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Abstract
The increasing problem of bed bugs requires the development of new control strategies, and insect pathogenic fungi can 
contribute towards management. We used laboratory bioassays with Isaria fumosoroseus, Lecanicillium muscarium and 
Beauveria bassiana to evaluate their virulence to the bed bug. Only B. bassiana significantly affected bed bug survival and 
was dependent on dose and formulation. A 2% B. bassiana oil formulation induced horizontal transfer to elevate mortality 
in a 10-day arena bioassay. Temporal distribution of contagious individuals and increasing the dose from 2 to 4% did not 
increase mortality. Horizontal transfer mainly occurred between adults, and only partly between adults and nymphs. Bed bugs 
showed activity peaks during the night, and activity was increased by elevated levels of CO2. Distribution between harbour-
ages was not affected by CO2 activation, level of infection or the bio-pesticide, and horizontal transfer was not dependent on 
the degree of aggregation. Movement in the arenas negatively affected horizontal transfer when the number of susceptible 
individuals was large. Level of infection also influenced behaviour as the bed bug movement increased with elevated disease 
burden. The use of fungi as a part of an integrated pest management strategy seems to be an interesting option that should 
be investigated further. B. bassiana kills bed bugs and can be carried to harbourages to target hidden individuals.

Keywords  Cimex lectularius · Integrated pest management (IPM) · Beauveria bassiana · Horizontal transfer · 
Aggregation · Activity

Key message

•	 Insect pathogenic fungi may contribute in control strate-
gies against bed bugs.

•	 Beauveria bassiana significantly affected bed bug sur-
vival and was dependent on dose and formulation.

•	 Horizontal transfer mainly occurred between adults.
•	 As a part of an IPM strategy, the consistent mortality and 

the horizontal transfer may contribute to elevated popula-
tion mortality and improved control by reaching hidden 
or passive individuals.

Introduction

The worldwide return of the blood feeding bed bugs (Cimex 
lectularius, Hemiptera: Cimicidae) is a result of pesticide 
resistance, increased travel, ineffective control, trade with 
second-hand furniture and unawareness of preventive meas-
ures in the accommodation industry and among the general 
public (Doggett et al. 2018 in press). The difficulty of eradi-
cation can largely be assigned to pesticide resistance (Dang 
et al. 2017; Davies et al. 2012) and a cryptic and nocturnal 
lifestyle of the bed bugs (Reinhardt and Siva-Jothy 2007). 
This has caused an increased focus on developing control 
strategies and promoted the use of integrated pest manage-
ment (IPM), where new and partly experimental tools such 
as trapping (Olson et al. 2017; Singh et al. 2013; 2015), 
steam treatment (Loudon 2017; Puckett et al. 2012) and 
desiccant dusts (Aak et al. 2016; Akhtar and Isman 2016; 
Benoit et al. 2009; Singh et al. 2016; Wang et al. 2013) can 
supplement more conventional approaches (Doggett et al. 
2012; Koganemaru and Miller 2013).
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Biological control against bed bugs is not commonly 
accepted as an expedient method, but insect pathogenic 
fungi may contribute to bed bug management strategies. 
The Beauveria and Metarhizium genera can kill a wide 
range of immature and adult insects in eco-agricultural sys-
tems (Faria and Wraight 2007; Hajek 2004), and adaption 
for indoor use against bed bugs seems possible. Beauveria 
bassiana (Hypocreales, Cordycipitaceae) has been reported 
as a suitable fungus (Barbarin et al. 2012, 2017), while 
Metarhizium anisopliae (Hypocreales, Clavicipitaceae) has 
in laboratory studies been found effective only under moist 
conditions (Ulrich et al. 2014) and consequently is suspected 
to have limited effect in relatively dry urban environments 
such as human bed rooms. In addition to mortality from 
direct exposure, it is also promising that fungal spores are 
horizontally transferred from exposed to unexposed indi-
viduals in sufficient amounts to kill the insects (Barbarin 
et al. 2012). Conversely, suspected anti-fungal properties 
(inhibition of growth and elastase production) of the aggre-
gation chemicals, (E)-2-octenal and (E)-2-hexenal, contrib-
ute to uncertainty with respect to true efficiency (Battinelli 
et al. 2006; Ulrich et al. 2015). To date, studies on fungi and 
bed bugs have only been conducted in small petri dish-sized 
containers. This offers limited movement possibilities and 
hardly any opportunities for natural interactions connected 
to host searching and aggregation activities (Barbarin et al. 
2012, 2017; Ulrich et al. 2014, 2015). Insect–fungi inter-
actions that impact behaviour, disease severity or conidia 
dissemination have been shown in many insects, including 
blood feeders (Dimbi et al. 2009; Garza-Hernández et al. 
2015; Quesada-Moraga et al. 2004; Roy et al. 2006; Ugine 
et al. 2014), and more elaborate study designs should there-
fore be used to obtain a better understanding of functional-
ity under semi-natural conditions to elucidate the potential 
benefits and limitations of insect pathogenic fungi as a bed 
bug control method.

