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Biologically based neural circuit modelling for the study
of fear learning and extinction
Satish S Nair1, Denis Paré2 and Aleksandra Vicentic3

The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In
this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to
display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that
the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required
for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of
electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is
mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in
local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations
and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in
conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear
learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.
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INTRODUCTION
Recently, neuropsychiatry has undergone a major shift in
perspective from diagnostic entities rooted in checklists of
symptoms to one centred on measurable behavioural and
cognitive dimensions, which different psychiatric categories might
share. The implementation of this new strategy, termed research
domain criteria (RDoC) project, involves a new classification
system for clinical research on mental disorders that is explicitly
dimensional in its approach. Currently, RDoC includes five
dimensions of functioning, one of which is the negative valence
system (http://www.nimh.nih.gov/research-priorities/rdoc/nega
tive-valence-systems-workshop-proceedings.shtml). This system
is thought to be responsible for responses to aversive events
and situations, including responses to acute threat (fear),
responses to potential harm (anxiety), responses to sustained
threat, frustrative non-reward and loss. Although neuroscientists
have been studying this system intensely for decades, we still
have a limited understanding of how distributed neuronal activity
in fear/anxiety networks influence behaviour. In part, this situation
results from the complexity of the nervous system and the
difficulty of integrating vast amounts of research data obtained at
different levels of analyses. In this commentary, we argue that
computational modelling grounded in biological information
constitutes a promising path towards a more integrated
understanding of fear/anxiety networks.

THE CHALLENGE
Unquestionably, neuroscientists have made immense progress in
characterising the neural substrates of the negative valence
system and data continues to accumulate at an astounding pace.
For instance, key nodes in the network have been identified, their

major interconnections mapped out, and a crude understanding
of their influence on behaviour is emerging. Within each of
these nodes, multiple cell types have been identified and
their physiological properties as well as pharmacological
responsiveness have been characterised to various degrees.
In addition, the impact of several genetic variations on negative
emotional behaviours has been analysed. Yet, a precise
understanding of the mechanisms and computations allowing
these networks to flexibly regulate emotional expression still
eludes us.
Biologically based neural circuit modelling is a promising, yet

so far neglected, approach that could assist us in understanding
how the neural circuits that subserve emotion process,
represent and store information. Consider the case of Pavlovian
fear conditioning (note that we use the term fear as a shorthand
for defensive behaviors).1 Although it is one of the oldest and
most extensively studied tasks of aversive learning, its neuro-
biological bases are still not fully understood. In this laboratory
model, a neutral sensory stimulus (CS) develops the ability to
elicit conditioned defensive behaviours (CRs) such as beha-
vioural freezing, after being paired a few times with a noxious
unconditioned stimulus (US). When neuroscientists began
studying this form of emotional learning, optimism was high
that it would be rapidly understood because of its apparent
simplicity. And indeed, early models2 suggested that Pavlovian
fear learning depended on a simple mechanism, located
entirely in the amygdala: information about the CS and US
would converge in the lateral amygdala (LA), causing the NMDA-
dependent reinforcement of CS inputs. As a result, later CS
presentations would excite LA neurons more strongly, causing
them to elicit CRs through their projections to the central
amygdala (CeA).
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However, subsequent research revealed that fear learning
involves a much more complex circuit than initially conceived.
In particular, it was realised that LA is not the only site of plasticity
for Pavlovian fear: amygdala-projecting auditory thalamic and
cortical neurons also display increases in CS responsiveness that
are critical for fear learning.3,4 Even CeA, initially envisioned as a
passive output station to downstream fear effectors, emerged as
yet another critical site of plasticity.5–7 Within the amygdala, it
was also discovered that several parallel inhibitory and
excitatory circuits are differentially involved8 and regulated by
medial prefrontal neurons during the expression or extinction
of conditioned fear.9 More recently, it was realised that the
fear memory trace is not fixed but that it displays a changing
dependence on different brain structures as a function of time
since conditioning.10,11

