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Abstract

The TGF-β superfamily signaling is involved in a variety of biological processes during embryo-

genesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that trans-

duces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer

and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years,

a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal

development in the maintenance of appropriate innervation and neuronal activity. The new

advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the patho-

genesis of neurological disorders. In this review, we compile a number of reports implicating the

deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegen-

erative disorders in animal models and patients. We apologize in advance that the review falls

short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the patho-

genesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge

regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeosta-

sis and development and facilitate the research with a potential to develop new therapies for

neurological ailments by modulating the pathways.
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Introduction

The transforming growth factor-β (TGF-β) superfamily of growth
factors comprises approximately 20 evolutionarily conserved cyto-
kines subdivided into several families, including TGF-βs, bone mor-
phogenetic proteins (BMPs), activins, inhibins, nodals, and growth
and differentiation factors (GDFs) (Table 1) [1]. They bind to two
sets of ligand-specific receptors (Types I and II), which contain
serine/threonine kinases. Receptor activation is transduced to the
nucleus by Smad proteins, and this short cascade is known as the
canonical pathway (Fig. 1) [2,3]. Smads 1, 5, and 8 are substrates of
the Type I BMP receptor kinases, while Smads 2 and 3 respond to
the Type I TGF-β receptor; together they are known as ‘receptor-
specific’ R-Smads (Table 1). Type II receptors phosphorylate the
Type I receptors, which then phosphorylate the R-Smads (Fig. 1).

The activated R-Smads bind Smad4 (Co-Smad), and then the com-
plex translocates to the nucleus and activates (or inhibits) transcrip-
tion by binding to DNA-binding transcription factors (Fig. 1). The
Smad-dependent signal can be negatively regulated by inhibitory
Smads (I-Smads), Smad6 and Smad7 (Table 1 and Fig. 1). It is also
known that the TGF-β/BMP signal can be transduced through a var-
iety of intracellular Smad-independent pathways, including LIM
domain kinase 1 (LIMK1)-actin depolymerizing factor (ADF)-cofilin
and mitogen activated protein kinase pathways (known as ‘non-
canonical’) [4] (Fig. 1). In this review article, we try to discuss the
roles of TGF-β signaling pathways in neuronal diseases and to reveal
a gap in our knowledge regarding the association between TGF-β/
BMP signaling pathways and neuronal tissue homeostasis and
development.
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TGF-β Superfamily in Neuronal Development

and Function

The BMP signaling pathway instructs key developmental events dur-
ing early development of the nervous system and cell fate specifica-
tion [5,6] (Fig. 2). The activities of BMPs and downstream effectors
are dynamically and carefully regulated to play key roles during gas-
trulation and dorso-ventral patterning within the neural tube, the
embryonic precursor of the brain and the spinal cord as well as the
adult brain homeostasis and functions [7]. For example, an import-
ant cell type in embryos is the neural crest, which originates from
the dorsal most region of the neural tube [8]. Neural crest cells give
rise to several cell types in the peripheral nervous system (PNS),
including glial and Schwann cells [8]. An intermediate level of BMP
signaling is required for neural crest cell generation and cell fate
choice [7] (Fig. 2). BMPs also control patterning of the dorsal spinal
cord [6,9,10], while it has been reported that molecules in the
canonical BMP signaling pathway, such as ligands (GDF7 and
BMP7), receptors (BMPR1A/B), and signal transducers (Smad1/5/8)
are essential for patterning of the ventral spinal code, dorsal spinal
code neural axonal guidance, forebrain development, and cerebellar
granule neuron development [6,9,10] (Fig. 2). In the central nervous
system (CNS), BMPs, activins, TGF-βs, and GDFs contribute to the
differentiation of neural stem cells and neural progenitor cells
(NPCs) [5] (Fig. 2). For example, the BMP signaling promotes

astrogliogenesis, and simultaneously inhibits oligodendroglial and
neuronal lineages by activating downstream signals [7] (Fig. 2).
Oligodendrogenesis is inhibited by BMP signaling and promoted by
noggin [5] (Fig. 2). It has been shown that BMP signaling inhibits
myelination through the inhibition of oligodendrogenesis [11,12]
(Fig. 2). On the contrary, TGF-β and activin signaling promote both
oligodendrogenesis and myelination [5,13] (Fig. 2). Thus, the TGF-β
superfamily orchestrates patterning and determination of cell fate in
the CNS, as well as the PNS.

The BMP signaling pathway regulates neurite outgrowth, den-
dritic development, and axon growth in neurons via various Smad-
dependent and -independent signaling pathways, such as those
involving LIMK1−cofilin, repulsive guidance molecule (RGM), and
neurogenin [5,14,15] (Fig. 1). BMP signaling also facilitates axonal
transport and organization of the microtubule network in neurons
[16] (Fig. 2). The BMP receptors undergo endocytosis and dynein-
dependent retrograde transport along the axon [17], implying that
the trafficking of BMP receptor complexes might affect the cytoskel-
etal dynamics and axonal development (Fig. 2). TGF-β1−3 are
found to increase the number and length of neurites [18] (Fig. 2).

The TGF-β superfamily also enhances synapse formation [19].
BMP7 and activin promote synapse development in hippocampal
neurons [20] (Fig. 2). In addition, BMP signaling determines synap-
tic size [21], while astrocyte-derived TGF-β promotes synapse

Table 1. Molecules in the BMP, TGF-β, and activin signaling pathway in mammals and Drosophila

Mammals Drosophila

Ligands
BMP BMP2, BMP4 Dpp

GDF5, GDF6, GDF7 Gbb
BMP5, BMP6, BMP7, BMP8
GDF1, GDF2, GDF3 Scw
BMP9, BMP10
BMP3, GDF10
Nodal

TGF-β TGF-β1, TGF-β2, TGF-β3 Mav
Lefty1, Lefty2

Activin ActivinA, ActivinB, ActivinC, ActivinE Act-β, Daw
InhivinA, InhibinC, InhibinE Myo

Type I receptors
BMP ACVRL1 (ALK1), ACVRI (ALK2) Sax

BMPR1A (ALK3), BMPR1B (ALK6) Tkv
TGF-β TβRI (ALK5), ACVRL1 (ALK1) BaboA, BaboB, BaboC
Activin ACVR1B (ALK4), ACVR1C (ALK7) BaboA, BaboB, BaboC

