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Abstract

Background: High levels of glycemic variability are still observed in most patients with diabetes with severe insulin
deficiency. Glycemic variability may be an important risk factor for acute and chronic complications. Despite its
clinical importance, there is no consensus on the optimum method for characterizing glycemic variability.
Method: We developed a simple new metric, the glycemic variability percentage (GVP), to assess glycemic
variability by analyzing the length of the continuous glucose monitoring (CGM) temporal trace normalized to
the duration under evaluation. The GVP is similar to other recently proposed glycemic variability metrics, the
distance traveled, and the mean absolute glucose (MAG) change. We compared results from distance traveled,
MAG, GVP, standard deviation (SD), and coefficient of variation (CV) applied to simulated CGM traces
accentuating the difference between amplitude and frequency of oscillations. The GVP metric was also applied
to data from clinical studies for the Dexcom G4 Platinum CGM in subjects without diabetes, with type 2
diabetes, and with type 1 diabetes (adults, adolescents, and children).

Results: In contrast to other metrics, such as CV and SD, the distance traveled, MAG, and GVP all captured
both the amplitude and frequency of glucose oscillations. The GVP metric was also able to differentiate
between diabetic and nondiabetic subjects and between subjects with diabetes with low, moderate, and high
glycemic variability based on interquartile analysis.

Conclusion: A new metric for the assessment of glycemic variability has been shown to capture glycemic
variability due to fluctuations in both the amplitude and frequency of glucose given by CGM data.

Keywords: Glycemic variability, Continuous glucose monitoring, Artificial pancreas.

Introduction In 1970, Service et al. proposed a metric for assessing gly-

cemic variability induced by meal-time glucose excursions,

GLYCEMIC VARIABILITY IS a well-recognized problem in
the day-to-day management of both type 1 and type 2
diabetes. Patients with diabetes who achieve mean glucose
values in the euglycemic range may still be at risk for short-
and long-term complications from hypoglycemia and hy-
perglycemia if they have high levels of glycemic variability.
There is an extensive literature on glycemic variability, but
numerous authors have noted the lack of consensus about the
appropriate metrics for characterizing it clinically.'~

the mean amplitude of glycemic excursions (MAGE), using
glycemic excursions in excess of one standard deviation (SD)
above the mean.” Kovatchev et al. identified high glycemic var-
iability in an article published in 2003 as a risk factor for severe
hypoglycemia.* In 2005, Hirsch and Brownlee hypothesized
that higher levels of glycemic variability may have been re-
sponsible for the higher risk for microvascular complications
among patients in the Diabetes Control and Complications
Trial (DCCT) control group with reduced glycosylated
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hemoglobin (A1C).” Rizzo in 2010 found that high glycemic
variability was associated with cognitive impairment in el-
derly patients with type 2 diabetes.® Penckofer et al. in 2012
reported that high glycemic variability was associated with
physical and emotional distress and noted that “glycemic
variability may be associated with lower quality of life and
negative moods”.” Soupal et al. in 2014 found that high
glucose variability in subjects with type 1 diabetes was as-
sociated with greater incidence of microvascular complica-
tions regardless of glycemic control.® Smith-Palmer and
coworkers published the results of a systematic literature
review in 2014 in which they found strong evidence for an
association between high glycemic variability and micro-
vascular complications in patients with type 2 diabetes.®’

The prevalence of high levels of glycemic variability has
been an important incidental finding in virtually all clinical
studies with continuous glucose monitoring (CGM) systems.
Garg and coworkers found high levels of glycemic variability in
an early study with a first-generation CGM system, the Dexcom
STS.' Interestingly, they observed a decrease in glycemic
variability over a short period of time in a subset of patients
using the system for less than 10 days. Indeed, it is reasonable to
expect that the successful use of a CGM system should result in
reduced glycemic variability. Patients who experience reduced
glycemic variability as a result of using a CGM device may be
more likely to continue to use the technology, whereas patients
who still struggle with high levels of glycemic variability may
be at risk for discontinuing use of the technology.

