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Abstract The thiopurine drugs 6-mercaptopurine (6-MP)

and azathiopurine (AZA) are widely used to treat inflam-

matory bowel disease. However, the incidence of adverse

reactions is high, particularly in Asia, and the mechanisms

of toxicity in Asian populations remain unclear. Thiopurine

S-methyltransferase (TPMT) is a well-known enzyme that

inactivates AZA or 6-MP through methylation and is one

of the few pharmacogenetic predictors used in clinical

settings in Western countries. Individuals carrying TPMT-

deficient genetic variants require reduced drug doses, but

this treatment modification is are not applicable to East

Asian populations. Several genes code thiopurine-metab-

olizing enzymes, including TPMT, multidrug-resistance

protein 4, and inosine triphosphatase. These genes have

been studied as candidate pharmacogenetic markers;

however, it remains unclear why Asian populations seem to

be more intolerant than other ethnic groups to a full dose of

thiopurines. A genome-wide association approach to

identify Asian-specific pharmacogenetic markers in Korean

patients with Crohn’s disease revealed that a non-synony-

mous single nucelotide polymorphism in nucleoside

diphosphate-linked moiety X-type motif 15 (NUDT15)

which causes p.Arg139Cys was strongly associated with

thiopurine-induced early leukopenia. Six common haplo-

types of NUDT15 were reported, and five variants showed

medium-to-low enzyme activities, compared with the wild

haplotype. NUDT15 hydrolyzes the thiopurine active

metabolites 6-thio-GTP and 6-thio-dGTP; variants of

NUDT15 had lower enzyme activities, causing higher

levels of thiopurine active metabolites, resulting in thiop-

urine-induced leukopenia. In clinical application, NUDT15

genotyping is a good candidate for predicting thiopurine

toxicity in East Asian populations. However, the associa-

tion of NUDT15 diplotypes with thiopurine toxicity

remains unclear. Further analyses with large cohorts to

confirm the clinical effects of each haplotype are planned.

Keywords Azathiopurine � 6-Mercaptopurine � NUDT15 �
Pharmacogenetics � Inflammatory bowel disease

Introduction

Inflammatory bowel diseases (IBDs), represented by

ulcerative colitis and Crohn’s disease, are chronic inflam-

matory intestinal conditions of unknown etiology. The

thiopurine drug, 6-mercaptopurine (6-MP), and its pro-

drug, azathiopurine (AZA), are widely used to treat IBD,

and thiopurines are well established as key drugs for

sparing steroid therapy and maintaining remission of IBD

[1–6]. Additionally, the combined treatment of anti-tumor

necrosis factor (TNF) agents with thiopurines has been

shown to reduce the risk of anti-drug antibody formation

that may diminish response to anti-TNF agents [7–9].

Despite the efficacy of thiopurines, the incidence of

adverse reactions is high, particularly in East Asian pop-

ulations, including Koreans [10], Chinese [11], and Japa-

nese [3, 12]. There are definite racial differences in adverse

reaction profiles [13, 14]. For example, the incidence of

leukopenia is higher in Asian populations than in Cau-

casian populations, and hair loss is not uncommon in
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Japanese patients but very rare in Caucasians, although the

standard dose of thiopurines in Japan (AZA 1–2 mg/

kg/day) is less than one-half of that used in Europe (AZA

2–2.5 mg/kg/day) [15]. Some of these adverse reactions are

known to be caused by individual differences in thiopurine

metabolism, which is affected by the genetic polymor-

phism of the enzymes [16, 17]. Several pharmacogenetic

studies, not only for IBD but also for leukemia and organ

transplantation, have been reported [18, 19], and a few of

the pharmacogenetic predictors thus identified have been

applied in clinical settings [20–22].

Given this background, in this review we focus on

recent advances in pharmacogenetic research of thiopuri-

nes and the prospects for clinical application of pharma-

cogenetic markers, paying attention to racial differences.