Type II receptors
BMP BMPR2 Wit

ACVRIIA (ACTRIIA), ACVRIIB (ACTRIIB) Punt
TGF-β TβRII Punt
Activin ACVRIIA (ACTRIIA), ACVRIIB (ACTRIIB) Punt

R-Smads
BMP Smad1, Smad5, Smad8 Mad
TGF-β Smad2, Smad3 Smox
Activin Smad2, Smad3 Smox

Co-Smads
BMP Smad4 Medea
TGF-β Smad4 Medea
Activin Smad4 Medea

I-Smads
BMP Smad6, Smad7 Dad
TGF-β Smad7 Dad
Activin Smad7 Dad
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formation (Fig. 2) [22]. The roles of the TGF-β superfamily path-
ways in synapse formation have been characterized in the develop-
ment of neuromuscular junctions (NMJ) in Drosophila [23]. Glass
bottom boat (Gbb), a Drosophila ortholog of BMP (Table 1)
secreted from muscle cells, promotes pre-synaptic formation at the
NMJ [23]. Gbb binds the Type II receptor wishful thinking (Wit)
and the Type I receptor thickvein (Tkv) or Saxophone (Sax)
(Table 1) and regulates synaptogenesis via Smad1/5/8 (Mothers
against Dpp or Mad) (Table 1) and Drosophila ortholog of LIMK1
(Limk). Maverick (Mav), a Drosophila ortholog of TGF-β, is
secreted by glia, binds to Punt, a Type II receptor (Table 1)
expressed on the surface of muscle cells, and potentiates Gbb-
depending signaling, hence promoting synaptic growth at the NMJ
[24]. The TGF-β signaling pathway also regulates synaptic plasticity
and memory [22]. TGF-β2 enhances synaptic transmission in pri-
mary cultured hippocampus neurons [25]. Central nervous-specific
knockout (KO) of TGF-β1 in mouse exhibits a reduction of dendritic
spine density, impaired long-term potentiation (LTP), and facilitated
long-term depression (LTD) in CA1, CA2, and CA3 synapses in the
hippocampus [26]. Bmpr1a and Bmpr1b double KO mice show
reduced synaptic transmission [21,27,28]. Activin increases the
number of synaptic contacts and the length of dendritic spine necks
[20], suggesting that activin improves synaptic plasticity and LTP by
modifying synaptic morphology [29]. Based on a transgenic mouse
expressing a dominant negative mutant of the activin receptor Type
1B (Acvr1b) (also known as ALK4), it has been suggested that acti-
vin signals suppress inhibitory synaptic transmission [30,31]. In
summary, multiple conserved members of the TGF-β superfamily of
cytokines play key roles both in synaptogenesis and in plasticity of
the nervous system. In the next paragraph, we list the instances in

which TGF-β superfamily pathways have been linked to the patho-
genesis of different neurological disorders.

TGF-β/BMP Signaling in Developmental

Disorders

Fragile X syndrome

Fragile X syndrome (FXS) (OMIM No. 300624) is the most com-
mon cause of inherited intellectual disability and the genetic cause of
autism spectrum disorders (ASDs). Inactivating mutation of the fra-
gile X mental retardation 1 (FMR1) gene, which locates at Xq27.3,
a ‘fragile site’, or the expansion of CGG repeats (more than 200
repeats) in the 5′ UTR of FMR1 causes FXS [32]. It is estimated that
1 in 4000 men and 1 in 8000 women are affected worldwide
[32,33]. It is thought that the X chromosome with the fragile X site
is more often inactivated compared with the nonaffected X chromo-
some [33]. FXS is diagnosed within the first 3 years of life by genetic
testing. The FXS patients exhibit cognitive impairment, anxiety,
hyperactivity, and autistic behavior as well as characteristic physical
features, such as large and prominent ears, macroorchidism, and
ovarian insufficiency [32,33]. Females with FXS tend to present less
affected but wider range of phenotypic characteristics than males,
depending on the inactivation ratio of the fragile X site [32]. The
FMR1 gene encodes fragile X mental retardation protein (FMRP),
an RNA binding protein that, in a majority of cases, represses trans-
lation [34]. Several genome-wide analyses to identify FMRP target
mRNAs have been performed [35,36]. Based on the identification of
FMRP targets, various pharmacological or genetic strategies to
reduce the expression or activity of FMRP targets and rescue the
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Figure 1. Signal transduction by TGF-βs and BMPs TGF-β and BMP ligands induce formation of heteromeric complex between specific Type II and Type I

receptors. The Type II receptors transphosphorylate the Type I receptors and activate the Type I receptor kinases. The Type I receptor transmits the signal to the

cell by phosphorylating receptor-regulated (R)-Smads, which form heteromeric complexes with Smad4 (common (Co)-Smad) and translocate in the nucleus

where by interacting with other transcription factors regulate gene transcriptional responses, chromatin remodeling, and/or control of microRNA processing

[‘canonical (or Smad-dependent) pathway’]. Inhibitory (I)-Smads; Smad6 and Smad7 inhibit activation of R-Smads. In addition, the activated Type I receptors

can activate ‘non-canonical (or non-Smad) pathway’ via different effectors, such as extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK),

p38, Rho, phosphoinositide 3-kinase (PI3K), transforming growth factor beta-activated kinase 1 (TAK1), p21 (RAC1) activated kinase 1 (PAK1), and LIM domain

kinase 1 (LIMK1). CR and TF stand for chromatin remodeling protein and transcription factor, respectively.
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pathogenesis have been employed in FXS model animals [34].
However, currently there is no effective therapy for FXS. Recently,
the transcript of the Type 2 BMP receptor (BMPR2) gene has been
identified as a novel target of FMRP [37] (Table 2). In FXS patients-
and Fmr1-KO mice-derived brains and neurons, BMPR2 protein
amount is increased [37], resulting in LIMK1 activation and
increased phosphorylation of cofilin [37]. The BMP-LIMK1-cofilin
pathway regulates dendritogenesis and axon growth in CNS neu-
rons [14,38]. It has been also reported that overexpression of wild-
type or a constitutively active mutation in LIMK1 causes increased
growth cone formation, axonal outgrowth, abnormal dendritogen-
esis, and impaired neural migration in primary neurons and in