New pharmacologic treatments and medical devices may
also hold promise for reducing glycemic variability in patients
with diabetes. Wang et al. in 2010 suggested that leptin could be
used as an adjunct to insulin to reduce glycemic variability in
subjects with type 1 diabetes.'' More recently, Sands et al. re-
ported that the use of sotagliflozin, a dual SGLT1 and SGLT2
inhibitor, resulted in improved glycemic control in subjects with
type 1 diabetes, as measured by mean glucose, incidence of
hypoglycemia, insulin utilization, and several common metrics
of glycemic variability.'> The recent approval by the U.S. Food
and Drug Administration of the first artificial pancreas device
system (the Medtronic 670G) has raised hope that new devices
may improve glycemic control and reduce glycemic variabi-
lity."> New metrics of glycemic variability may be needed to
assess improvements in glycemic control and reductions in
glycemic variability from evolving pharmacological treatment
and medical devices in diabetes.

Despite the importance of glycemic variability in both type
1 and type 2 diabetes, there is no universally accepted current
metric for the assessment of glycemic variability. A recent
review article on this subject noted ““(t)he definition of glucose
variability, however, remains a challenge due primarily to the
difficulty of measuring it and lack of consensus on the best
approach to be taken”.' Several groups have developed com-
puterized schemes for calculating the mean amplitude of gly-
cemic excursions (MAGE).M’15 Sechterberger et al. noted,
however, that computerized protocols for calculating MAGE
often did not produce the same results.'® Rodbard has written
extensively about the different methods in current use for cal-
culating glycemic variability.'’>° In a commentary published
in 2012 on the challenges of measuring glycemic variability,
Rodbard noted nine separate issues, including the uncertainty
and ambiguity regarding the choice of a single metric for gly-
cemic variability.'®
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Cameron et al. raised similar issues in their review of ex-
tant methods for calculating glycemic variability writing
“(Hhe matter remains unresolved due in no small part to the
number of methods used to measure glycemic variability and
a lack of agreement as to what metric constitutes the ‘gold
standard’ for glycemic variability”.?! Saisho and coworkers
conducted a detailed analysis comparing different metrics for
glycemic variability based on CGM data and suggested that
there was no single best metric, but rather that physicians and
researchers needed to understand the strengths and weak-
nesses of the different metrics relative to their clinical ob-
jectives.”> LeFloch and Kessler have defined a glucose
fluctuation index based on root-mean square calculation of
successive CGM data points that they contrast with other
metrics, such as SD, which measure the dispersion of glucose
values, but ignore the temporal ordering of points.>

We have proposed a simple metric that can be used by
clinicians to rapidly assess the glycemic variability status of
patients and thereby identify those patients with continued
high levels of glycemic variability, who might benefit from
additional interaction with healthcare staff for further educa-
tion on the optimum use of CGM devices. The new metric, the
glycemic variability percentage (GVP), can provide a quan-
titative measurement of glycemic variability over a given
interval of time by analyzing the length of the CGM temporal
trace normalized to the duration under evaluation.

The GVP is an intuitive topological measure similar to the
distance traveled metric proposed by Marling et al.** and the
mean absolute glucose (MAG) change proposed by Herma-
nides et al.>> The distance traveled method is the sum of the
absolute difference in glucose levels from successive CGM
measurements over a given interval of time. MAG is a sum of
all the absolute changes in glucose normalized by the time over
which the measurements were made.”® The distance traveled,
MAG change, and GVP all capture both the amplitude and
frequency of glucose oscillations and may give different re-
sults compared with other accepted metrics for glycemic
variability such as coefficient of variation (CV) and SD.

Methods

Although the GVP metric is similar to MAG and the distance
traveled, GVP may be easier to understand conceptually and
easier to use clinically because the results are expressed as a
percentage compared with the minimum line length for a given
duration. The GVP method calculates the length of line from
CGM data by using a trigonometric analysis of the data. In ad-
dition, the concept of a GVP relative to a norm allows for easier
comparison of glycemic variability between different data sets.

The GVP is based on the fact that the length of the contin-
uous glucose monitor temporal trace over a given interval of
time depends on the degree of glycemic variability: temporal
traces with high glycemic variability have greater lengths than
traces with low glycemic variability. Mathematically, this is
similar to the problem posed by Mandelbrot regarding the
proper measurement of the coastline of Great Britain or other
coastal areas with a high degree of tortuosity.?’