As the example of Pavlovian fear illustrates, it will be extremely
challenging to understand fear/anxiety networks because they are
complex dynamical systems with multiple feedback loops that
operate on different time scales and at multiple levels.
These include molecular interactions within single cells, a complex
interplay between multiple cell types within and between each
network node, the dynamical properties of synaptic transmission
at each site and for each synapse type, as well as multiple
interacting neuromodulatory mechanisms that act pre- and
post-synaptically, all ultimately working together to determine
behaviour in a way that defies intuitive understanding.
Here we reason that uncovering these complex neurobiological

relations is insurmountable without powerful computational
modelling tools and the conceptual frameworks they provide.
Indeed, biologically based modelling can be used to integrate
biological information at different levels of organisation. As a
result, they allow the study of emergent properties that intuition
cannot readily predict. Importantly, these models are not fixed but
can be updated as new experimental data become available.
Ideally, a reciprocal interaction should exist between models and
experiments such that experimental observations serve to both
constrain the model and verify its predictions. At the same time,
they provide a rapid means to quantitatively test various
hypotheses that would be difficult to address experimentally.
Notable examples at the single cell and small circuit levels

include synaptic integration,12,13 cerebellar computations14 and
the genesis of neuronal oscillations in various networks.15,16 At the
level of higher cognitive processes, biophysically realistic models
of cortical networks with recurrent connectivity and leaky
integrate-and-fire neurons were able to reproduce the activity of
cortical cells during decision-making. They also suggested a
cellular mechanism for the accumulation of evidence over
time, whereby recurrent excitation in concert with NMDA
receptor activation could create attractor states that support
decision-making, and potentially, working memory.17

In contrast, there is a dearth of computational modelling studies
devoted to investigating the functions of the amygdala and its
target networks in fear learning. Although manipulations of specific
cell types and neural projections are moving the field forward,
experimental studies are not suited to identify circuit-level
mechanisms that can predict and explain behaviour. Computational
approaches are ideally positioned to probe these mechanisms and
quantitatively determine critical properties of amygdala circuitry
across levels of investigation, while helping to form more specific
theories regarding the link between circuit dysfunctions and mental
disorders. Convergent computational–experimental approaches will
also be critical in studying the impact of negative valence stimuli on
other forms of learning and decision-making.

DIFFERENT APPROACHES TO MODELLING
Nervous system function can be studied at several levels, from the
molecular, cellular and network levels to the cognitive and

behavioural levels. For instance, single-nucleotide polymorphisms
in various genes correlate with trauma susceptibility and
abnormalities in fear acquisition or extinction.18 However, finding
the mechanistic links between these gene polymorphisms and
alterations in circuit behaviour or cognition represents a formidable
challenge, even from a modelling perspective. Therefore, this paper
focuses on modelling at the synaptic, cellular and systems level.
Readers are referred to recent reviews addressing modelling at the
molecular level19 or how cognitive models can help guide lower
level models.20

Neuronal level
Historically, computational models have represented neurons in
various ways. For instance, integrate-and-fire neuron models were
introduced more than a century ago,21,22 but limitations in our
understanding of neurophysiology slowed their acceptance until
the 1980s. In contrast, connectionist and parallel distributed
processing models23 (now categorised under data-driven machine
learning methods24) rapidly gained popularity because of their
ability to capture psychological phenomena. On the basis of
abstract representations of neuronal properties and connectivity
patterns,25 these models were successful in mapping complex
input–output relationships using minimal networks of neuronal
units. Importantly, they provided a framework to study salient
aspects of information processing such as stability, convergence
time, storage capacity and size-based scaling of properties.
However, the rapid growth in neurophysiological data and

computational power over the past few decades has renewed
interest in theory-driven realistic computational models. Two
popular examples of this type include models where neurons are
represented by firing rate and integrate-and-fire formulations.26

