 Breast cancer redox ratio 

In this study, spectral images were obtained from 382 nm to 714 nm with 32 channels and an 
11-nm interval using the lambda mode of the TPM, as shown in Fig. 2(A). The combined 
image of 32 channels is shown in Fig. 2(B). The spectrum data with 32 channels was obtained 
by further analyzing the mean value of the ROI. The normalized spectrum distribution in 
intraductal regions of different samples status is displayed in Fig. 2(C). The 404-nm channel 
shows the collagen, the 479-nm channel shows the NADH, and the 543-nm channel shows 
the FAD from the ROI. The spectrum distribution changed greatly in different samples status. 
The normal breast data was obtained from the intraductal region with many breast cells, 
which are surrounded by collagen. The SHG spectrum intensity, however, is very weak, while 
the AF is strong in this region. This is mainly caused by the dense breast cell distribution in 
the ductal region. In ductal carcinoma in situ, the SHG intensity is very weak, but AF is 
greater than normal because of the abundant endogenous fluorophores. The cancer cells were 
destroyed and the AF intensity is reduced post-chemotherapy. This most likely was caused by 
the response to chemotherapeutic drugs. 

It has been reported that the metabolic redox rate changes in breast cancer tissues [22]. 
Monitoring the metabolic changes at cellular level is important for understanding the disease 
processes, and the effect of therapies. NADH intensity, FAD intensity, and optical redox were 
calculated as quantitative parameters to characterize the breast cancer’s metabolism and the 
effects of chemotherapy. The results are displayed in Fig. 2(D) and (E). 

From Fig. 2(D) illustrates that as cancer progressed, NADH and FAD intensities increased 
sharply in ductal carcinoma in situ, and were reduced post-chemotherapy. We observed that 
NADH intensity is about 1.6 times higher in ductal carcinoma in situ than that in normal 
tissue. The results are consistent with findings from other researchers [42]. Post-
chemotherapy, NADH intensity decreases, but the value is still higher than that in normal 
tissue. The tendency for variation in FAD intensity is similar, but the amplitude of it is 
smaller than for NADH. FAD intensity is about 1.4 times higher in ductal carcinoma in situ 
than that in normal breast tissue, and it decreases post-chemotherapy. The decrease in NADH 
and FAD intensity may also be caused by the drug’s response. 

The optical redox ratio (NADH /FAD), is displayed in Fig. 2(E). In our study, the optical 
redox ratio increases in tumor status. The result is consistent with the literature [33]. Post-
chemotherapy, the optical redox ratio decreases, but the values are still higher than the normal 
levels. It shows the response of drug on cancer. The greater the reduction of optical redox, the 
more effective the neoadjuvant treatment. The result is consistent with another reported study 
[43]. The data shows that there is a significant difference in optical redox ratio between 
normal, ductal carcinoma in situ, and post-chemotherapy of ductal carcinoma in situ. 

Breast tumor tissue has a higher cell density than normal breast tissue. The cell density is 
reduced post-chemotherapy. This reduction is caused by the drug(s). This might provide some 
clues for the genesis of higher FAD and NADH concentrations in cancerous tissues and the 
decreasing trend post-chemotherapy. The increase in the optical redox ratio indicates 
increased cellular metabolic activity during cancer progression, while the decrease in optical 
redox ratio implies decreased cellular metabolic activity going along with the drug response. 
The results indicate that the optical redox value is sensitive to cancer progression and 
treatment. 
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Fig. 2. Spectral information and the redox ratio in the breast tissues. (A) Lambda mode 
imaging of a breast tissue with 32 channels. The SHG channel is at 404 nm; the NADH 
channel is at 479 nm; the FAD channel is in the 543-nm channel. (B) The combined imaging 
of lambda mode. (C) The normalized intensity vs. the emission wavelength with collagen, 
NADH, and FAD highlighted respectively. (D) NADH and FAD intensities, as well as (E) the 
optical redox in three breast tissues status. The samples for statistics include seven normal 
intraductal breast, six ductal carcinoma in situ and four ductal carcinoma post-chemotherapy. 
The scale bar is 100 µm. 