The GVP is normalized by the duration of time under
evaluation and, hence, represents a time-invariant metric that
can be applied with equal fidelity to different intervals, for
example, one day, one week, one month, or three months, of
CGM data. The top graph in Figure 1 shows the temporal
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trace from a Dexcom continuous glucose monitor (L) along
with a line representing the duration of the temporal trace
(L,)—a straight line with zero variability. The value of the
GVP in this example is 30.5%.

The GVP can be calculated from the equation for the
length of a line L given by the summation over all n line
elements AL based on decomposition into horizontal (Ax)
and vertical (Ay) components and application of the Py-

thagorean theorem.
n
L= ) \/Ax? +Ay?
i=1

i=

In this equation, the differential element Ax is defined as the
time between two successive CGM system measurements and
the differential element Ay is determined as the change in
glucose over that time interval. This is illustrated graphically in
the inset in Figure 1. GVP is the ratio of the length of the line
with glycemic variability compared with the length of the line
without glycemic variability. The line length defined in this
study is a combination of orthogonal elements, glucose and
time, and includes mixed dimensions of both glucose and time.
Since the dimensions of the line length calculated from the
Pythagorean theorem contains units in both glucose and time,
the GVP value does contain a dependency on the unit of
measure of glucose (mg/dL or mmol/L). While it is possible to
scale the temporal domain to compensate for changing the
units of measure from mg/dL to mmol/L, to make sure that the
minimal variability line used for normalization has the correct
units, we recommend performing the calculation in glucose
units of mg/dL.

Each line element as defined above is approximation of the
instantaneous rate of change of glucose over the measurement
interval between two successive CGM values. This method is
therefore related mathematically to the proposals by Ko-
vatchev et al. and Whitelaw et al. to use the rate of change of

glucose, to evaluate glycemic variability.”®*° The GVP, is
based on a simple geometric measure, namely the length of
the line L represented by the CGM trace normalized to the
ideal line length L for a given temporal duration or simply

GVP = (L/Lo—1)x 100

where L is given by

Lo= ), Ax;

i=1

The duration over which glycemic variability can be cal-
culated with this method would be calculated the same for
different intervals such as days, weeks, or months. We have
chosen to express the new metric as the percentage of gly-
cemic variability above a deviation from a straight line for the
duration of time under consideration. We believe that the
new metric is easily understood, easily visualized, and easily
calculated.

The calculations of GVP from the CGM data were per-
formed in Excel using a simple macro or script to automate
the data analysis procedure. A sample script is available
upon request from the corresponding author. The script was
applied to data obtained from Dexcom CGM devices with
five-minute data records. Kohnert et al. evaluated the MAG
change metric in subjects with type 1 and type 2 diabetes and
found good results when used with CGM at high sampling
rates (once every 5 min), but expressed concern that it could
be misleading with low sampling rates (once every 60 min).>°
As expected, the sampling frequency does play a role in any
estimation of glycemic variability, including the GVP metric
proposed in this study. Increased sampling time will have the
same effect on the underlying data as the use of a low pass
filter and will reduce the apparent extent of glycemic vari-
ability. Qualitative characterization of glycemic variability
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using the GVP metric remains valid for slightly increased
sampling intervals such as once every 10 or 15 min, but the
quantitative categorization (minimal, low, moderate, and
high) may need to be adjusted for the longer sampling in-
tervals. Greater sampling intervals such as 30 or 60 min are
not suitable for use with the GVP metric or for other metrics
that include the temporal component of glucose oscillations.

In addition, it should be noted that this method is best
suited for CGM traces with high data recording rate and a low
number of data omissions such as have been reported recently
with new CGM systems.31 The algorithm is written, however,
to compensate for gaps in the CGM trace by shortening the
ideal line length L, by the amount of missing CGM data.