Izhikevich neurons represent another formulation where the
transition from sub- to supra-threshold activity as well as other
dynamical properties like bursting and spike frequency adaptation
are modelled using mathematical insights derived from
bifurcation theory.27 Such models have been used to explore
theoretical issues related to network structure, stability and
oscillatory potentials.
Although the above models can reproduce various aspects of

neuronal behaviour, they do so using abstract representations, not
by directly integrating the neurons’ biophysical properties. Indeed,
different types of neurons display particular sets of ionic
conductances whose kinetics and distribution shape their
spontaneous activity and constrain their synaptic responsiveness.
These distinct electroresponsive properties translate into
characteristic activity patterns such as subthreshold oscillations,
post-inhibitory firing, as well as bistability of resting and spiking
states. Biologically based formulations that incorporate these
biophysical properties are increasingly being used in modelling
studies and these can provide cross-level understanding of brain
dynamics and behaviour.
In these models, ionic channels are represented using the

Hodgkin–Huxley formulation.28 Depending on the application,
these models can range tremendously in their level of detail.
At one pole are models where neurons are represented as a single
compartment with just a few of the main types of ionic channels
they are known to express. At the other are models that feature
the full morphological and biophysical complexity of neurons. For
instance, a rich repertoire of neuronal reconstructions (including
3D rendering of soma, dendrites and sometimes axons) for both
principal excitatory (stellate and pyramidal) cells and GABAergic
inhibitory interneurons of the rodent amygdala are available free
to modelers from neuromorpho.org. Generally, the level of detail
incorporated in such models is a function of the questions
investigated and associated computational demands. For instance,
models investigating the integrative properties of single cells use
detailed multi-compartmental models that feature an exhaustive
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representation of active dendritic properties29,30 and their
complex role in information processing.13 In contrast, simpler
models featuring one or just a few morphological compartments
are favoured for studies of complex networks where simulating
interactions between large populations of neurons are
computationally intensive.31

Synaptic level
Using the same type of formulation, these models can also
integrate detailed biophysical information at the synaptic level,
including reversal potential, rise and decay times of synaptic
conductances, short-term dynamics of transmitter release
probability (facilitation and depression), and activity-dependent
long-term plasticity. As for all other aspects, these factors are
adjusted to match experimental findings obtained in the specific
cell type to be modelled or, if unavailable, a close relative.
Although these variables have considerable influence on network
activity, including in fear and extinction learning,32 the specifics of
how they affect such activity are only beginning to be understood.

Network level
At the network level, models typically follow the ‘network
paradigm’, which attributes the information processing capability
of neuronal systems not to the properties of individual
neurons, but to their intricate connections. Ideally, models should
‘incorporate the vast richness of the structural and physiological
properties of real neurons and synapses’,33 and this is facilitated
by biophysical computational approaches. The generic approach
to incorporating such biological realism into network models
starts by considering low-level features such as the biophysical
properties of each individual cell types, intrinsic and extrinsic
connections, and properties of short- and long-term activity-
dependent plasticity. While it is usually impossible for models to
incorporate as many of the different cell types as exist in the real
network, one populates the model with the same proportion of
the different cell types and compensates for the reduction in
network size by increasing synaptic strengths.34 Another impor-
tant consideration is to reproduce, in computer topology, the
spatial distribution of the different cell types. This is critical as
axonal conduction times have a critical role in shaping distributed
activity patterns in time.

Algorithmic models and data-driven machine learning approaches
We briefly discuss an alternative theory-driven ‘algorithmic’
approach of the top-down and intermediate level
(between biological and pure behavioural levels) type, termed
reinforcement learning, that has been proposed to bridge the gap
between specific neurophysiological correlates and pathology in
psychiatry.24,35 The technique has been applied to model
reward-motivated behaviour using abstract mathematical
equations and used in normative decision-making frameworks
of mental dysfunction.36 These authors advocate new types
of phenotyping approaches to estimate parameters in models of
human decision-making, taking advantage of the fact that
aberrant decision-making is central to the majority of psychiatric
conditions. A related approach, using Bayesian belief theory,
suggests that the brain engages in active inference to formalise
perception and behaviour.37 In this scheme, higher cortical levels
generate top-down predictions of representations at lower levels,
which are then compared with actual lower level representations
to form a prediction error. In turn, this error is used to update
representations up the hierarchy, and the recursive process
continues until representations stabilise at all levels. Such Bayesian
belief frameworks have identified disruptions in decision-making
caused by schizophrenia and autism. Interestingly, such
algorithmic models and data-driven machine learning approaches