transgenic mice expressing a constitutively active Limk1 [39,40].
Interestingly, both Fmr1-KO mice and human FXS patients exhibit
an increase of the spine density and the number of immature spines
[41–44]. Genetic or pharmacological inhibition of the Smad-
independent BMP-BMPR2-LIMK1-cofilin pathway rescues the neu-
ron morphological and behavioral abnormalities in Fmr1-KO mice
[37,45]. Retrograde BMP signaling also plays an important role in
synapse growth and stability via both Smad-dependent and -inde-
pendent (LIMK1-cofilin-dependent) pathways at the Drosophila
NMJ [46,47]. Like FXS patients and Fmr1-KO mice, Drosophila
Fmr1 (dFmr1) mutants have an increased number of synaptic bou-
tons and branches at the NMJ [48–50]. These morphological
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changes of the synapses at the NMJ are accompanied by an increase
in the crawling velocity of larvae [37]. Genetic or pharmacological
inhibition of the Wit-Limk pathway in larvae ameliorates the neuro-
morphological and locomotive abnormalities in dFmr1 mutants
[37,45], suggesting that FMRP-dependent regulation of the BMPR2-
LIMK1-cofilin axis is an evolutionarily conserved pathway import-
ant for synapse development, and that aberrant activation of this
pathway is one of the underlying causes of the FXS pathogenesis.

Williams syndrome

Williams syndrome (WS) (OMIM No. 194050) is a developmental
disorder characterized by mental retardation or learning difficulties,
cardiovascular problems, particular facial features, and a typical
personality that includes overfriendliness and anxiety [113]. The
prevalence is 1 in 20,000, occurring sporadically within the general
population [114]. Post-mortem layer V/VI cortical neurons in WS
patients’ brain and iPSC-derived neurons show longer dendrites and
an increased number of spines and synapses [115]. WS is caused by
a deletion of the chromosome 7p11.23 locus, which comprises ~25
protein coding genes, including CYLN2, ELN, GTF2I, GTF2IRD1,

FZD9, and LIMK1 [116]. LIMK1 is considered as one of the critical
genes in the pathogenesis of WS [51] because Limk1-KO mice
exhibit abnormalities in synapse morphology and function,
enhanced hippocampus LTP, increased locomotor activities, and
impaired leaning [117]. Furthermore, both Limk1-KO mice and
humans with the WS genetic mutation present spine abnormalities
and cognitive impairment [117–119]. Additionally, overexpression
of a dominant negative form of Limk1 causes aberrant axonal guid-
ance and neuronal migration in the embryonic mouse brain [40]. As
described in the FXS section above, aberrant activation of the
BMPR2-LIMK1 pathway is implicated in FXS, while inhibition or
inactivation of LIMK1 leads to WS [37] (Table 2). It is intriguing to
speculate that restoring the BMP-BMPR2-LIMK1-cofilin activity
might be able to ameliorate the pathogenesis of WS.

Angelman syndrome

Angelman syndrome (AS) (OMIM No. 105830) is a neurodevelop-
ment disorder resulted mainly from deficient expression or function
of the maternally inherited allele of UBE3A gene on the chromo-
some 15q11.2-q13 locus. The incidence of AS is between 1 in

Table 2. Deregulation of TGF-β signaling pathway associated with various neurological disorders

Disease Affected
pathway

Mechanism Impact on pathogenesis Reference

Fragile X
syndrome

BMP signaling
(U)

Decreased translational inhibition of
BMPR2 by FMRP

Increased dendritogenesis and spine number [37]

Williams
syndrome

BMP signaling
(D?)

Deletion of LIMK1 Abnormal synapse morphology and function [51]

Angelman
syndrome

BMP signaling
(U)

Decreased BMPR1A degradation by
UBE3A

Abnormal spine formation [52]

Mowat-Wilson
syndrome

BMP signaling
(U or D)

Deregulation of SIP1 Defective neural crest formation [53,54]

Troyer syndrome BMP signaling
(U)

Decreased endocytotic degradation of
BMPR2 by SPARTIN

Increased synapse formation and neurodegeneration [55,56]

SPG3A BMP signaling
(U)

Decreased endocytotic degradation of
BMPR2 by ATL1

Abnormal microtubule dynamics and axon guidance? [57–59]

SPG4 BMP signaling
(U)

Decreased endocytotic degradation of
BMPR2 by SPAST

Abnormal microtubule dynamics and axon guidance? [57,60]

SPG6 BMP signaling
(U)

Decreased endocytotic degradation of
BMPR2 by NIPA1

Abnormal synapse formation, microtubule dynamics,
and axon guidance

[16,57,60,61]

Alzheimer’s disease TGF-β signaling
(U or D)

Deregulation of TGF-β1, Smad7,
nuclear R-Smad/Co-Smad.

Aβ accumulation, aberrant microglia activation, and
increased neurodegeneration

[62–71]

BMP signaling
(U)

Elevation of BMP4 and BMP6 Inhibition of neurogenesis [72–75]

Parkinson’s disease TGF-β signaling
(U or D)

Deregulation of ligands and receptors Degeneration of DA neuron [76–79]

BMP signaling
(D)

Deregulation of ligands and receptors Inhibition of DA neuron differentiation and
protection from neurodegeneration

[80–87]

Huntington’s
disease

TGF-β signaling
(U or D)

Deregulation of neuronal and
circulating TGF-β1

Increased neurodegeneration? [88–92]

BMP signaling
(U)

N.D. Increased dendritic branching and synapse size [93]

Amyotrophic
lateral sclerosis

TGF-β signaling
(U or D)

Deregulation of ligands and Smad2/3
protein stability

Inhibition of neuroprotection and increased axon
degeneration

[94–98]

BMP signaling
(U or D)

Deregulation of receptor trafficking Impaired synapse growth [99–102]

Multiple sclerosis TGF-β signaling
(U)

N.D. Inflammation? [103–105]

BMP signaling
(U)

Deregulation of BMP2, BMP4, BMP5
and noggin

Inhibition of neuronal differentiation and myelination [106–112]

