
ARTICLE ADDENDUM

Xyloglucans fucosylation defects do not alter plant boundary domain definition
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ABSTRACT
The CUP-SHAPED COTYLEDON (CUC) transcription factors play a fundamental role in plant morphogenesis
by defining boundary domains throughout plant development. Despite their central roles in plant
development, little is known about the CUC molecular network. In a recent work, we identified a role for
MUR1, a protein involved in the production of GDP-L-Fucose, in this network and showed that fucose per
se is required for proper boundary definition in various developmental contexts. Which pathway involving
fucose is required to determine boundary is not yet known. Here, we use a previously described mutant
and transgenic line with reduced fucosylated xyloglucans (XyG) to explore one such pathway. By
quantitatively comparing leaf shape, we show that defects in XyG fucosylation do not impact leaf
serrations development suggesting that fucose absence in XyG does not impact boundary development
in mur1-1 mutant. Thus another – not yet identified – pathway or fucosylated compound contribute to
boundary domain definition.
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Boundaries act both as frontiers defining functional units and
as organizing centres providing positional clues to control the
fate of neighbouring cells.1,2 Both functions are important to
correctly pattern developing organs. Failure to establish and
maintain boundaries can result in organ fusion, meristem loss
and developmental arrest.3 Boundaries often display reduced
cell proliferation,4,5 while adjacent tissues or organs actively
grow out via an auxin-dependent mechanism.6,7 As boundary
definition regulators, CUP-SHAPED COTYLEDON transcrip-
tion factors are involved in both shoot meristem formation8

and correct organ separation in various developmental con-
texts.3,9,10 In addition, CUC genes are key regulators of leaf
shape through their roles on leaf margin development.11–13

They are expressed at the sinus of leaf margin serrations where
they are thought to repress growth while allowing it in adjacent
serration tips in a manner that is similar to other boundaries.
While wild-type Arabidopsis leaves are serrated, cuc2 loss-of-
function mutants have smooth leaves with no serrations.11,12

Our recent work uses this system and joins the decades long
effort to characterize the molecular network centred around
the CUC genes.14 In this work we identified a mutation that
simplifies leaf dissection and affects the protein encoded by
MURUS1 (MUR1),14 which participates in GDP-L-fucose pro-
duction.15 Expression analyses revealed that CUC2 levels are
reduced in mur1 mutant backgrounds. Our study shows that
GDP-L-fucose has an important role in different developmental
contexts where it contributes to organ separation in the same
pathway as CUC2. Key questions remain on how fucose modi-
fies CUC2 expression and how it contributes to boundary

definition. Here we expand on our understanding of this role
by showing complementary results on the role of fucosylated
xyloglucans in leaf margin development.

Fucose is naturally incorporated into various cell wall glyco-
conjugates such as xyloglucans (XyG), rhamnogalacturonan II
(RGII), and arabinogalactans.16–18 In addition, fucose partici-
pates in post-translational protein glycosylation.19 GDP-L-
fucose is synthesised in three steps catalysed by two different
enzymes the first of which GDP-D-mannose 4,6-dehydratase is
encoded by MUR1. Fucose content of cell wall components in
the mur1 mutant is strongly reduced in aerial parts but only
partially in root tissues, which may be due to the presence of its
homologue GMD1.15,20,21 It has been hypothesized that activity
of this homolog together with the residual fucose and/or its
replacement by a-L-galactosyl residues in aerial parts is respon-
sible for the weak phenotype ofmur1mutants.20,22 Nevertheless
incorporation of fucose into the different cell wall components
is important for plant development as illustrated by the pheno-
types of loss of GDP-L-fucose import into the Golgi lumen,23

and inhibition of fucosyltransferase activity.24,25

Among the diverse roles of GDP-L-Fucose, its impact on
XyG structure and its implications in terms of growth are of
especial interest. XyG is the most abundant hemicellulose in
dicot cell walls and is thought to play a crucial role in cell elon-
gation and cell wall rigidity.26 XyG molecules can be hydrolysed
in muro and the resulting oligosaccharides can act as signalling
molecules (termed oligosaccharins27). Fucosylated XXFG oligo-
saccharins in particular have been shown to antagonize at low
concentration the synthetic auxin 2,4-D-stimulated elongation
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of pea stem segments.28 Furthermore, a role for fucosylated
XyG in an auxin dependent in muro remodeling of XyG has
been suggested. The overexpression of the xyloglucan fucosyl
hydrolase AXY8/FUC95A29 is able to complement the short
hypocotyl phenotype of dark-grown seedlings of transgenic
lines impaired in auxin responses while removing XyG fucosyl-
transferase activity with mur2-1 mutation30 is not.31 CUC2 and
auxin act together to regulate boundary domain formation, lat-
eral organ development and leaf margin development in an
intricate feed-back loop mechanism.6,7,32 Therefore we hypoth-
esized that the decrease in fucosylated XyG and consequent
reduced levels of XXFG residues in the mur1mutant may result
in modified auxin responses and subsequent developmental
defects in boundary and leaf development.

To test whether XyG fucosylation impacts leaf margin pattern-
ing, we studied two previously reported lines with reduced XyG
fucosylation levels: the 35S:AXY8 line overexpressing the fucosi-
dase AXY8/FUC95A29 and themur2-1mutant line defective for a
XyG specific fucosyltransferase.30 While the near total absence of
fucose in themur1-1mutant results in smooth leaf margins com-
pared to the wild-type control in short-day (Fig. 1A), as previously
reported in long-day conditions (Gonçalves et al. 2017), neither
the mur2-1 mutation nor the overexpression of AXY8 altered
mature leaf shape in short day conditions (Fig. 1A). To compare
leaf serration levels between genotypes we calculated the dissec-
tion index (DI)33,34 for leaves 11, 12 and 13 of plants grown in
short-day conditions. Our analysis shows that leaf serration as
measured by its DI is not significantly reduced in the mur2-1
mutant or 35S::AXY8 plants when compared to the wild-type,
while DI for mur1-1 is significantly reduced compared to the
wild-type (ANOVA, p< 0.0001, Fig. 1B).

Together these results show that correct leaf margin pattern-
ing can still occur in the absence of XyG fucosylation, suggest-
ing that our previously reported boundary definition defects in
the mur1 mutants are independent of the lack of fucose in
XyG. Because GDP-L-fucose deficiency in mur1 mutants leads
to defects in several glycosylation processes, it is probable that
another fucosylated compound is responsible for the defects in
boundary domain definition in mur1 mutants. The pectic poly-
mer RGII is a key component of the cell wall and it has been
suggested that its cross-linked dimerization has a role in cell
wall expansion.17,35 Interestingly, fucosylation state of RGII has
been shown to impact the stability of the borate di-ester facili-
tated cross-linked dimers.17 Therefore we can hypothesize that
absence of fucose in mur1 mutants impacts cell wall expansion
properties affecting leaf margin development through a reduc-
tion of cross-linked RGII. Alternatively it is possible that the
fucosylation of a protein within the CUC2 molecular network
is required for its function.
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