are increasingly using biological information (e.g., brain anatomy
and receptors), while, on the other hand, biologically based
models are being reduced to ‘mean-field’ population rate models
similar to connectionist types.35 A recent direction, enabled by big
data, aims to develop model-based diagnosis in psychiatry using
extremely large data sets, using both data-driven machine
learning and the theory-driven biologically based and algorithmic
approaches discussed in this paper.24,35 For example, models that
employ the 'deep learning' algorithm are based on neural
networks with the goal of revealing higher level attributes from
data.38 Another promising branch of machine learning is statistical
learning, which encompasses methods that investigate and
integrate structure from data that are replicable across different
samples obtained from the same population. These can enhance
our understanding of big data sets obtained from both basic and
clinical studies.39 Although not yet used to study fear and
extinction learning, these alternative approaches have potential to
provide top-down perspectives, and to supplement biologically
based models in helping to unravel the role of maladaptive fear
responses in mental disorders.

Constraining the model when experimental data are lacking
Although single-cell models can be developed with reasonable
fidelity using experimental data, network parameters such as
connectivity, synaptic efficacies, learning mechanisms and
neuromodulation are often not characterised as fully. When
experimental data are lacking, these then need to be adjusted to
match the behaviour of the real network. In such cases, for each
low-level property, the experimental literature is searched for
constraints and model parameters are varied within reasonable
bounds until the network behaviour replicates prior experimental
findings, independent of other low-level model properties
(see Box 1 for a brief overview of the modelling process). Because
there are typically no quantitative data about the spatial
distributions of inputs and outputs, connections in such models
are typically set with probabilistic gradients of connectivity. Note
that in large model networks, such as the LA network developed
by Kim et al.40 there are so many neurons (~1,000) and synapses

Box 1 Developing a neural network model (using fear model example
in Kim et al.40)

● As a first step, biophysical models are developed for
all single cells (principal cell and interneuron types)
using experimental data including passive properties and
responses to current injections.57 The single-cell models
include ionic channels, synapses and neuromodulators
effects.77,78

● A suitably scaled network model is then developed. Using
experimental connectivity estimates, units are connected, via
excitatory or inhibitory synapses, and known synaptic delays.
Estimates of both intrinsic and extrinsic connectivity have
proven difficult to obtain for some of the complex
distributed circuits;58 this makes investigations via modelling
an attractive alternative to predict possibilities and comple-
ment experiments.

● Guided by the experimental literature,32 the excitatory and
inhibitory model synapses are then endowed with short- and
long-term activity-dependent plasticity and neuromodulator
receptors are placed on synapses and cell bodies.

● The network model is then subjected to an experimental
protocol.79 For variables where experimental data are scarce,
the model is run iteratively to determine parameter values
that match experimental unit in vivo data.51,79
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(~40,000) that individual low-level aspects cannot be tuned to
achieve particular impacts on high-level model behaviour.

Assessing the model’s validity
While building a stable model that satisfies most available
constraints is challenging, it is even more difficult to assess
whether its ‘output’ makes sense. It is difficult to understand a
network without knowing what it is computing. This problem is
particularly acute when the modelled networks regulate
responses that do not easily lend themselves to quantification
such as those generated by the negative valence system.
So far, modelling studies in this field have used the magnitude
of neuronal responses to the CS as a proxy for the intensity of
emotional responses.40–42 In addition, to assess the network’s
output specificity, some have contrasted network responses to a
range of stimuli that display a gradient of similarity to the original
CS.43 Although these output measures are adequate for simulating
the impoverished circumstances of classical fear conditioning,
they will not suffice when studying more complex and realistic
behavioural paradigms.