U, D, and N.D. stand for ‘Up’, ‘Down’ and ‘not determined’, respectively.
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15,000 and 1 in 20,000 [120]. The clinical features of AS are micro-
cephaly, severe intellectual deficit, speech impairment, epilepsy, elec-
troencephalogram abnormalities, ataxic movements, tongue
protrusion, paroxysms of laughter, abnormal sleep patterns, and
hyperactivity [121]. UBE3A encodes an E3 ubiquitin ligase which
plays an important role in the neuronal ubiquitin-proteasome path-
way and synaptic development [122–125]. Several proteins have
been identified as targets of UBE3A, such as ECT2, p53, p27,
HR23A, Arc, and ephexin-5 [121]. AS model mice show reduced
synapse formation and experience-dependent synapse remodeling
[124,126]. Mice with maternal mutation in Ube3a develop defects
in context-dependent learning and LTP [127]. The neurons from the
Ube3a maternal-deficient mice exhibit shorter spines and reduced
dendritic spine density [125]. dUbe3a-null mutants show a reduced
dendritic branching and growth of the terminal dendritic processes
of sensory neurons, as well as a decreased number of satellite bou-
tons at the NMJ in Drosophila [52,128]. Along with morphological
abnormalities, deficits in locomotor behavior, circadian rhythms,
and long-term memory are also observed in the dUbe3a mutants
[128]. Recently, Tkv, Drosophila ortholog of BMPR1A (Table 1),
has been identified as a dUbe3a target [52]. The increased activation
of the Smad pathway and bouton formation in Ube3a mutants are
rescued by Tkv mutation, suggesting that aberrant activation of the
BMP signaling pathway is responsible for the synaptic abnormalities
in AS [52]. BMPR1A (ALK3) was also identified as a target of
UBE3A in human [52] (Table 2). UBE3A knockdown (KD) results
in increased BMPR1A protein followed by activation of the Smad
pathway, indicating that the BMP-BMPR1A signaling axis is critical
for the pathogenesis of AS. Moreover, a point mutation in UBE3A
has also been identified in patients with autism spectrum disorders
(ASD) [129,130], suggesting that the UBE3A-BMPR1A-BMP signal-
ing pathway might be associated with the pathogenesis of a broad
range of neurodevelopmental disorders, including ASD.

Mowat-Wilson syndrome

Mowat-Wilson syndrome (MWS) (OMIM No. 235730) is a mental
retardation multiple congenital anomaly syndrome characterized by
typical fancies, severe mental retardation, epilepsy, and variable con-
genital malformations, including Hirschsprung disease (HSCR),
genital anomalies, congenital heart disease (CHD), and agenesis of
the corpus callosum (ACC) [131]. MWS is a very rare disease first
described in 1998 [132], and the prevalence is between 1 in
50,000–70,000 [133]. Heterozygous mutation in the Smad-
interacting protein-1 (SIP1 also known as ZEB2 or ZFHX1B) gene
causes MWS [131]. SIP1 represses Smad signaling in response to
activation by BMPs and leads to the induction of neural fate [134–
136] (Table 2). The BMP-Smad pathway is crucial for the gener-
ation of neural crest cells [137,138], which gives rise to a variety of
cell populations in the PNS and contributes to the formation of fore-
brain and midbrain [139]. In zebrafish, KD of two Sip1 ortholog
results in a loss of vagal/postotic neural crest cell derivatives [53].
In Sip1-KO mouse embryos, depletion of neural crest cells and inhib-
ition in the neural crest of Msh homeobox 1 (Msx1), a BMP target
gene, can be observed, suggesting that functional BMP signaling is
impaired in these mice [54]. Sip1 also acts as an essential modulator
of CNS myelination by inducing Smad7, an antagonist of the BMP-
Smad pathway, specifically in oligodendrocytes, of which it pro-
motes the differentiation [12]. However, the molecular mechanisms
by which the SIP1 mutation affects BMP signaling in MWS patients

and how SIP1-BMP signaling leads to the MWS pathogenesis remain
unclear.

Hereditary spastic paraplegia

Hereditary spastic paraplegia (HSP), also known as familial spastic
paraplegia, is a group of neurodegenerative disorders that leads to
spastic weakness of the lower extremities [140]. HSP is classified
into two groups, ‘pure HSP’ and ‘complex HSP’, according to
whether the HSP occurs alone or is accompanied by additional
neurological syndromes, such as cognitive impairment, dementia,
epilepsy, and polyneuropathy, respectively [141]. HSP is rare and its
prevalence is estimated from 1.27 to 9.6 per 100,000 [140].
Mutations in more than 40 distinct loci and 21 spastic paraplegia
(SPG) genes have been associated with HSP. SPG genes encode pro-
teins that are involved in the maintenance of corticospinal tract neu-
rons [142] including Spartin (SPG20), Atlastin-1 (SPG3A), Spastin
(SPG4), and non-imprinted in Prader-Willi/AS1 (NIPA1, also
known as SPG6), some of which are inhibitory to BMP signaling
[55,57]. The characteristics of different classes of HSP and their
associated genes, such as Troyer syndrome (SPG20), SPG3A, SPG4,
and SPG6, are discussed below.

Troyer syndrome (SPG20)
Troyer syndrome (OMIM No. 275,900) is a child-onset autosomal
recessive complex HSP caused by mutation in SPART, which
encodes Spartin [143]. Troyer syndrome is characterized by a pro-
gressive spastic partial paralysis of the lower limbs, motor speech
disorder, and pseudobulbar palsy (inability to control facial move-
ments), distal muscular atrophy, motor and cognitive delay, short
stature, and subtle skeletal abnormalities, with both developmental
and degenerative features [144]. Only 21 patients in the USA
[143,144], 6 in Oman [145], and 3 in the Philippines [9] have been
reported. Spartin is known to have multiple functions, including
cytokinesis, endosomal trafficking and degradation of the epidermal
growth factor receptor (EGFR), lipid/cholesterol metabolism, and
mitochondrial function [147–152]. Interestingly, Spartin inhibits the
BMP signaling pathway [55,56]. Spartin-KO mice develop progres-
sive impairments in motor function similar to Troyer syndrome
[153]. The cerebral cortical neurons from Spartin-KO mice exhibit
increased branching, density of dendrites, and elongated axon length
in cerebral cortical neurons [153]. In the Drosophila NMJ, Spartin
localizes presynaptically [56]. Spartin homozygous mutants in
Drosophila show an increase of the BMP signaling, overgrowth of
synapses, and progressive neurodegeneration [56]. Mutation in Wit
or the BMP inhibitor Daughters against dpp (Dad) (Table 1), an
ortholog of Smad6, rescues the synapse number and neurodegenera-
tion phenotype, suggesting that Spartin negatively controls BMP sig-
naling by promoting endocytic degradation of Wit [56]. Therefore,
these observations suggest that abnormal activation of BMP signal-
ing is linked to the pathogenesis of Troyer syndrome (Table 2).