Thiopurine metabolic pathway

The metabolic pathways of AZA and 6-MP are well

described. These substances are metabolized into their

active metabolites through a series of steps [23–26], and

6-thioguanine nucleotides (6-TGNs) consist of

6-T(d)GMP, 6-T(d)GDP, and 6-T(d)GTP. 6-T(d)GTPs are

incorporated into DNA (6-TdGTP) and RNA (6-TGTP),

causing inhibition of nucleotide and protein synthesis

[27, 28] and resulting in immunosuppression. 6-TGTPs

also block the Vav-Rac1 pathway in T-cells, inhibiting

T-cell–antigen-presenting cell conjugation and the subse-

quent immune responses [29]. As shown in Fig. 1, there are

several thiopurine-metabolizing enzymes, and their activi-

ties are partly defined by their genetic polymorphisms.

Lower activity of the enzymes that inactivate thiopurines,

such as thiopurine S-methyltransferase (TPMT), leads to

higher production of 6-TGNs or other metabolites [31, 32],

causing dose-dependent adverse reactions typified by

leukopenia [16, 18, 19].

Thiopurine S-methyltransferase

Thiopurine S-methyltransferase is a well-known enzyme

that inactivates AZA or 6-MP by methylation; it is one of

the few pharmacogenetic predictors used in clinical set-

tings. TPMT deficiency causes increasing 6-TGN levels

related to leukopenia [16, 32] and increasing

6-methylmercaptopurine (6-MMP) levels and 6-MMPR

levels related to hepatotoxicity [33–36]. There are two

ways of testing for TMPT deficiency: enzyme activity or

genotype [30]. The first report of inter-individual variations

in TPMT enzyme activity identified three levels of activity,

namely, high, intermediate, and deficient; in the Caucasian

populations tested, approximately 89% had high enzyme

activity and 11% had intermediate activity, whereas only

0.3% were deficient [30]. This classification scheme is

widely known, but TPMT enzyme activities have since

been recognized to be more variable [37]. Genetic poly-

morphisms cause TPMT deficiency, and more than 40

different variant TPMT alleles (TPMT*2–*41) have been

reported up to May 2017 [38, 39]. Most of these variants

are associated with decreased TPMT activity, relative to

the wild allele (TPMT*1) [40]. Major TPMT mutant alleles

for decreased TPMT activity are TPMT*2, TPMT*3A, and

TPMT*3C in most populations, with other variants being

rare.

The Clinical Pharmacogenetics Implementation Con-

sortium published dosing recommendations for thiopurines

based on TPMT genotype [22]. According to these guide-

line, patients who are heterozygous for the *1 allele and

demonstrate reduced activity of the of *2/*3A/*3C/*4

alleles (intermediate methylators) should receive 30–70%

of the full dose (AZA 1–1.5 mg/kg/day). Those who are

homozygous for the alleles showing reduced activity (de-

ficient methylators) should receive 10% of the full dose at a

reduced frequency (every other day administration). TMPT

deficiencies that are derived from genetic polymorphisms

are robust markers of thiopurine-induced leukopenia.

Despite the success of this pharmacogenetic test, a number

of major issues remain. One is that the TPMT activity is

not defined by a common genotype only [41]. As already

mentioned, there are many genotypes of TPMT, and it is

difficult to determine a patient’s exact genotype using a

commercial test. Additionally, there are novel and/or rare

variants in coding regions that affect TPMT activity

[39, 42, 43], as well as other genetic variants located in

non-coding regions that affect the expression and/or

activity levels of the TPMT gene [44, 45]. Furthermore,

several co-factors controlling TPMT activities are affected

by genetic variations of related genes. Inhibition of the

folate cycle affects TPMT activities [46, 47], and genetic

variants of methylenetetrahydrofolate reductase (MTHFR),

which is associated with folate metabolism, are also asso-

ciated with TPMT activity [48, 49]. Thus, measuring

TPMT activity is a more accurate strategy for predicting

the appropriate dose of thiopurines than is TPMT

genotyping.