PRIOR COMPUTATIONAL MODELS OF PAVLOVIAN FEAR AND
EXTINCTION
Computational models related to fear and extinction circuits are
only beginning to emerge. Indeed, a literature search in Pubmed
using the search terms ‘computational’, ‘model’ and ‘amygdala’
yielded ~ 30 times fewer citations (57) than with ‘cortex’ (1,744).
Moreover, computational models of other networks have
investigated fundamental mechanisms that likely have direct
relevance to the negative valence system, including pattern
recognition/completion, genesis and synchronisation of neuronal
oscillations, as well as experience-driven synaptic plasticity. In this
section, we provide a brief review of representative fear models,
emphasising biophysical models.

Connectionist models
Paralleling the development of computational models in other
brain areas, one of the first models of Pavlovian fear was an
anatomically constrained connectionist model of the network
formed by the amygdala, auditory thalamus and cortex.44,45 This
model could be trained to associate a specific tone CS with a
footshock US using a Hebbian-type learning rule, and reproduced
conditioning-induced frequency-specific changes in the receptive
fields of auditory thalamic46,47 and amygdala neurons.48 However,
this early model lacked biological realism in that it represented
each structure using pools of simple nonlinear units (output from
0 to 1, representing average firing rate) and did not separate
different sub-nuclei within the amygdala.

Firing rate and integrate-and-fire models
More recently, a neurally plausible framework was proposed to
reproduce several empirical observations on fear learning, using a
conceptual firing rate model formulation.49 In this model, fear
learning and extinction resulted from neuromodulation-controlled
long-term potentiation at thalamic, cortical and hippocampal
synapses onto principal and local-circuit cells of the lateral and
basal amygdala nuclei. The model included conditioning, second-
ary reinforcement, blocking, the immediate shock deficit, extinc-
tion, renewal and a range of experimental observations such as
the effects of pre- and post-training ablation or inactivation of the
hippocampus or particular amygdala nuclei. Furthermore, this
model made several predictions for phenomena it was not
designed to address, particularly with respect to the contextual
dependence of extinction. However, being of a ‘top-down’ type
model that lacks biological realism, translating this model’s

predictions into precise neurophysiological mechanisms is
problematic.
Another firing rate model that was constrained to reproduce

salient properties of LA neurons50 suggested combinations of
tone and shock densities that could reproduce experimental
estimates of different types of tone responsive cells observed after
fear conditioning in the lateral amygdala.51 Vlachos et al.52

developed a network model of leaky integrate-and-fire neurons
that reproduced the differential recruitment of two distinct
subpopulations of basal amygdala neurons, reminiscent of the
fear and extinction neurons observed experimentally.53,54

Realistic biophysical models
So far, realistic biophysical models have been developed for
intercalated55 and LA40 neurons. We briefly describe the latter. The
number of LA neurons56 was scaled down 30 to 1 in the model,
including 800 principal cells and 200 fast-spiking interneurons,
which were distributed randomly in a realistic tri-dimensional
representation of the horn-shaped LAd. Principal cells were
simulated with three compartments that included multiple
voltage-dependent currents to match the passive and active
membrane properties observed experimentally. By varying the
density of Ca2+-dependent K+ currents, model principal cells also
reproduced the continuum of spike frequency adaptation seen in
these neurons.57,58 Prior experimental observations about the
spatially heterogeneous intrinsic connectivity that exists in different
parts of LA59 were reproduced using probabilistic gradients of
excitatory and inhibitory connectivity. Extrinsic inputs included
thalamic tone and shock inputs as well as brainstem neuromodu-
latory (dopaminergic and noradrenergic) inputs adjusted to
reproduce experimental observations.60 All the glutamatergic
synapses in the model could undergo both short-term and
long-term activity-dependent plasticity, except for those delivering
shock or background inputs. Ca2+ entered post-synaptic pools at
excitatory synapses via NMDA receptors (and Ca2+-permeable
AMPA receptors for interneurons61) and voltage-gated calcium
channels. In turn, the intracellular Ca2+ concentration determined
the long-term potentiation or depression of the synapses.
Not only could the model replicate the formation of two distinct