Spastic paraplegia-3A (SPG3A)
Mutations in the Atlastin-1 (ATL1) gene are the most common
cause of pure and complex HSP with early onset at around 4 years
old [141]. The ATL1 is a GTPase of the dynamin superfamily impli-
cated in facilitating membrane interactions, fission, and fusion
[154,155]. The mutants exhibit reduced GTPase activity and a
prominently disrupted morphology of the endoplasmic reticulum
(ER) network [156]. Knockdown of ATL1 increases (while overex-
pression represses) BMP signaling in zebrafish [157]. ATL1 co-
localizes with the Type I BMP receptor [157] and associates with
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BMPR2 [57]. HSP-related mutations in ATL1 interfere with
BMPR2 trafficking to the cell surface and attenuate BMP signaling
[57]. On the contrary, null mutations of Drosophila dATL1 [58]
and of ATL1 in mammalian cells [59] show augmented BMP activ-
ities, indicating that ATL1 may also modulate trafficking, and simi-
larly inhibit BMP signaling in mammals by interfering with
microtubule dynamics and axon guidance [58,59] (Table 2).

Spastic paraplegia-4 (SPG4)
Mutations in the Spastin (SPAST) gene are commonly found in
autosomal dominant pure and complex HSP. SPG4 patients show
sensory disturbances, sphincter dysfunction, tremor, cognitive
impairment, dementia, and ataxia. SPG4 is age-dependent, and the
onset peak is 10 and 30 years old [141]. SPAST interacts with
microtubules and promotes microtubule disassembly, which is essen-
tial for axon growth, branching, and neuronal plasticity [158].
Mutations in SPAST cause abnormal microtubule disassembly
[159]. The dSpastin mutant Drosophila shows disorganized micro-
tubules and disrupted proximal-distal transmission gradient along
axon branches, which causes increased BMP signaling at the NMJ
[57,60] (Table 2).

Spastic paraplegia-6 (SPG6)
SPG6 is a teenage-onset form of pure HSP, with some patients with
complex HSP showing memory deficit and epilepsy [141]. All
NIPA1 mutations in SPG6 are missense mutations that affect traf-
ficking of proteins and trapping in the ER [160]. Patients lacking
one copy of the NIPA1 gene seldom develop clinical HSP, thus it is
unlikely that SPG6 is caused by haploinsufficiency of NIPA1, but
rather by a ‘toxic gain of function’. NIPA1 binds ATL1 and pro-
motes efficient cell surface trafficking of ATL1 [160]. NIPA1 also
directly binds BMPR2 [55]. NIPA1 mutants, which are prone to ER
trapping, reduce endocytosis, lysosomal degradation, and recycling
of BMPR2, and thus augment the amount of BMPR2 on the cell sur-
face [55] (Table 2). Transgenic rats expressing a NIPA1 mutant in
neurons show an increase of BMPR2 in the spinal cord [61].
Interestingly, a null mutation of Spichthyin (Spict), a Drosophila
ortholog of NIPA1, causes a distal axonal abnormality with synap-
tic overgrowth at the NMJ, due to the attenuation of Wit endocyto-
sis [16]. Spict preferentially localizes in early endosomes and
presynaptically regulates not only synaptic bouton formation at the
NMJ but also microtubule maintenance and axonal transport, by
inhibiting BMP signaling [16].

Taken together, abnormal BMPR2 endocytosis and trafficking,
followed by atypical activation of BMP signaling, is closely linked to
the pathology of several subtypes of HSP.

TGF-β/BMP Signaling in Neurodegenerative

Disorders

The TGF-β family plays an extensive role in the survival of neurons
[161,162]. Levels of the ligands and the receptors of TGF-β family
are regulated following neural injury and repair for proper function
of CNS [163–165]. Hippocampal astrocytes from old rats secrete
higher amounts of TGF-βs compared with postnatal or young rats
[166]. The level of BMP4 also increases in an age-dependent manner
in both human and mouse hippocampus [167], suggesting that the
changes of activities of the TGF-β family of signaling affect the
homeostasis of aging brains by altering the function and the niches
of neurons. Thus, it is not surprising that the TGF-β family is

implicated in the pathogenesis of age-related diseases, such as
Alzheimer’s and Parkinson’s disease, as described below.

Alzheimer’s disease

Alzheimer’s disease (AD) (OMIM No. 104300) is an age-related,
progressive neurodegenerative disease characterized by progressive
cognitive impairment and pathological abnormalities, such as loss of
neurons, amyloid plaque, and hyperphosphorylated tau in intracel-
lular neurofibrillary tangles in the brain [168]. In addition to the
neurodegenerative hallmarks, synaptic plasticity and neuronal integ-
rity are also impaired in AD brains [169]. AD affects approximately
29.8 million people and is a major health concern worldwide [170].
Although pathological mutations in the amyloid precursor protein
(APP), presenilin-1, and presenilin-2 are found in familial AD, more
than 95% of AD patients do not carry these gene mutations [171].
The molecular mechanisms of pathogenesis of AD remain largely
unclear.