We applied the new GVP metric to data obtained from five
late stage or pivotal studies for the G4 Platinum in adult
subjects with diabetes (n=186) and three late stage or pivotal
studies for the G4 Platinum in pediatric patients (n=204).
The example given in Figure 1 was taken from the pivotal
study for the G4 Platinum (software version 505). The length
of the line given by the CGM trace L was 13,349, the nor-
malized line length L, for the duration of the data was 9670,
and the GVP was 38% indicative, as discussed below, of a
moderate level of glycemic variability. There were 141
subjects with type 1 diabetes and 21 subjects with type 2
diabetes in the four G4 Platinum pivotal studies. In addition,
we also applied the new GVP metric to 43 volunteer subjects
without diabetes in two late stage feasibility studies. The
duration of each of these studies was ~7 days; hence, the
total number of data points was over 450,000 or ~288 data
points per day per subject. Data from the subjects with dia-
betes and the volunteer subjects without diabetes were used
to characterize the variation in the GVP metric observed in
actual clinical data.

We compared the new glycemic variability index proposed
in this study, the GVP, with two widely used metrics for gly-
cemic variability, the SD and CV, as well as two additional
metrics that have been discussed in more specialized litera-
ture on the field (MAG and CONGA1). We performed an
interquartile analysis of the data in order to characterize the
distribution of glycemic variability in the data obtained from
the different studies. This provided numerical criteria for as-
sociating a given value of GVP with low, moderate, or high
levels of glycemic variability.

Results

Figure 2 shows four simulated CGM traces over 7 days
(168 h) using square waves with the same amplitude (180 mg/
dL), but different periods (12, 24, 56, and 168 h). A square
wave pattern was chosen for illustrative purposes only. The
minimum was 40 mg/dL, the maximum was 400 mg/dL, and
the mean glucose for all four traces was 220 mg/dL. Visually,
the examples with the same amplitude, but different period-
icity, clearly represent different levels of variability. Four
existing measures of glycemic variability were applied to this
data: MAG, CONGAI, CV, and SD. The GVP metric was
also applied to the data. The GVP metric was 4% for the
square wave profile with a period of 84 h and 18% for the
example with a period of 28 h, both indicative of a low level
of glycemic variability. The GVP metric was 46% for the
square wave profile with a period of 12h and 95% for the

square wave profile with a period of 6 h, both indicative of a
high level of glycemic variability.

Table 1 below gives a summary of results for five metrics
for glycemic variability: GVP, MAG, CONGA1, CV, and SD
applied to the illustrative square wave examples in Figure 2.
Four of the five metrics, excluding GVP, were calculated with
the latest version of EasyGV (v9.0 R2)—an online glycemic
variability resource.’” Results of these calculations were
corroborated using a separate open source program for cal-
culating glycemic variability metrics.®> In the examples
shown, the mean glucose is 220 mg/dL. and the SD from a
continuous distribution over the same range of values is
115 mg/dL for all cases, indicating that the MAGE metric
would also be unchanged for these examples.

The first two metrics (GVP and MAG) are able to clearly
differentiate between these four examples of glycemic vari-
ability. The numerical values of both the GVP metric and the
MAG metric show that the variability is increased 4—5-fold
from the 84-h period to the 28-h period. Both metrics show
an ~ 2.5 factor increase in glycemic variability from the 28-h
period to the 12-h period and another twofold factor from the
12-h period to the 6-h period. The third metric (CONGAT1)
does show a difference in glycemic variability among the four
examples, but it is difficult to assess the magnitude of the
difference in glycemic variability from the numerical values
for this metric. The additional two metrics (CV and SD),
which are the most widely used tools for assessing glycemic
variability, give the same results for all four cases.

The GVP and MAG metrics capture the visual impression
from the graphs that if one could take the curves in the four
examples and stretch them to their full length, the curve with
the shortest periods (highest frequency) of oscillations would
be longer than the curve with the longest periods (lowest
frequency) of oscillations. While the simulated square wave
temporal CGM traces are for mathematical demonstration
purposes only, they show clearly that the different glycemic
variability metrics measure different components of glycemic
variability. The two glycemic variability metrics that gave the
same results for all four square wave examples (CV and SD)
measure the amplitude of glycemic excursions, but not the
frequency, and hence may be incomplete as metrics of gly-
cemic variability.