Another issue is ethnicity. The frequencies of these

genetic polymorphisms vary in different ethnic groups. A

recent extensive whole-genome resequencing of 3554

Japanese individuals found that alleles *3A and *3B were

not present (not observed) and that only the presence of

*3C could be confirmed (0.96%) [50, 51]. Uchiyama et al.

reported that TPMT mutant alleles were not detected in 16

intolerant Japanese patients and that TPMT genotypes were

not associated with thiopurine-induced leukopenia in a

Japanese cohort [52]. Even though there are some very rare
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variants, such as *26 and *30 in Chinese and Japanese

populations [40, 53, 54], TPMT deficiency cannot explain

the higher incidence of adverse reactions in East Asian

patients.

Multidrug-resistance protein 4 and inosine
triphosphatase

In light of results indicating the absence or low frequency

of the TPMT gene in Japanese populations [12, 52, 55],

there must be other genetic variations that could explain

the frequent thiopurine-induced leukopenia in East Asian

populations. Multidrug-resistance protein 4 (MRP4; also

known as ABCC4) is a member of a family of multi-

specific drug transporters and a candidate gene associated

with thiopurine metabolism [56]. Mrp4-deficient mice were

found to experience thiopurine-induced hematopoietic

toxicity caused by the accumulation of 6-TGNs in their

myelopoietic cells [57]. MRP is an ATP-dependent efflux

pump, therefore Mrp4 may protect thiopurine toxicity by

exporting thiopurine metabolites. MRP4-G2269A

(rs3765534) causes MRP4 deficiency [57]. 6-TGN levels

were found to be significantly higher in patients with

MRP4-G2269A, resulting in a significant association with

thiopurine-induced leukopenia in Japanese patients with

IBDs [58]. However, the MRP4 variant alone could not

explain the frequently observed thiopurine toxicity in

Asian populations. Interestingly, the MRP4 variant was

reported to show gene–gene interactions with inosine

triphosphatase (ITPA) and nucleoside diphosphate-linked

moiety X-type motif 15 (NUDT15) variants [58–60].

AZA 6-MP

6-MMP

6-TUA

6-TIMP

6-TIDP

6-MMPR

6-TITP

6-TXMP 6-TGMP

6-TGDP
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Fig. 1 Thiopurine metabolism and transportation. Drugs are shown

in gray boxes: AZA azathioprine, 6-MP 6-mercaptopurine. Metabo-

lites are shown in white boxes: 6-MMP 6-Methylmercaptopurine,

8-OHMP 8-hydroxy-6-mercaptopurine, 6-TUA 6-thiouric acid,

6-MMPR 6-methylmercaptopurine ribonucleotides, 6-TIMP 6-thioi-

nosine monophosphate, 6-TIDP 6-thioinosine diphosphate, 6-TITP

6-thioinosine triphosphate, 6-TXMP 6-thioxanthosine monophos-

phate, 6-TGMP 6-thioguanine monophosphate, 6-TGDP 6-thiogua-

nine diphosphate, 6-TGTP 6-thioguanine triphosphate, 6-TdGMP

6-thio-deoxyguanine monophosphate, 6-TdGDP 6-thio-deoxyguanine

diphosphate, 6-TdGTP 6-thio-deoxyguanine triphosphate, 6-MTGMP

6-methylthioguanine monophosphate, 6-TGN 6-thioguaninenu-

cleotides. Enzymes or transporters are shown in black boxes: XO

xanthine oxidase, TPMT thiopurine S-methyl transferase, HGPRT

hypoxanthine phosphoribosyl transferase, IMPDH inosine monophos-

phate dehydrogenase, GMPS guanosine monophosphate synthetase,

MPK monophosphate kinase, DPK diphosphate kinase, ITPase

inosine triphosphate pyrophosphatase, MRP4 multidrug resistance-

associated protein 4
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Variants of the ITPA gene are also candidate predicting