It is likely that growth factors, such as TGF-βs and BMPs, are
involved in the pathogenesis of AD [172] (Table 2). The phosphor-
ylation of Smad2/3 is decreased in the AD brain, indicative of
impaired TGF-β signaling [62]. Nuclear Smad2, Smad3, and Smad4
are also decreased in the temporal cortex of AD patients [63]. TGF-
β receptor Type 2 (TβR2) expression is decreased in neurons in AD
patients [64]. It has been proposed that impaired TGF-β signaling in
neurons contributes to β amyloid (Aβ) accumulation, microglia acti-
vation [65], and neurodegeneration [64]. Accordingly, exogenous
TGF-β1 induces activation of microglia and clearance of Aβ and
protects against Aβ-induced synapse loss, neurodegeneration, and
apoptosis [66–69]. However, conflicting results have been also
reported. In the brain of a mouse model of familial AD, there is an
increase of TGF-β1 and Smad7, an antagonist of TGF-β signal,
which are thought to mediate neural apoptosis [70] (Table 2).
Additionally, TGF-β1 also affects the microglia and ameliorates neu-
roinflammation in AD [71]. Because TGF-β1 seems to act as both
survival and apoptotic factor depending on the context, the exact
role of TGF-β1 in AD is still unclear.

The BMP signaling pathway is also involved in AD-related neu-
rodegeneration. In the hippocampus of AD patients, BMP6, but not
BMP2 or BMP7, is augmented [72]. Aβ exposure induces BMP6,
which then inhibits proliferation of NPCs [72]. Increase of BMP4 is
also observed in AD mouse brains [73]. These observations suggest
that augmented BMP6 is involved in AD-related altered neurogen-
esis. BMP4 is increased and noggin, an antagonist of BMPs, is
decreased in the dentate gyrus of the AD mouse model and the apo-
lipoprotein E (ApoE)-KO mice [74,75]. Several observations suggest
the implication of TGF-β/BMP signaling in the development and
progression of AD. To further understand the molecular mechanism
of the pathogenesis of AD and to develop therapeutics for AD, a
more precise role of TGF-β/BMP signaling in AD brains should be
clarified in the future.

Parkinson’s disease

Parkinson’s disease (PD) is the second most common neurodegen-
erative disorder after AD, affecting 6.2 million people globally
[170]. The clinical symptoms of PD include tremor at rest, rigidity,
bradykinesia, postural abnormalities and a freezing phenomenon
[173]. The pathological findings in PD include a loss of nigrostriatal
dopaminergic (DA) neurons with a subsequent loss of the neuro-
transmitter dopamine in the corpus striatum, an area of the brain
which is critical for the control of movement [174]. One of the
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pathological hallmarks of PD is the presence of intracellular protein
aggregates called Lewy bodies [174]. Approximately 5% of PD
patients carry a familial form of PD and several causal genes have
been identified, including leucine rich repeat kinase 2 (LRRK2),
Parkinsonism associated deglycase (PARK7), PTEN-induced puta-
tive kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase
(PRKN), and synuclein alpha (SNCA), but the genetic cause of 95%
of PD is unknown [175].

It has been reported that the TGF-β superfamily signaling path-
way controls DA neuron development and survival [76] (Table 2).
Genetic studies suggest an association of single nucleotide poly-
morphisms (SNPs) in the TGFB2 gene with PD [77]. Tgfb2+/−;
Tgfb3−/− and Tgfb2−/−;Tgfb3+/− mice show a significant reduction
of DA neurons at E14.5 [76]. Tgfb2+/−, Tgfb3−/−, and Smad3−/−

mice show postnatal or age-dependent loss of DA neurons [76].
Adult Tgfb2+/− mice show more significant loss of striatal dopamine
compared with young mice [176]. These data suggest that TGF-βs
play more critical role in adult brain function and homeostasis.
Neuron-specific expression of a kinase-inactive mutant TβR2 in
mice displays age-dependent neurodegeneration in the nigrostriatal
system [78]. TGF-β activation by overexpressing constitutively
active TβR1 aborts degeneration of DA neurons in the 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse mod-
el [78]. In the cerebrospinal fluid of PD patients, the amount of
TGF-β1 and TGF-β2 is increased [79].

BMP signaling is also involved in DA neuron differentiation and
protection from neurodegeneration [80–84]. Catecholaminergic
neuron-specific knock-in of a dominant negative form of BMPR2 (a
truncation mutant) results in a decrease of tyrosine hydroxylase
(TH), which catalyzes the formation of L-dihydroxyphenylalanine
(L-DOPA), the rate-limiting step in the biosynthesis of DA, and a
number of neurons in substantia nigra compacta [80]. Pretreatment
with BMP7 reduces neurodegeneration in 6-hydroxydopamine
(6-OHDA)-induced PD [81]. BMP7 heterozygous KO (Bmp7+/−)
rats exhibit an increased sensitivity of adult DA neurons to metham-
phetamine [84]. BMP7 induces DA neuron differentiation from mes-
encephalic precursor cells in vitro [82]. BMP2 induces neurite
outgrowth through Smad activation via BMPR1B in SH-SY5Y cells,
which are capable of differentiating to DA neurons [83].

Finally, glial-derived neurotrophic factor (GDNF) heterozygous
KO (Gdnf+/−) mice show an accelerated decline of DA neurons dur-
ing aging [85]. Based on these observations, GDNF was used in clin-
ical trials for PD [86]. GDF5 and GDF15 also play important roles
in DA neuron development and survival [76]. Transplantation of
GDF5-expressing CHO cells into the striatum exhibits neuroprotective
and neurorestorative effects on DA neurons in a 6-OHDA-induced PD
rat [87]. Thus, impairment of TGF-β superfamily signaling is closely
associated with the pathogenesis of PD.

Huntington’s disease

Huntington’s disease (HD) (OMIM No. 143100) is the most com-
mon inherited neurodegenerative disorder caused by the expansion
of a polyglutamine (polyQ) stretch within the coding sequence of
Huntingtin (HTT) [177]. HD is characterized by motor, cognitive,
and emotional defects [178]. The incidence is 0.38 per 100,000 per-
sons per year [179]. The expansion of a polyQ repeat causes HTT
protein aggregation [180]. There is conflicting evidence on how
aggregated HTT causes the neurotoxicity [181], but, in general, the
polyQ repeat mediates neurotoxicity through impaired vesicle traf-
ficking and axonal transport, altered proteasomal degradation,

mitochondrial dysfunction, and transcriptional deregulation [182].
Recently it has been found that an accumulation of pathogenic HTT
protein in nerve terminals interferes with endosomal recycling and
leads to buildup of early endosomal signaling compartments, such
as BMP signaling molecules in Drosophila [93]. The augmented
BMP signaling molecules trigger a robust overgrowth of synaptic
boutons at NMJ [93] (Table 2). Disruption of BMP signaling res-
cues abnormal synapse formation and neurotoxicity of the patho-
genic HTT, suggesting that the aberrant activation of BMP signaling
is involved in the neuronal dysfunction in HD [93]. Indeed, exten-
sive dendritic branching with increased number and size of spines
are observed in striatal spiny neurons in HD patients [183].