GVP, MAG, and CONGA 1 measure both the amplitude and
frequency of oscillations and hence may represent more

TABLE 1. FIVE GLYCEMIC VARIABILITY METRICS APPLIED
TO SIMULATED CGM PROFILES USING SQUARE WAVES
WITH THE SAME AMPLITUDES BUT DIFFERENT PERIODS

Period of

oscillation

(hours) GVP (%) MAG CONGAI cv SD
6 95 57.9 242.81 0.8184 180.04
12 46 27.9 264.01 0.8184 180.04
28 18 10.7 276.88 0.8184 180.04
84 4 2.1 283.49 0.8184 180.04

The results show that three metrics capture the difference in
glycemic variability (GVP, MAG, and (CONGA), whereas two others
(CV and SD) do not.

CV, coefficient of variation; GVP, glycemic variability percent-
age; MAG, mean absolute glucose; SD, standard deviation.
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complete measures of glycemic variability than the other met-
rics. Figure 2 is similar to a figure in deVries, which compared
a simulated step function and a simulated sawtooth function
between 5 and 10 mmol/L over a 20-h period, and found a
similar result to that reported in this study, namely that the SD
was unchanged between the two simulated profiles, whereas
the value of the MAG metric was different by a factor of 19.2°
In our simulations, the GVP metric is unique among the three
that do capture the difference in glycemic variability in its ability
to provide a physically intuitive value based on the percentage
increase in glycemic variability compared with a trace with zero
variability (i.e., a straight line).

In Figure 3 below, two traces are shown from research sub-
jects in clinical studies of the Dexcom G4 Platinum CGM. Both
traces have the same approximate mean glucose, but there are

visually discernible differences in glycemic variability. In the
first of the two traces, the mean glucose was 135 mg/dL and the
GVP metric was 29%, indicating low glycemic variability as
determined by interquartile analysis (see Table 3). In the second
of the traces, the mean glucose was 138 mg/dL and the GVP
metric was 52%, indicating high glycemic variability also as
determined by interquartile analysis.

Following the methodology of Rodbard, we have per-
formed an interquartile analysis of the glycemic variability
associated with each separate study subject cohort.'® Ana-
lysis of clinical study data from the late stage feasibility and
pivotal regulatory studies for the original G4 Platinum CGM
system and the updated version (software 505) found a spec-
trum of glycemic variability according to the GVP metric,
depending on the study subject cohort. Pediatric subjects with
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FIG. 3. Two examples of CGM traces from a seven-day clinical study (168h) showing low-to-moderate glycemic
variability GVP=29% (top) and high glycemic variability GVP=52% (bottom), but approximately the same mean glucose

(135 and 138 mg/dL, respectively).

type 1 diabetes showed higher levels of glycemic variability
than adults with type 1 diabetes. Table 2 shows the GVP
values associated with study subjects without diabetes, with
type 1 diabetes, with type 2 diabetes, as well as children (2—
12 years old) and adolescents (13—18 years old) with type 1
diabetes.

The table gives the upper bounds of the GVP for each
quartile from interquartile analysis of the CGM data. In ad-
dition to the 100th percentile (maximum), the table also
contains the Oth percentile (minimum), as well as the 2.5th

and 97.5th percentiles. In subjects without diabetes, the upper
bound of the first quartile was GVP equal to 14.8%. The upper
bound of the second quartile, or the median GVP, was 18.2%.
The upper bound of the GVP in the third quartile was 19.6%
and the highest value of GVP in the fourth quartile was 28.4%.
These results are consistent with the findings by Hill et al.
calculating glycemic variability using other previously pub-
lished metrics in nondiabetic subjects of various ethnicity.**

The lowest levels of glycemic variability were found, not
surprisingly, in study subjects without diabetes. As expected,

TABLE 2. UPPER BOUNDS OF THE GLYCEMIC VARIABILITY PERCENTAGE (GVP) FOR EACH QUARTILE
FROM INTERQUARTILE ANALYSIS OF GLYCEMIC VARIABILITY DATA IN ADULTS (>18 Y/0) WITHOUT DIABETES,
WITH TYPE 2 DIABETES AND WITH TYPE 1 DIABETES