3.3 Breast cancer collagen content 

Collagen is an important and abundant ECM component that can generate intrinsic contrast 
via SHG, which denotes the different structures in many disease states. Microenvironmental 
changes in the tumor are primarily connected with the changes in collagen within the tissue 
stroma. From the images and the intensities analyzed above, we notice that there is little 
collagen in the breast ducts. Herein, seven extraductal regions from normal breast tissue 
samples, six invasive ductal carcinoma samples, and four invasive ductal carcinoma post-
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chemotherapy were taken for study. The SHG images are shown in Fig. 3(A), (B), and (C), 
respectively. The corresponding AF images are shown in Fig. 3(D), (E), and (F). 

Fig. 3. The collagen intensity in different tissues status. (A)–(C) Images of collagen: (A) 
Normal stroma, (B) Invasive ductal carcinoma, (C) Post-chemotherapy. (D)-(F) AF images: 
(D) Normal stroma, (E) Invasive ductal carcinoma, (F) Post- chemotherapy. (G) The ratio of
SHG/AF and the collagen density of the three status of breast tissues. The samples include
seven normal stroma breast, six invasive ductal carcinoma and four post-chemotherapy. The
scale bar is 100 µm.

To quantitatively analyze the collagen content, the SHG/AF ratio and collagen density 
were considered as biomarkers to reflect the process of tumor progression and recession post-
chemotherapy. The SHG/AF and the collagen density were obtained using the method 
described in methods. The results for SHG/AF and collagen density from the three breast 
tissues status are shown in Fig. 3(G). The value of SHG/AF is about 3.26 ± 0.37 in normal 
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breast stroma, and the value decreases to about 1.22 ± 0.11 in invasive ductal carcinoma, and 
then increases to about 2.37 ± 0.32 post-chemotherapy. The collagen density value is about 
0.68 ± 0.09 in normal breast tissues, decreases to 0.37 ± 0.06 in invasive ductal carcinoma, 
and increases to 0.53 ± 0.08 post-chemotherapy. All these values have a statistically 
significant difference. The results indicate that the collagen content is high in normal breast, 
and decreases sharply in invasive ductal carcinoma, and then increases post-chemotherapy. 
These results indicate that the collagen was destroyed after carcinoma cell invasion and 
regenerated after chemotherapy. Hence, the collagen regeneration can be considered to be an 
indicator of cancer recession. These parameters can be used to monitor and assess the effects 
of chemotherapy. In our study, the significant differences between the values for normal 
stroma and post-chemotherapy imply that the therapy had some effects but the tissues have 
not yet recovered to the normal. 

3.4 Breast cancer collagen orientation 

Recent studies have shown that collagen fiber alignment plays an important role in breast 
cancer progression [44, 45], and potentially can be used to predict therapy outcome. The 
autocalculated fiber orientation method was described in “Methods”. The merit of this 
method is that the results are not associated with the collagen’s dimensions in different tissues 
status. The process of extracting the value of orientation is displayed in Fig. 4. 

Figure 4(A) is the gray-scale image of normal breast. Figure 4(B) is the binary image of 
Fig. 4(A). Figure 4(C) is the image after filtering. Figure 4(D) is the center line image 
obtained based on the thinning algorithm. The fiber orientation value was then obtained 
through the method described previously. Figure 4(E), (F), (G), and (H) are the center line 
images of normal breast, ductal carcinoma in situ, invasive ductal carcinoma, and post-
chemotherapy, respectively. We analyzed the distribution of the mean values of fiber 
orientation with images rotated from 0 to 180 degrees as shown in Fig. 4(I). The mean value 
of the fiber orientations changes greatly with the image rotation, while the standard deviation 
(SD) remains stable with different rotation angles. The mean value of the fiber orientations is 
related to the direction of sample placement. SD denotes the magnitude of deviation from the 
mean. A high SD value indicates large fluctuations in orientation, while a low SD value 
denotes small fluctuations in the angle, which suggests a more consistent orientation. The SD 
value was taken as a parameter for evaluation of the orientation in the four status of breast 
tissues, as shown in Fig. 4(J). The SD value of fiber orientation in normal breast tissue is 
about 53.2 ± 3.2 degrees. The value decreases to about 37.7 ± 2.3 degrees in ductal carcinoma 
in situ, and increases to about 38.2 ± 1.7 degrees in invasive ductal carcinoma. Post-
chemotherapy, the value increases to about 42.1 ± 2.8 degrees. The results indicate that in 
normal breast tissue, the collagen orientation varies more, suggesting a curved collagen fiber 
shape. In carcinoma tissue, the collagen orientation varies less, suggesting a much straighter 
collagen fiber shape. These results are consistent with Falzon et al.’s research regarding the 
shape of collagen in breast cancer progression [41]. Post-chemotherapy, the increased SD 
value of collagen orientation implies that the collagen fibers become more curved. 