Deregulation of TGF-β signaling appears to be involved in the
pathogenesis of HD [88–92]. The amount of circulating TGF-β1 in
asymptomatic HD patients is decreased [88], while it is increased in
symptomatic HD patients [88] (Table 2). The amount of TGF-β1 in
cortical neurons is also reduced in post-mortem brain samples from
both asymptomatic and symptomatic HD patients as well as HD
model mice [89]. Transcriptome analysis using iPSCs and neural
stem cells (NSCs) from HD patients reveals that TGF-β signaling
molecules are increased in HD [90]. An increase of the TGF-β signal-
ing pathway is also observed in striatal cell lines expressing HTT
mutant and iPSC-derived neural progenitor cells (NPCs) [92].
Smad7, an antagonist of TGF-β signaling, is significantly decreased
in these cells, further supporting the increase of TGF-β signaling in
HD neurons. It is possible that the boost in TGF-β signaling might
be a compensatory response to neurodegeneration [92], or that it
predisposes the NSCs toward quiescence during the neurodegenera-
tion process [91]. It has also been reported that Smad3 binds to the
promoter region of the HTT gene and activates transcription [92].
Further studies are required to clarify molecular link between the
TGF-β family signaling to the pathogenesis of HD.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) (OMIM No. 105400) is a pro-
gressive neurodegenerative disease which affects the upper and low-
er motor neurons [184]. ALS is characterized by muscle stiffness,
twitching, weakness, and atrophy throughout the body [184]. ALS
affects about 2 in 100,000 individuals [184]. Mutations in >25
genes, including superoxide dismutase 1 (SOD1), alsin Rho guanine
nucleotide exchange factor (ALS2), fused in sarcoma (FUS), TAR
DNA-binding protein 43 (TDP43, also known as TARDBP), and
chromosome 9 open reading frame 72 (C9orf72), have been identi-
fied in association with ALS, but for 90%–95% of the patients with
ALS, the causal genes are unknown [185]. Irregular TGF-β signaling
has been implicated in ALS pathogenesis [94–97] (Table 2). TGF-β1
is elevated in astrocytes in the spinal cord of Sod1 mutant mice and
sporadic ALS patients [94]. TGF-β1−3 are also augmented in the
muscle of ALS patients and Sod1 mutant mice [95]. More TGF-β1 is
also detected in the serum and plasma of ALS patients [96]. Nuclear
phosopho-Smad2/3 (P-Smad2/3), readout of the TGF-β activity, is
increased in neurons and glial cells in the spinal cord of Sod1
mutant mice as well as both familial and sporadic ALS patients [97].
Administration of TGF-β inhibitor ameliorates ALS progression in
Sod1 mutant mice [94]. These reports suggest that astrocyte-derived
TGF-βs inhibit neuroprotective responses, promote motor neuron
axon degeneration, and contribute to ALS.

TDP43 is one of the ALS-related genes [186,187]. Pathological
TDP43 can lead to deregulation of the TGF-β and BMP signaling
pathways in ALS [98,99]. Mutant TDP43 protein found in ALS is
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prone to aggregate [188]. Interestingly, in some sporadic ALS
patients, wild-type TDP43 protein is also aggregated [189,190]. The
intracytoplasmic inclusion bodies containing TDP43 are associated
with frontotemporal dementia and cognitive impairment in ALS
[191,192]. It has also been reported that Smurf2, an E3 ubiquitin
ligase that promotes ubiquitin-dependent degradation of Smad2/3
proteins, and phosphorylated Smad2/3 proteins are colocalized with
TDP43 and ubiquitin within neuronal intracytoplasmic inclusions in
the spinal cord and medulla oblongata of sporadic ALS patients,
suggesting that the TGF-β signaling pathway is decreased in neuron
[98] (Table 2). In Drosophila model of ALS, BMP signaling path-
way genes (Smox, SkpA, and Sax) (Table 1) are elevated in CNS of
dTDP43 mutant Drosophila according to the genome-wide tran-
scriptome analysis [99]. Aberrant expression of TDP43 in
Drosophila motor neurons mediates defective endosomal trafficking
of Tkv and reduced synaptic BMP signal, leading to the impaired
synaptic growth at NMJ accompanied by the abnormal larval crawl-
ing [100]. These reports suggest that deregulation of TDP43 can
cause the neurological impairment in ALS pathogenesis through the
impairment of the TGF-β/BMP signaling.

Mutations in the Vesicle-associated membrane protein-
associated protein B (VAPB) gene are found in patients with familial
ALS [193]. VAPB protein is reduced in the spinal cord of sporadic
ALS patients [194]. VAPB is a Type II integral membrane protein
that mainly localizes at the ER and implicated in a variety of cellular
processes, including ER stress response and the unfolded protein
response (UPR). A Drosophila expressing the mutant form of
dVAP33A, a Drosophila ortholog of VAPB, shows reduced
phospho-Mad both at NMJ and in CNS, indicative of reduced BMP
signaling [101]. While it is unclear how dVAP33A modulates the
BMP signaling, it is proposed that VAPB mutant might be involved
in the abnormal UPR [102].

It is essential to elucidate the molecular mechanisms by which
the deregulation of TGF-β signaling/BMP signaling pathway pro-
moting ALS pathogenesis in order to develop a treatment for ALS.

Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease with demyelin-
ation in CNS neurons [195] which affects over 2.3 million people
[170]. Typically, MS patients are diagnosed in young adulthood
with a higher incidence in women [195]. Clinical symptoms include
blurred vision, muscle weakness and spasms as well as motor pro-
blems [195]. There are two major clinical courses of MS: (i)
relapsing-remitting MS and (ii) progressive MS [195]. Despite these
subtypes, all patients with MS have progressive and irreversible
neurological disabilities [195]. Genome-wide association studies
demonstrate that SNPs in the major histocompatibility complex
(MHC) class II and DR beta 1 (HLA-DRB1) are highly associated
with MS [196,197], suggesting that chronic neuroinflammation and
failure of the myelin-producing cells, followed by neurodegeneration,
are involved in the pathogenesis of MS [198]. Myelin is critical for
the propagation of nervous impulses and axonal maintenance and
is synthesized as the plasma membrane of the oligodendrocytes in
the CNS [199]. During neural development, myelin and oligoden-
drocytes are generated from oligodendrocyte progenitors under the
control of various growth factors [200]. MS plaques are character-
ized by the presence of immune cell infiltration, demyelination,
death of mature oligodendrocytes, axonal damage and neurode-
generation [195,201]. NPCs and oligodendrocyte precursor cells
(OPCs) are present in the MS lesions [202–204], suggesting that

the failure of maturation of NPCs and OPCs is involved in MS
pathogenesis.

The BMP signaling pathway is involved in NPC differentiation
into astrocytes with concurrent suppression of oligodendroglial dif-
ferentiation in adult brains, thus, deregulation of BMP signaling can
contribute to demyelination in MS [106] (Table 2). Both BMPs and
BMP antagonist noggin are potentially involved in MS pathology
through the functions in neuronal differentiation, myelination, and
immune system regulation [107]. It is thought that noggin, which is
in a niche of NPCs, is associated with neurogenesis [205,206].
NPCs treated with or overexpressing noggin can differentiate into
astrocytes, oligodendrocytes, and mature neurons [205,206].
Noggin is highly expressed in T cells, and the amount is reduced in
MS patients [108], suggesting that the reduced production of noggin
by T cells might contribute to demyelination in MS. It has also been
reported that BMP4 is increased in the caudal cerebellar peduncle of
rats in ethidium bromide-induced demyelinated lesions [109]. BMP4
and BMP5 are expressed at the lesions in post-mortem brain tissues
from MS patients, and BMP5 expression is augmented in MS
patients compared to healthy controls [110] (Table 2). T cell-
derived BMP2, BMP4, and BMP5 are increased in peripheral blood
mononuclear cells from MS patients [111]. The BMP signaling regu-
lates myelination and demyelination through oligodendrogenesis
[11,12]. Additionally, abnormal trafficking of BMP signaling mole-
cules may also contribute to MS pathology [112]. Recent genome-
wide association studies demonstrate that SNPs at the 16p13 locus
containing C-type lectin domain family 16, member A (CLEC16A)
increase the risk of MS as well as other autoimmune diseases
[196,197,207,208]. CLEC16A protein in the white matter and per-
ipheral blood mononuclear cells is increased in MS patients [209]. It
has been suggested that CLEC16A promotes late endosomal matur-
ation to disrupt the HLA-II antigen presentation pathway in MS
[209]. In Drosophila, a mutation in Ema, an ortholog of CLEC16A,
causes abnormal synaptic growth and defective protein trafficking
[112]. Ema is an endosomal membrane protein that interacts with
the class C Vps-HOPS complex to promote endosomal maturation
[112]. The Ema mutant fails to form mature late endosomes and
lysosomes. In the Ema mutant, Tkv, phospho-Mad, and synaptic
bouton number are all increased, but they can all be reversed by
overexpression of human CLEC16A [112]. These results suggest
that Ema and CLE16A inhibit BMP signaling through endolysoso-
mal trafficking and degradation of the signaling components [112].
Compared with the BMP pathway, studies linking the TGF-β path-
way to MS are limited. TGF-β is augmented in peripheral blood and
cerebrospinal fluid of MS patients [103]. The amount of TGF-β and
the activity of the disease are linearly correlated [104,105], suggest-
ing that the amount of circulating TGF-β can be used as a biomarker
for MS. MS is yet another example of neurodegenerative disorder
associated with the deregulation of both TGF-β and BMP signaling
pathways.

Anxiety, Depression, and Dementia

Anxiety, depression, and dementia are common neurological disor-
ders that are also linked to the deregulation of TGF-β signaling
[2–218]. Forebrain-specific Bmpr2-KO mice exhibit reduced anxiety-
related behavior [2]. Forebrain-specific activin transgenic mice also
show decreased anxiety-related behavior [211]. Major depressive dis-
order patients show a reduction in TGF-β in the serum or a poly-
morphism in the TGF-β gene [212–214]. Antidepressant treatment
increases TGF-β [215]. These reports suggest that TGF-β superfamily
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signaling pathways modulate psychiatric disorders. Blocking BMP
signaling by either transgenic or pharmacological methods signifi-
cantly enhances hippocampus-dependent learning memory beha-
viors [216], suggesting that BMP signaling is involved in learning
and memory processes. Charged multivesicular body protein 2B
(CHMP2B) mutations are related with frontotemporal dementia
[217]. Overexpression of Rab8, a negative regulator of TGF-β sig-
naling, rescued synapse overgrowth phenotype in Chmp2b mutant
Drosophila [218], implying that an overactive TGF-β signaling path-
way is involved in frontotemporal dementia pathogenesis.

Conclusion

The TGF-β family of growth factors plays essential roles during
embryonic development and in the regulation of tissue homeostasis.
Here we summarized studies describing the association of deregula-
tion of TGF-β signaling with neuronal development and neuro-
logical disorders. Abundant evidence in both invertebrates and
vertebrates indicates that the TGF-β pathways play important roles
in the maintenance of neuron and spine homeostasis. Causal links
between deregulation of TGF-β signaling pathway and human disor-
ders such as cancer and cardiovascular or bone diseases have been
well documented, and a number of therapeutic molecules have been
generated. Compared to other human diseases, the current knowl-
edge of how TGF-β pathways lead to various neurological abnor-
malities is limited. Many studies are rather descriptive than
mechanistic. We hope that this article will provide a basis for future
research aimed at providing more mechanistic insights into neuro-
logical abnormalities stemming from deregulation of TGF-β signal-
ing, which are essential for the future development of targeted
therapies.
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