GVP metric Adults Adults with Adults with Children with Adolescents
for glycemic without type 2 type 1 type 1 with type 1
variability diabetes (%) diabetes (%) diabetes (%) diabetes (%) diabetes (%)
Oth Pct. (min) 8.4 13.2 18.5 26.8 27.1
2.5th Pct. 8.8 14.5 22.8 39.2 30.4
25th Pct. 14.8 20.6 33.8 52.9 42.3
50th Pct. 18.2 26.0 42.3 58.1 51.9
75th Pct. 19.6 30.6 48.9 66.1 63.3
97.5th Pct. 25.3 42.6 64.0 95.0 79.3
100th Pct. (max) 28.4 44.1 69.7 95.0 112.1

Also shown is the interquartile analysis for children (<13 y/o) and adolescents (13—18 y/o) with type 1 diabetes.

Pct., percentile.
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subjects with type 2 diabetes were found to have a lower level
of glycemic variability than subjects with type 1 diabetes.

Adolescents with type 1 diabetes had the highest mean
glycemic variability of 58.0% compared with 51.9% for
children with type 1 diabetes. The median (50th percentile)
glycemic variability according to the GVP metric was 42.3%
for adults with type 1 diabetes, 26.1% for adults with type 2
diabetes, and 18.2% for adults without diabetes. The highest
levels of glycemic variability were seen in the upper quartile
of adolescents with type 1 diabetes that reached a GVP value
of 112% compared with 95.0% in children with diabetes and
69.7% in adults with type 1 diabetes.

Analysis of the CGM data from nondiabetic subjects found
small amounts of glycemic variability consistent with the
observation by Service that, ‘‘a modest degree of variation of
glycemia is characteristic of normal glucose homeostasis”.*
In the nondiabetic subjects, 79% of all GVP values were <20%
and 100% of all GVP values were <30%. The significance of
the overlap in GVP between some subjects without diabetes
and some with diabetes, but minimal glycemic variability, will
be discussed below. In subjects without diabetes, 95% were
found to have glycemic variability as measured by GVP less
than or equal to 24% compared to 38.1% of subjects with type
2 diabetes and only 3.6% of subjects with type 1 diabetes.

An additional analysis was performed in which glycemic
variability according to the GVP metric was separated into
four separate quartiles in subjects, for all subjects combined
with diabetes (type 1 and type 2). Table 3 gives the classifi-
cation of glycemic variability into four categories (minimal,
low, moderate, and high) from interquartile analysis of the
CGM data cohorts from subjects without diabetes, subjects
with type 1 diabetes, and subjects with type 2 diabetes. The
lowest quartile was associated with minimal glycemic vari-
ability for which there was significant overlap between sub-
jects with diabetes and subjects without diabetes. The second
and third quartiles were associated with low and moderate
levels of glycemic variability. The fourth quartile was asso-
ciated with high levels of glycemic variability. There were 19
subjects with type 1 diabetes (11.5%) in the lowest quartile of
GVP (£30%). In subjects with type 2 diabetes, there were 15
subjects in the lowest quartile (71.4%) indicative of minimal
variability and 6 subjects in the second quartile (28.6%) in-
dicative of low variability. In data from subjects with type 2
diabetes, there were no subjects in the third and fourth quar-
tiles, indicating no case of moderate or high variability.

The results from Table 2 above are shown graphically be-
low in Figure 4 for each of the five subject cohorts. The top
figure shows the GVP for adolescents (13—18 years old) with
type 1 diabetes, children with type 1 diabetes (6—12 years old),
adults with type 1 diabetes, adults with type 2 diabetes, and
adults without diabetes. The additional figures show the gly-
cemic variability in the same subject cohorts using three es-
tablished metrics of glycemic variability: MAGE, CV, and
SD. All four graphs in Figure 4 clearly show the difference in
glycemic variability between subjects without diabetes, adults
with type 2 diabetes, adults with type 1 diabetes, adolescents
with type 1 diabetes, and children with type 1 diabetes. The
three established metrics for glycemic variability capture the
range of variability in the five different subject cohorts, but
the quantitative ordering of the measured variability is dif-
ferent for GVP compared with MAGE, CV, and SD. Inter-
quartile analysis for the MAGE and SD metrics applied to all
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TABLE 3. CLASSIFICATION OF GLYCEMIC VARIABILITY
INTO FOUR CATEGORIES FROM INTERQUARTILE ANALYSIS
OF MULTIPLE CGM DATA COHORTS: MINIMAL
(NoN-DI1ABETIC), LOW, MODERATE, AND HIGH BASED
ON THE GLYCEMIC VARIABILITY PERCENTAGE (GVP)