Disease severity and infection spread are in general 
regulated by multiple causes and are likely to be promoted 
by a high population density, a large number of conta-
gious individuals, frequent subject contact and exchange 
of individuals between sub-populations (Bellows and Has-
sel 1999; Birkemoe et al. 2016; Rothman 2012; Rukke 
et al. 2011). Bed bugs spend most of their time in aggrega-
tions (Pfiester et al. 2009; Reinhardt and Siva-Jothy 2007), 
where thigmotaxis (stop-response to touch stimulus) 
ensures prolonged and direct contact with other bed bugs 
(Olson et al. 2009), and there are abundant interactions 
between individuals (Reinhardt and Siva-Jothy 2007). 
Bed bugs also have traumatic insemination (Siva-Jothy 
2006), including attempts at homosexual and nymphal 
mating (Harraca et al. 2010; Ryne 2009), and individuals 
move between different aggregation sites (Cooper et al. 
2015; Wang et  al. 2010). Bed bugs mostly leave their 

harbourages for feeding and return after ingesting their 
blood meal (Aak et al. 2014; Reis and Miller 2011; Suchy 
and Lewis 2011). This dynamic situation provides an 
opportunity to develop a system where spores are obtained 
during questing (movements outside harbourages) and dis-
seminated to other individuals within harbourages (hiding 
places). Questing activity and aggregation is regulated by 
semiochemicals such as CO2 and harbourage odours, in 
combination with the physiological state of the bed bugs 
(Aak et al. 2014; Gries et al. 2015; Olson et al. 2017; Reis 
and Miller 2011; Ulrich et al. 2016; Weeks et al. 2013) and 
is likely to act together with biological properties of the 
fungi to impact control efficiency.

The magnitude of transmission within the population 
following inundation application in a biocontrol strategy is 
unknown, but we anticipated that the interplay between bed 
bug behaviour and horizontal transfer can contribute to over-
all virulence. Consequently, we performed laboratory bioas-
says in closed small-scale systems to reveal the virulence 
of two commercially available products, which were then 
used in arena bioassays that represented control situations 
with variable predefined infection levels and a simulated 
presence of a host. This allowed us to describe and connect 
the CO2-initiated host search and bed bug aggregation levels 
with inoculated dose, infection rate, disease development 
and horizontal transfer in semi-natural bed bug populations.

Materials and methods

Insects

Bed bugs in the stock cultures were sampled from two hotels 
in Oslo, Norway, in 2009, and all experimental animals were 
fed heated human blood through a Parafilm membrane (Aak 
and Rukke 2014). To produce uniform experimental animals, 
fourth and fifth instar nymphs were selected from the stock 
cultures and provided with a blood meal. Newly hatched 
adults and nymphs emerged after 10–14 days and less than 
1 week prior to the start of the experiment. Bed bugs were 
either kept in the arenas described below or in standardized 
140-mL experimental polyethylene boxes with a ventilated 
lid (Aak and Rukke 2014). Adults were always fed before 
being used in the experiments, and all treatments maintained 
a balanced ratio between males and females. After feeding, 
males and females were kept together at 22 °C for 48 h in 
climate chambers (Sanyo MLR-351H, Medinor ASA, Oslo, 
Norway) with 16-h light/8-h dark cycles and 60% relative 
humidity before being exposed to the fungus or released 
into the arenas. Experiments took place in laboratories with 
equal light cycles, at 22–23 °C and a relative humidity of 
40–50%.
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Product virulence