types of tone-responsive principal cell populations, as observed
experimentally by Repa et al.51, it also led to new insights in the
mechanisms of fear memory formation. Previously, there had been
much debate regarding this question, with some emphasising the
role of plasticity at afferent auditory inputs3 and others of
plasticity within the amygdala.62 Unexpectedly, the model
revealed that both views were correct. Indeed, while increases in
the CS responsiveness of auditory thalamic neurons were found to
be essential for fear learning in the model, after training they were
no longer needed because the fear memory was maintained by
post-synaptic increases in synaptic efficacy within LA.
In addition, this biophysically realistic model of the amygdala

revealed that fear memory formation involves competitive
synaptic mechanisms. Previously, it had been reported that only
a minority of LA neurons increase their responsiveness to the CS
after fear conditioning (25%, refs 51,63,64) even though most cells
receive the required inputs.51 Related to this observation, another
study showed that LA cells expressing high levels of CREB are
preferentially recruited into the fear memory trace.63,65,66

Yet, when CREB was overexpressed or downregulated in LA, the
proportion of LA neurons incorporated into the memory trace
remained constant, which led to the proposal that recruitment of
LA neurons into the fear memory trace involves a competitive
process.63 However, the mechanisms underlying this competitive
process remained unclear. Because CREB decreases spike after
hyperpolarisations, the modelling study of Kim et al.42 considered
the possibility that a higher intrinsic excitability confers a
competitive advantage to particular LA neurons. Consistent with

Studying the amygdala with computational modelling
SS Nair et al

4

npj Science of Learning (2016) 16015 Published in partnership with The University of Queensland



this view, they observed that only 1% of model LA neurons
with high spike frequency adaptation increased their CS
responsiveness, compared with 440% of the more intrinsically
excitable neurons, a prediction that was subsequently validated
experimentally.67

However, if this factor (intrinsic excitability) acted
independently, CREB overexpression would result in the
assignment of a higher number of LA cells to the memory trace.
Yet, this is not what was seen experimentally or in the Kim et al.42

model (CREB overexpression was simulated by converting less into
more excitable cells). This suggested that additional factors are
at play in the competitive process. Comparative analyses of the
intrinsic connectivity of CS responsive versus non-responsive cells
revealed that a major substrate of this competition is the
distribution of excitatory connections between principal cells
and the amount of di-synaptic inhibition they generate in other
projection cells. The model revealed that these two factors
interact to enhance the likelihood that some principal cells will fire
more strongly to the CS at the expense of others. Effectively, the
model showed that subsets of more excitable projection cells
band together by virtue of their excitatory interconnections to
suppress plasticity in other projection cells via the recruitment of
local-circuit cells.42,68 Another prediction from the model was that
the level of inhibtion in the system controlled the size of the fear
memory trace.68

MOVING BEYOND AMYGDALO-CENTRIC ACCOUNTS OF
EMOTIONAL LEARNING WITH BIOPHYSICAL MODELLING
Despite major advances in our understanding of fear and anxiety,
many aspects remain unclear. The literature is replete with
contradictions and unresolved questions, which would benefit
from the use of biophysical modelling. Although different
mammalian species are often more attuned to distinct types of
sensory stimuli, mammals can associate almost any arbitrary CS
with a pleasant or aversive US. What network architecture could
support such flexibility? Stated differently, how is a stimulus
identity code transformed into a behavioural response code?
When the view emerged that LA is the site of CS–US convergence
required for the Hebbian potentiation of CS inputs, it became
natural to think of CS-triggered LA firing as potentiated sensory
responses that automatically drive defensive CRs. Soon, this
tendency generalised to appetitive conditioning and to down-
stream amygdala nuclei, like the basal amygdala (BA) nuclei
(BA =basolateral (BL) and basomedial (BM) nuclei), which are
thought to control response effector neurons. Indeed, BL and BM
contains multiple subsets of neurons with largely segregated
projections to various subcortical sites (these include the lateral or
ventromedial hypothalamus, dorsolateral striatum, nucleus
accumbens, the medial part of CeA and bed nucleus of the stria
terminalis (BNST)) that likely drive specific aversive or appetitive
CRs. For instance, recent studies provided evidence that distinct
subsets of basolateral amygdala neurons that contribute
differential projections to nucleus accumbens and the central
amygdala might mediate appetitive and aversive conditioned
responses, respectively.69,70 Thus, in this conceptual framework,
the question becomes how would the activation of select
LA neurons by an arbitrary CS influence the correct subset of
BA neurons?
However, recent observations suggest that this is not the right