Glycemic variability GVvP
Minimal (nondiabetic) <20
Low (first quartile diabetic) <30
Moderate (second and third quartile diabetic) 30-50
High (fourth quartile diabetic) >50

five data sets is given in Supplementary Tables S1 and S2 (see
Supplementary Data at http://online.liebertpub.com/doi/suppl/
10.1089/dia.2017.0187).

Discussion

The earliest metric proposed for characterizing glycemic
variability, MAGE, was designed for assessment of post-
prandial glucose excursions above the mean glucose. The
MAGE metric was originally used with a laboratory contin-
uous blood glucose analyzer with measurements made once
every 5 min, but the calculation of glycemic variability was
made from the maximum values of glucose excursions as-
sociated with meals and taken approximately once every four
to six hours.”> The MAGE metric also been used extensively
with temporally discrete blood glucose measurements.*® Two
of the more widely used mathematical metrics, the SD and
the CV, are suitable for both temporally discrete and con-
tinuous data, but may be misleading when applied to certain
types of data. In Figure 2 above, we showed four simulated
glucose profiles exhibiting different levels of glycemic var-
iability, for which two metrics (CV and SD) give the same
numerical results in contrast to three other metrics (GVP,
MAG, and CONGA1), which were able to differentiate be-
tween the four temporal profiles.

Comparison of the proposed new GVP metric with two
widely accepted metrics of glycemic variability, MAGE and
CV, found significant differences in the relative ordering of
variability between the five subject cohorts. The highest
variability measured by the GVP metric was found in the
adolescent cohort with type 1 diabetes. Children with type 1
diabetes were also found to have higher variability than
adults with type 1 or type 2 diabetes. By contrast, results from
the MAGE and CV metrics suggest that glycemic variability
is comparable in adolescents and adults with type 1 diabetes
and higher in adults than in children. In addition, according to
the GVP metric, adults with type 2 diabetes have markedly
lower variability than children with type 1 diabetes, whereas
both the MAGE and CV metrics suggest that glycemic var-
iability is comparable between these groups. As we have
shown with the interpretation of the square wave example,
the GVP metric (along with MAG) measures both the am-
plitude and frequency of glycemic fluctuations. Since the
amplitude of glycemic fluctuations may be comparable in all
age cohorts with type 1 diabetes, whereas the frequency of
fluctuations may differ, it is not surprising that GVP would
indicate differences in glycemic variability compared with
MAGE, CV, and other metrics that depend exclusively on or
are heavily weighted to the amplitude of oscillations only.
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FIG. 4. Comparison of interquartile analysis of the glycemic variability metric (GVP) and three extant metrics for
glycemic variability (MAGE and CV) for five subject cohorts: adolescents (13—18 years old) and children (2-12 years old)
with T1D, adults with T1D, adults with T2D, and adults without diabetes. (+) are considered outliers since they are 1.5¥1Q
below the 25™ Percentile or 1.5*%IQ above 75" Percentile where IQ is the interquartile range.”” CV, coefficient of variation;
MAGE, mean amplitude of glycemic excursions; T1D, type 1 diabetes; T2D, type 2 diabetes.
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There were some subjects without diabetes whose GVP
values overlapped significantly with diabetic subjects clas-
sified as having minimal glycemic variability. Review of the
data from the subjects without diabetes found GVP less than
20% in 79% of subjects and less than 24% in 95% of all
subjects. In the upper quartile of GVP for subjects without
diabetes, 33% (3/9) had impaired fasting glucose values in
excess of 100 mg/dL meeting clinical criteria for prediabetes.
Although speculative, in other cases of GVP greater than
20%, the elevated level of glycemic variability may indicate
normal physiologic fluctuations in glucose in a subset of in-
dividuals or it may be suggestive of possible future devel-
opment of prediabetes or type 2 diabetes. Additional research
is needed to determine whether glycemic variability, as char-
acterized by the GVP metric or other metrics for glycemic
variability, can be used as an early indicator of impending
prediabetes or type 2 diabetes before abnormal values are
detected in the fasting glucose or A1C.*’