Products

Four different products were tested (Table 1). PreFeRal 
WG (Isaria fumosorosea strain Apopka 97, 2 × 109 cfu/g, 
Biobest N.V., Belgium) and Mycotal (Lecanicillium mus-
carium, 1 × 1010 spores/g, Koppert BV, the Netherlands) 
was chosen as representatives for species that have not been 
tested against bed bugs, and BotaniGard 22WP (Beauveria 
bassiana strain GHA, 2 × 1013 cfu/kg, Laverlam Interna-
tional, USA) was chosen as a water-based product with a 
species known to cause mortality in bed bugs. These three 
products were prepared according to the manufacturer’s 
instructions by dissolving the product in water and diluting 
to the recommended concentration. Aprehend (Beauveria 
bassiana strain GHA, 2% spore suspension in oil, Conidi-
oTec, USA) was included because it is a bed bug adapted 
ready-to-use product delivered by the manufacturer. Spore 
growth was measured according to the growth protocol for 
water or oil preparations (Oliveira et al. 2015), and germina-
tion percentages were found to be within 58–78% as indi-
cated as the expected range by the producers.

Exposure to conidia

The substrate used was circular pieces of cotton cloth 
with diameters of 47 mm (woven bed sheets, 100% cot-
ton, Jysk—Oslo, Norway), which were impregnated with 
conidia by dipping them in the suspension (Table 1). The 
spore-covered substrates were air-dried in a ventilated labo-
ratory for 3–4 days (Mycotal, PreFeRal and BotaniGard) or 
10–12 days (Aprehend) until surface dry. The conidia-loaded 
substrate was then placed on the bottom of the experimental 
boxes, and the slippery polyethylene ensured that the bed 
bugs grabbed hold of the cloth and stayed on it for the dura-
tion of the exposure. All four products were tested by using 
eight boxes with six bed bugs in each box. An additional 
eight boxes without fungi were used as controls for Mycotal, 
PreFeRal and BotaniGard, and eight boxes with bed bugs 
placed on cloth pieces dipped in the oil without conidia 
acted as controls for Aprehend.

Mortality assessment

Mortality was recorded daily by blowing gently into the 
polyethylene boxes. Bed bugs waving their antennae, shift-
ing stance or moving were considered alive. Exposure was 
terminated after 10 days, and any survivors were transferred 
to new boxes with a clean filter paper as substrate. These 
individuals were checked for mortality on day 17 and day 
24. Animals that died during the experiments were imme-
diately removed and checked for mycosis by individual dry-
ing over silica gel for 1 week before incubation in moist 
chambers and visually assessing the fungal colonization and 
sporulation.

Population studies in arenas

Experimental protocol

To simulate a bed bug control situation with two distinct 
aggregations of bed bugs, we used arenas with two avail-
able harbourages made from accordion-folded circular filter 
papers (qualitative filter paper – ø = 90 mm, VWR, Oslo, 
Norway), placed diagonally across from each other (Fig. 1). 
The arenas were constructed from hard plastic transparent 
boxes (31 cm × 22 cm × 6 cm, Ultra-Plast A4/60, VWR, 
Norway), and a 29 cm × 20 cm self-adhesive paper (Herma 
GmbH, Filderstadt, Germany) was attached to the bottom 
of the box to provide grip for the crawling bed bugs. Newly 
emerged adults were selected, fed and left to rest for 48 h 
on filter paper in polyethylene boxes, together with newly 
emerged unfed fifth instar nymphs. We always used 12 adults 
and 8 nymphs in each arena, and the required proportion of 
uninfected adult animals and all nymphs were released into 
the centre of the arenas. During the first hour of the experi-
ment, we infected the remaining adults by allowing them to 
walk on cloth with spores (prepared as described above), 
before releasing them into the centre of the arena. Bed bugs 
were kept in the arena for 10 days without interference to 
allow natural interactions to occur and infection to spread 
within the population. The laboratory had installed 3 cam-
eras and lights needed for night and day video recording of 
bed bug movements in 18 arenas simultaneously (Aak et al. 