markers for adverse events. ITPA is widely expressed in

leukocytes and erythrocytes [61, 62], and it catalyzes the

hydrolysis of ITPA to prevent the accumulation of

6-thioinosine triphosphate (6-TITP) [61]. 6-TITP would be

incorporated into DNA and RNA and compete with

nucleotides similar to 6-T(d)GTP of the 6-TGNs. The

single nucleotide polymorphisms (SNPs) 94C[A and

IVS2 ? 21A[C, which are associated with ITPA defi-

ciency, have also been found to be associated with thiop-

urine intolerance, such as leukopenia, flu-like symptoms,

and pancreatitis [63, 64]. These toxicities could be caused

by high 6-TITP levels. In Japanese patients with IBD,

Uchiyama et al. reported that the ITPA 94C[A poly-

morphism was frequent in those patients with thiopurine-

induced adverse effects, including leukopenia [52]. Alter-

natively, ITPA deficiency could reduce the levels of

6-TGNs by reducing the conversion from 6-TITP to

6-thioinosine monophosphate (6-TIMP), resulting in re-

entry into the 6-MP metabolism pathway. Ban et al.

reported that Japanese patients carrying the ITPA 94C[A

polymorphism showed significantly lower 6-TGN levels,

without leukopenia [58]. Patients carrying both of these

MRP4 and ITPA variants did not show leukopenia, and it is

possible that the leukopenia associated with MRP4 variants

was masked by the opposing effects of ITPA deficiency.

The association of ITPA variants with thiopurine toxicity is

controversial [65–67], and the impact of ITPA variants

does not appear to favor clinical application.

Nucleoside diphosphate-linked moiety X-type
motif 15

In addition to TPMT, other genes, including MRP4 and

ITPA, have been studied as candidates in Asian popula-

tions [10, 12, 52, 55, 68, 69]. However, these genes cannot

explain the fact that Asian populations seem to be more

intolerant to full doses of thiopurines than Caucasian ones.

Therefore, population-specific genetic variants associated

with thiopurine intolerance appear to exist. A breakthrough

was achieved through a genome-wide association study of

Korean patients with Crohn’s disease. Yang et al. reported

that a non-synonymous SNP in NUDT15 (also known as

MTH2) that causes p.Arg139Cys (R139C) was very

strongly associated with thiopurine-induced early

leukopenia in Koreans [odds ratio (OR) 35.6;

P = 4.88 9 10-94]; these authors also confirmed this

association in patients with IBD who were of European

ancestry (OR 9.50; P = 4.64 9 10-4), although it was

very rare (minor allele frequency\ 0.004) [70]. NUDT15

p.Arg139Cys had a high sensitivity (89.4%) and specificity

(93.2%) for early leukopenia. The association was also

confirmed in populations in Japan, China, India, Thai,

Singapore, Guatemala, and Uruguay [71–81]. Furthermore,

we have reported that almost all of the patients homozy-

gous for p.Arg139Cys had severe early leukopenia and

severe alopecia [72]. Alopecia is known to be a major

severe complication in Asian populations, but it is very rare

in individuals of European ancestry. Patients who were

homozygous for NUDT15 p.Arg139Cys had nearly perfect

sensitivity and specificity (& 100%) for severe alopecia,

resembling ‘‘Mendelian’’ drug intolerance [72, 73, 82].

Taking into account the results from previous studies,

thiopurines would appear to be contraindicated in patients

with IBD who are homozygous for p.Arg139Cys (genotype

TT). The incidence of early leukopenia (\ 8 weeks) in

patients with IBD who are heterozygous for p.Arg139Cys

(genotype CT) was found to be significantly higher than

that of patients who are homozygous for the wild-allele

(genotype CC) (17.4 vs. 0.93%); however, there were no

significant differences in the continuous rates of thiopuri-

nes between genotype CT and CC upon dose manipulation

[72]. Among Japanese patients with IBD, the average

maintenance dose of patients with the CT genotype was

almost one-half of that of the patients with the CC geno-

type (0.574 ± 0.316 vs. 1.03 ± 0.425 mg/kg/day, respec-

tively) [72]. Therefore, testing the genotype of NUDT15

p.Arg139Cys could be useful not only for detecting

patients with contraindications for thiopurines (genotype

TT), but also to optimize the initial dose of thiopurines.