In subjects with diabetes, glycemic variability is an im-
portant component of overall assessment of glycemic control,
but it needs to be augmented by assessment of mean glucose
and the incidence of hypoglycemia. In a previous article, we
have proposed a composite index for overall glycemic con-
trol combining the GVP, the mean glucose, time in range, and
the frequency and severity of hypoglycemic events.>®

Conclusions

The potential role of glycemic variability in short- and long-
term diabetic complications has been widely postulated and
studied by numerous authors. However, the effect of glycemic
variability on quality of life and patient self-perception of per-
sonal efficacy in managing diabetes has received only limited
attention to date. We believe that successful sustained use of
modern CGM systems should be accompanied by measurable
decreases in glycemic variability. The metric proposed in this
study, the GVP, can be easily understood and readily calculated
from CGM data. Although CGM utilization rates are still rel-
atively low compared with the total population of patients who
could benefit from the technology, improvements in CGM
accuracy and reliability coupled with the recent approval by the
FDA for the use of CGM to guide insulin dosing may dra-
matically increase adoption of CGM in the years ahead.

Already CGM data are being posted to cloud-based servers
making it possible to run analytics automatically, which as-
sess quantities such as glycemic variability in patients using
the technology. While some patients understand intuitively
how to use CGM devices to improve their glycemic control,
there are others who require more extensive training and
support. Clinical studies are needed to explore whether au-
tomated detection of persistent glycemic variability in new
users of CGM devices may help healthcare providers better
identify patients who would benefit from additional training
and education on the optimum use of the technology. In a
companion article, we apply the proposed GVP metric to two
sets of data: an early published study on the effect of CGM
use on glycemic variability and a more recently published
article on a bihormonal artificial pancreas clinical study.>

The new glycemic variability metric proposed in this study,
the GVP, may be helpful in outcome studies that include
CGM as a means of correlating clinical endpoints such as
frequency of severe hypoglycemia or DKA with glycemic

PEYSER ET AL.

variability. Rodbard found a strong correlation between gly-
cemic variability as measured by CV and the incidence of
hypoglycemia.'® Jin et al. also found a strong association
between relative glycemic variability as measured by CV and
the incidence of hypoglycemia, but not between absolute
glycemic variability as measured by SD and hypoglycemia.*’
Similarly, Qu and coworkers found that the rate of hypogly-
cemia in patients with type 2 diabetes on insulin was strongly
correlated with relative glycemic variability as measured by
intraday CV, but not with absolute glycemic variability as
measured with MAGE.*' Monnier et al. have suggested that
there may be identifiable thresholds separating clinically ac-
ceptable and unacceptable levels of §lycemic variability such
as values of CV greater than 36%.%* Additional research is
needed to determine if there are similar identifiable thresholds
using the GVP metric proposed in this study.

In a recent review article, Kovatchev and Cobelli noted that
many extant metrics of glycemic variability are skewed to the
amplitude of the oscillations and give little weight or neglect
altogether the temporal component of the oscillations.** This
is a controversial issue, as noted in a comment by Service who
argued against the inclusion of the temporal component in the
assessment of glycemic variability.** The new metric proposed
in this study, the GVP, gives weight to both the amplitude and
frequency of glucose oscillations (the temporal component)
and hence, may be more useful than other available measures
in correlating acute and chronic complications with glycemic
variability as well as mean glucose. Application of this metric
and comparison with other amplitude-based glycemic vari-
ability metrics to clinical outcome studies are needed to better
understand these issues.

Finally, the new glycemic variability metric proposed in
this study may also be useful as part of a composite metric to
evaluate multiple dimensions of glycemic control based on
CGM data alone. Composite metrics for glycemic control
have been proposed previously by several researchers.*>**¢
Hirsch et al. have described a composite metric, the personal
glycemic state, combining the GVP described in this study
with the mean glucose, percent time in range (70-180 mg/
dL), and the incidence and severity of hypoglycemia.*®
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