way to frame the problem. By contrasting the CS-related activity of
BL neurons when rats produced the expected CR or not, it was
found that BL cells activated by appetitive CSs mainly encode
behavioural output, not CS identity.71 Indeed, the CS-related firing
of BL cells varied strongly with conditioned responding: it was
absent when rats omitted the CR, present when they emitted it,
and associated with a neutral CS when rats mistakenly emitted the
CR in response to the wrong CS. At the very least, the strong

dependence of BL activity on behaviour irrespective of CS identity
suggests that feedforward connectivity from LA to BL can be
overridden or gated by other BL inputs. However, these results are
also compatible with the possibility that LA does not drive CRs via
its projections to other amygdala nuclei, but through other
structures. Similarly to learned emotional responses, a recent
study of innate fear72 further supports the idea of expanding the
‘amygdala-centric’ view by showing that activation of a subset of
hypothalamic neurons that anatomically bypass the amygdala can
lead to a generalisable emotional state, suggesting the role of a
broader network in the regulation of emotional states. Note that
this departure from amygdalo-centric accounts of learned
emotional responses is consistent with earlier work showing that
neuronal activity at multiple sites, such as the auditory cortex,
posterior and midline thalamic nuclei as well as the prefrontal
cortex, is required for the formation or expression of conditioned
emotional behaviours.
The fact is that fear researchers, present authors included, have

been looking for simple cellular mechanisms, such as Hebbian
plasticity at a specific set of synapses, to account for fear learning
and have neglected incontrovertible evidence that such
mechanisms are incompatible with basic properties of fear
memories. Case in point: a basic tenet of memory research in
general and of Pavlovian fear learning in particular is Hebb’s idea
that coincident activity favours synaptic strengthening. Yet, it is
well established that simultaneous CSs and USs are actually less
efficient at driving fear learning than when CS onset precedes the
US and the two co-terminate tens of seconds later. The efficacy of
the latter approach, most commonly used in fear conditioning
studies, is in blatant contradiction with the Hebbian rule because
single-unit recording studies have revealed that the CS-evoked
activity of principal LA neurons adapts quickly, such that when the
US occurs, the firing rate of LA cells has almost returned to
baseline. Together, these considerations indicate that widely
distributed neuronal interactions support emotional learning and
expression. Because biophysical modelling is unhindered by
technical limitations, it can overcome the challenge of analysing
complex neural interactions that extend beyond the amygdala
and it make predictions about computational algorithms that
enable behavioural adaptation to changing environment.
To understand the neural substrates of defensive behaviours, it

is imperative we consider the complex interactions taking place
between the various regions known to regulate responses to
aversive situations and stimuli. Take the BNST for instance. On the
basis of early lesion studies, the notion emerged that BNST and
the CeA are differentially involved in the genesis of anxiety and
fear, respectively.73 However, BNST and CeA are reciprocally
connected and mounting evidence indicates that while BNST is
not required for the genesis of rapid fear responses to discrete
threats, it modulates their magnitude and specificity (reviewed in
Gungor and Pare).74 Therefore, incorporating the interactions
taking place between BNST and CeA will be essential to move
forward in this field.
A similar case can be made for the prefrontal cortex. Previous