What does NUDT15 do?

Most of previously reported genes are associated with

thiopurine-induced leukocytopenia with elevated 6-TGN

levels. However, Asada et al. reported that there were no

differences in 6-TGN levels in patients with each genotype

of NUDT15 p.Arg139Cys [73]. Therefore, NUDT15

p.Arg139Cys-related thiopurine-induced leukocytopenia is

likely mediated by a 6-TGN-independent mechanism

[73, 74, 83]. At the time when the first genome-wide

association study was reported, NUDT15 was considered to

affect 8-oxo-dGTPase based on the results of only one

2003 study [84]. In 2015, Carter et al. reported that

NUDT15 had no effect on the incorporation of 8-oxo-

dGTP into DNA and that it hydrolyzes 6-thio-dGTP,

6-thio-GTP, and dGTP [85]. Interestingly, NUDT15

hydrolyzes 6-thio-dGTP and 6-thio-GTP more efficiently

than it does GTP and dGTP. Moriyama et al. reported that

NUDT15 converted the thiopurine active metabolites

6-thio-GTP and 6-thio-dGTP into 6-thio-GMP and 6-thio-

dGMP and that the variants of NUDT15 had lower enzyme

activity [80]. This caused higher thiopurine active

metabolite levels, resulting in thiopurine-induced
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leukopenia [80]. Therefore, the DNA-incorporated

thioguanine (DNA-TG) metabolite was preferable to

6-TGN for adjusting thiopurine doses according to

NUDT15 genotypes [86]. Valerie et al. reported that the

enzyme efficiencies of the p.Arg139Cys variants were

similar to that of the wild-type, but that p.Arg139Cys

caused structural abnormalities and the mutant rapidly

degraded in cells [87].

Additional variants of NUDT15 and their
enzymatic activities

Moriyama et al. studied major haplotypes of NUDT15 and

their enzyme activities by analyzing 270 children with

acute lymphoblastic leukemia (ALL) in Guatemala, Sin-

gapore, and Japan [80]. These authors identified four

coding variants in exons 1 and 3, including the previously

reported p.Arg139Cys in exon 3, and defined six haplotype

(*1 to *6) combinations of these four variants (Fig. 2).

Three variants, Arg139His, Val18Ile, and

p.Val18_Val19insGlyVal, reduce NUDT15 enzyme activ-

ity at similar levels (almost 75%); no enzyme activity was

observed in the p.Arg139Cys variant. Haplotype frequen-

cies in the Korean cohort [88] and in Chinese patients with

IBD [89], and estimated frequencies of the Japanese cohort

study for the Tohoku Medical Megabank Project

[50, 51, 90] are summarized in Fig. 2. Individual haplotype

and insertion/deletion data of the Japanese cohort were not

available; therefore, the frequencies are based on single-

nucleotide variant frequencies. Distributions of the haplo-

type frequencies were similar in these three populations,

and the two variants in exon 1 are not rare in East Asian

populations. The diplotype (combination of haplotypes that

exist in each individual) is more important in clinical set-

tings. Moriyama et al. classified patients into three diplo-

typic groups according to expected enzyme activities:

normal (*1/*1), intermediate (*1/*2, *1/*3, *1/*4, and *1/

*5), and low activity (*2/*3, *3/*3, and *3/*5) [80]. In

their study, they showed differences in the tolerated 6-MP

doses for each population. However, there were limited

numbers of subjects in each population, and haplotype *6

and some of the estimated diplotypes were not observed.

Moreover, the treatment goals and dosages of 6-MP for

ALL treatments in children are very different from those

required in patients with IBD; therefore it is difficult to

NUDT15 Haplotypes
Enzyme Activity

Haplotype Frequencies

Korean
(n = 920) 

Chinese
(n = 732) 

Japanese
(n = 3554) 

*1 Normal 86.7% (<84.7%) (<88.5%)

*2 Low 4.4% 4.4%
10.5%

*3 Low 6.9% 8.3%

*4 Intermediate 0.4% n.a. 0.07%

*5 Intermediate 1.1% 1.2% 0.9%

*6 Intermediate 0.5% 1.4% n.a. 