Our method is automated for evaluating the orientation of collagen. Moreover, the center 
lines used to identify the collagen fiber orientation are independent from the dimension of the 
collagen. This is helpful, as the fiber thickness in normal and abnormal tissue may vary. The 
results may be used to develop an emerging method of collagen orientation-related tumor 
biomarkers. These biomarkers have the potential to aid in rapid and precise evaluation of 
cancer therapy. They may also aid physicians in formulating effective therapeutic plans to 
improve patient clinical outcomes. 
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Fig. 4. Collagen orientation information for the four breast tissues status extracted from the 
collagen center line. (A) A breast tissue SHG image. (B) The binary image of (A). (C) The 
filtered image. (D) The center line image. (E) The center line image of normal breast tissue. 
(F) The center line image of ductal carcinoma in situ. (G) The center line image of invasive
ductal carcinoma. (H) The center line image of invasive ductal carcinoma post-chemotherapy.
(I) The normal breast image rotated by 45 degrees. (J) The mean and SD values of fiber
orientation with different rotation angles. (K) The standard deviation of fiber orientation in
breast tissues with different status. The statistical samples include seven normal stroma breast
tissues, six ductal carcinoma in situ samples, six invasive ductal carcinoma samples and four
post-chemotherapy samples. The scale bar is 100 µm.

4. Conclusions

In this study, we investigated the changes in tissue ultrastructure and tumor 
microenvironment during breast tumor progression and its recession through TPM. In 
invasive ductal carcinoma, the collagen content is reduced and its shape morphs into a thin 
line. Using SHG signal, we observed some fragments of collagen. Post-chemotherapy, the 
tumor underwent a fibrosis reaction, in which the tumor tissues were replaced by a small 
amount of collagen fibers. 

A series of parameters, including NADH intensity, FAD intensity, and optical redox for 
analyzing the redox of tissue, and ratio of SHG / AF, collagen density for analyzing the 
collagen content, and collagen fiber orientation for analyzing the shape of collagen, were 
extracted for evaluating normal breast tissues, breast cancer tissues (ductal carcinoma in situ 
and invasive ductal carcinoma), and the breast cancer tissues post-chemotherapy. The results 
showed that tissue with carcinoma exhibits a high metabolic rate. Collagen content changes 
also play an important role in the process of tumor progression and recession. The ratio of 
SHG/AF and collagen density showed that the collagen degenerates with the tumor 
progression, while post-chemotherapy, the collagen regenerates. The orientation of collagen, 
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extracted from the center line, can be used to reflect the changes in the shape of collagen in 
breast tissues with different samples status. 

Although the study was on a small number of samples, these results indicate that the 
parameters observed may have great potential for monitoring breast tumor progression and 
response to chemotherapy through TPM. We believe that by bringing a recently developed 
two-photon endoscopic technology [46] into a clinical setting, the parameters that can be 
monitored will aid clinicians in deciding course of therapy, determining the need for surgical 
intervention, and identifying the pathological reaction while avoiding inappropriate or 
excessive treatments. This could truly personalize breast cancer treatment monitoring and 
evaluation. 
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