work has established that two areas of the medial prefrontal
cortex, the infralimbic and prelimbic regions, exert opposite
influences on conditioned responding. However, depending on
the task, say drug-seeking versus fear conditioning paradigms, the
prelimbic and infralimbic regions respectively promote and inhibit
appetitive or aversive responses.75 The multivalent influence of
the medial prefrontal cortex over emotional behaviour is also
evident in the pattern of inputs it receives from the basolateral
complex of the amygdala (BLA). Indeed, while largely different
subsets of BLA cells project to nucleus accumbens and BNST, both
subsets send axon collaterals to the pre- and infralimbic regions
(Lee and Pare, unpublished). These various examples underscore
the fact that experiments and intuition will not suffice to unravel
the dynamic interactions that underlie affective behaviours.
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Biophysical modelling can assist us in analysing such interactions.
Indeed, a recent model76 suggests the involvement of amygdalar
projections to the sensory thalamic reticular nucleus in emotion
guided inhibitory selection, and of the amygdala/cortico/reticulo-
thalamic loops in flexible attention and decision-making.
Besides allowing investigators to simultaneously consider

properties at multiple levels of analysis and at distributed sites,
biophysical modelling also allows one to consider hypotheses that
are impossible or impractical to test experimentally. For instance,
voltage- or chemo-dependent ionic conductances and be turned
or on off at precise times and in specific subsets of neurons or
synapses to test particular mechanistic hypotheses. In learning
paradigms, modelers can identify neurons that acquire
potentiated responses to conditioned stimuli and rerun the
simulation after selectively ablating these cells, effectively going
back in time to determine whether they are necessary for learning.
This approach was used successfully in the amygdala and
perirhinal cortex to show that when ‘engram’ neurons are ablated,
others emerge to support memory, highlighting the fact that
competitive neuronal interactions underlie learning.31,42,68

CONCLUSIONS
Decades of research on the role of individual brain regions in fear
learning and memory have provided pivotal findings on the
amygdala as the key player in detecting threats and mediating
adaptive response to negative valence. With the advent of circuit
mapping and manipulation technologies, contemporary studies in
animals revealed that parallel circuits within the amygdala, synaptic
plasticity within these circuits as well as amygdala-projecting
cortical and thalamic neurons all take part in negative valence
behaviours. Although these studies paved the way for human
functional brain imaging to test the hypothesis that abnormal
functional connectivity is linked to maladaptive processing of
aversive stimuli, we still have a superficial understanding of the key
properties that enable the amygdala and associated networks to
generate aversive behaviours. Consequently, our ability to link
dysfunctions in these circuits to mental disorders is highly limited,
resulting in ineffective therapeutic strategies.
Theoretically driven approaches and computational modelling

constitute promising tools to address these difficult questions
because they can identify interpretable relations between variables
and quantify properties of complex systems across levels of
analysis. Given the neuronal diversity and complex neurophysiolo-
gical interactions within the amygdala and in its multiple targets,
computational modelling is ideally suited to address questions that
are beyond the reach of intuition or the experimental method.
In this review, we offer several examples of unresolved

questions and opportunities in the field where computational
modelling can complement experiments and quantify properties
of amygdala circuits that go beyond correlative analysis of a
specific measure to behaviour. For example, biophysically realistic
neural circuit modelling can help determine the nature of short-
term and long-term synaptic plasticity in defined cell types, and
explain the functional consequences of neurotransmitter release
on synaptic plasticity and fear learning. Inferences from
combined computational modelling and experiments can quantify
how CS and US information is represented by amygdala neurons
and its targets while advancing our understanding of the
neural processes involved in transforming specific stimuli into
behavioural flexibility.
To address these and other challenging problems, and to relate

properties of amygdala and parallels circuits in animals and
humans, the field would benefit from the integration of
computational modelling in both basic and translational research
programs. By incorporating computational frameworks in
experimental designs, we may be able to achieve a cross-level
understanding of dynamics, computation and neurobiological

mechanisms of fear learning as well as facilitate the development
of more specific theories to explain the link between
dysregulation in the broader amygdala circuits and psychiatric
disorders. We are confident that this approach, ‘Computational
Psychiatry,’35 will lead to important new insights in the near
future.
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