(a) Low n.a. n.a. 0%

(b) Intermediate n.a. n.a. 0%

(c) Low n.a. n.a. 0%

(d) n.a. n.a. n.a. 0.01%

(e) n.a. n.a. n.a. 0.01%

(f) n.a. n.a. n.a. 0.01%

Exon 1 Exon 2 Exon 3

p.Val18_Val19insGlyVal

p.Val18_Val19insGlyVal p.Arg139Cys

p.Arg139Cys

p.Arg139His

p.Val18Ile

p.Arg34Thr

p.Lys35Glu

p.Gly17_Val18del

p.Met1Thr (Lost of start codon)

p.Arg10Trp

p.Gly47Arg

Fig. 2 Nucleoside diphosphate-linked moiety X-type motif 15

(NUDT15) haplotype structures and frequencies in East Asian

populations. Common haplotypes *1 to *6 have been defined

previously [81]. Rare variants (a), (b), (c) are from Moriyama et al.

[92], and rare variants (d), (e), and (f) and estimated haplotype

frequencies in Japanese populations were from the 3.5KJPN data by

the Tohoku Medical Megabank Project (https://ijgvd.megabank.

tohoku.ac.jp/) [51, 52, 91]. n.a. data not available
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apply this classification directly to patients with IBD. Chao

et al. recently reported associations between leukopenia

and the NUDT15 diplotype in Chinese patients with IBD

[89]. In this study, patients with *1/*6 (n = 20) or *2/*6

diplotype (n = 1) were observed. The frequencies of

leukopenia in these patients were 35.0 and 100%, respec-

tively, which is higher than the 15.1% in patients with the

*1/*1 diplotype. The authors reported that the leukopenia

frequencies appeared to be clearly related to NUDT15

enzyme activity based on diplotypes (Table 1).

More recently, an additional three variants, namely,

p.Arg34Thr, p.Lys35Glu, and p.Gly17_Val18del, were

observed in five children with ALL in Singapore, Taiwan,

and the USA [91]. All of the children experienced reduced

tolerance to 6-MP, and p.G17_V18del was only observed

in children of European or African ancestries. This deletion

is the first functional variant reported in European and

African populations. Three other rare functional variants,

i.e., p.Met1Thr (lost of start codon), p.Arg10Trp, and

Gly47Arg, were observed in a Japanese cohort [50, 51], but

their enzyme activities and association with thiopurine-

induced adverse events are unknown. Many rare variants

and additional haplotypes may exist, such as TPMT.

Prospects for clinical application of NUDT15
genotyping

All results to date indicate that thiopurine-induced

leukopenia and severe alopecia are inevitable in patients

homozygous for the p.Arg139Cys mutation. Consequently,

p.Arg139Cys is a robust candidate for clinical applications

aimed at predicting severe leukopenia and alopecia in

patients with IBD. It remains unclear whether either the

genotype of p.Arg139Cys or the diplotype of NUDT15 are

preferable for clinical applications. If only p.Arg139Cys is

tested, the activities of NUDT15 are expected to be normal

(Arg/Arg), medium (Arg/Cys), or low (Cys/Cys) depend-

ing on the genotype. However, some diplotypes, such as

*1*5,*1*6,*3*5, and *2*6, which have medium or low

enzyme activities in vitro, cannot be correctly identified

(Table 1). Chao et al. reported that the predictive sensi-

tivity of NUDT15 p.Arg139Cys was 49.2% in their cohort

of Chinese patients with IBD but that combined analysis

with Val18Ile and p.Val18_Val19insGlyVal to determine

diplotypes by detecting haplotypes *5 and *6 could

increase the sensitivity to 55.4% [89]. This was the first

study to examine the diplotype-based risk of thiopurines

for IBD. However, the results should be interpreted with

caution. Curiously, in the study of Chao et al. [89] the

sensitivity of NUDT15 p.Arg139Cys for detecting

leukopenia was lower than previously reported [72, 73, 82],

possibly due to differences in leukopenia definitions in the

various studies. In their study, Chao et al. [89] defined

leukopenia as a white blood cell (WBC) count of\ 3500/

mm3, which is relatively higher than levels reported else-

where. Higher grade leukopenia (WBC \ 2000/mm3) is

clinically important because of severe associated infectious

complications and high mortality rates associated with IBD

[92]. It is unclear which grade of leukopenia the patients

with each diplotype had, and it is also important to consider

if they had alopecia given its severity, prolonged recovery

times, and associated cosmetic issues.

For clinical applications, it is important to clearly decide

on the target of the pharmacogenetic tests. Additionally,

the time, effort, and costs of genotyping are important

factors to take into consideration. Given the diplotype

frequencies in Chinese patients with IBD and the estimated

frequencies, based on haplotype frequencies, in the Korean

and Japanese cohorts, undetectable diplotypes using the

Table 1 Nucleoside diphosphate-linked moiety X-type motif 15 diplotypes and leukopenia frequencies

NUDT15 enzyme activity [81] Normal Medium Low

Diplotype *1*1 *1*4 *1*5 *1*6 *1*2 *1*3 *2*6 *2*5 *3*5 *2*2 *2*3 *3*3

Diplotype frequencies

Chinese [90] (%) \ 71.6 na 1.78 2.73 7.8 13.9 0.14 0 0.55 0 0.82 0.68

Korean (estimated)a (%) 75.2 0.69 1.9 0.87 7.6 12.0 0.044 0.10 0.15 0.19 0.61 0.48

Japanese (estimated)b (%) \ 78.3 0.12 1.6 n.a. 18.6 n.a. 0.19 1.1

Leukopenia frequencies [90] (%) (WBC\ 3500/

mm3, Chinese)

15.1 n.a. 30.8 35.0 49.1 42.2 100 n.a. 100 n.a. 100 100

p.Arg139Cys test result Normal

(Arg/

Arg)

Normal

(Arg/Arg)

Medium

(Arg/Cys)

Medium

(Arg/Cys)

Low

(Cys/Cys)

NUDT15, Nucleoside diphosphate-linked moiety X-type motif 15; WBC, white blood cells; n.a., data not available
a Diplotype frequencies in Korean were estimated using haplotype frequencies reported by Kim et al. [89]
b Diplotype frequencies in Japanese were estimated using single nucleotide polymorphism frequencies from 3.5KJPN data by the Tohoku

Medical Megabank Project (https://ijgvd.megabank.tohoku.ac.jp/) [51, 52, 91]
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test for p.Arg139Cys are infrequent, and especially rare

(\ 1%) among low activity diplotypes (*2*6, *2*5, and

*3*5). Therefore, we need to evaluate the genotyping-as-

sociated costs to identify these patients and examine their

detailed clinical information, such as adverse event types

and grades. If the target of the pharmacogenetic test is to

screen for patients who will have severe leukopenia and

alopecia, detecting p.Arg139Cys may suffice. If the target

is to determine initial doses of thiopurines, detecting the

diplotype of patients might be helpful. However, there is

insufficient evidence, and further analyses with large

cohorts and detailed clinical data are needed to confirm the

clinical effects of these variants.

Conclusion

The mechanisms of thiopurine toxicity in Asian popula-

tions have been unclear for a long time, but were recently

clarified by a valuable genome-wide association study in an

Asian population. Given existing data pertaining to TPMT

in a population of patients of European ancestry, testing the

genotype or diplotype of NUDT15 is a good candidate in

clinical applications for predicting thiopurine toxicity in

Asian and Hispanic populations. However, further analyses

will be needed to determine how and which variants should

be genotyped, taking into account the allele frequencies in

the target population. The costs and benefits of genotyping

also require consideration. NUDT15 is a good model for

showing that population-specific variants cause population-

specific drug intolerance. These results suggest that further

population-specific pharmacogenetic studies are indicated.
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