Table 1   Fungi and product properties of bio-pesticides tested in a closed system, with persistent exposure of adult bed bugs (Cimex lectularius) 
to inoculated substrates

Product Fungus % conidia Solvent Amount applied 
on substrate (g)

% germination Conidia/cm2 Conidia/cm2 
(adjusted for sporu-
lation)

Substrate

BotaniGard B. bassiana 0.02 Water 1.12 64 6.9 × 105 4.2 × 105 Cloth
Aprehend B. bassiana 2.00 Oil 1.02 78 5.3 × 107 4.1 × 107 Cloth
PreFeRal I. fumosoroseus 0.1 Water 1.29 68 8.4 × 104 5.1 × 104 Cloth
Mycotal L. muscarium 0.1 Water 1.15 58 3.7 × 105 2.2 × 105 Cloth
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2016), and the entire 10-day experiment was video-recorded. 
After 10 days, adults and nymphs were collected, mortality 
was registered, and survivors were transferred to polyethyl-
ene boxes with a filter paper. These individuals were checked 
for delayed mortality on day 17 and day 24. The numbers of 
faecal spots and eggs deposited in each of the two harbour-
ages were registered to provide a measure of distribution. 
Bed bugs that died during the 24 days of experimentation 
were checked for mycosis, as well as all survivors.

Experiments

Based on results from the initial test, expected fast mortality 
was achieved by using Aprehend, and slow mortality was 
achieved with BotaniGard. A total of 108 arena replicates 
were equally divided between the two fungal formulations.

To investigate the combined efficiency of direct infec-
tion and horizontal transfer, we used 72 arena replicates. 
We infected either 33, 67 or 100% of the adults at the start 
of the experiments, and to evaluate the effect of induced 
questing activity with suspected increased intermingling of 
individuals and possible reduced contact time inside har-
bourages, CO2 was added to half of the arena replicates. 
CO2-producing units made from a 5 L plastic can containing 
3 L tap water, 0.5 kg table sugar and 5.0 g yeast (La-Hem 
super yeast, Mariestad, Sweden), were used to simulate 
human presence. The cans were prepared approximately 
24 h before use, and they produced approximately 50 mL 
CO2 per minute. Three stimulant canisters were included 
on nights 1 and 2 and nights 5 and 6 of the experiment, and 
they were left inside the arena room for 6 h.

To simulate a contagion situation with dual introduction 
of fungal carriers into the bed bug populations with initial 

infection rates of 33, 67 or 100%, we used an additional 36 
arena replicates without CO2 stimulation. Half of the fungal 
carriers were exposed to spores and released from the start, 
and the remaining fungal carriers released after 5 days of 
the experiment. The last bed bugs to be released were kept 
in separate boxes next to the arena before being exposed to 
conidia on day 5.

To investigate the effect of increased conidia density on 
horizontal disease transmission, the arena experiments with 
a 33% infection level and 2% conidia dose were repeated 
with a 4% conidia dose in an additional 12 arena replicates. 
The experiment was performed with and without CO2 
stimulation.

Twelve arenas with uninfected individuals (6 with CO2 
stimulation and 6 without) were used as a control.

Statistical methods and calculations

Statistical analyses

Analyses were performed using SigmaPlot 13.0 (Systat 
Software, San Jose, CA, USA) and JMP Pro 13.0.0 (SAS 
institute, Cary, NC, USA). Data were checked for normality, 
and pairwise comparisons were performed using the t test 
or paired t tests and multiple comparisons using ANOVA. If 
tests for normality failed, we used the nonparametric alterna-
tives Mann–Whitney rank sum, Wilcoxon signed rank and 
Kruskal–Wallis ANOVA. The Kaplan–Meier product limit 
method was used with the log-rank test between groups to 
investigate survival, and the relationship between disease 
and behaviour was investigated by linear regressions with 
horizontal transfer as the dependent variable, and activity 
or aggregation as explanatory variables. The level of sig-
nificance was set to 0.05 for all tests.

Horizontal transfer

The horizontal transfer in each arena was determined by the 
total number of individuals killed by fungi minus the number 
of initially exposed individuals. This number was divided by 
the number of susceptible individuals present at the start of 
the experiment in order to provide a proportional measure 
for surplus infection.

Aggregation

Most of the eggs (92%) were deposited inside harbourages. 
Both the number of eggs deposited, and the faecal spots 
in harbourages were used to calculate relative dwelling in 
the two harbourages, with a score ranging from complete 
aggregation (100:0 = 1.0) when all eggs or spots were found 
in one harbourage, to an equal distribution (50:50 = 0.0) 
when eggs or spots were equally distributed between the 

Fig. 1   Plastic arena (31 cm × 22 cm × 6 cm) with paper bottoms used 
for simulation of bed bug (Cimex lectularius) control situations with 
fungi (Beauveria bassiana). Harbourages of 9  cm width were made 
from accordion-folded circular filter papers
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two harbourages. Eggs and spots were correlated (Pearson 
product-moment correlation r(264) = 0.738, P < 0.001), and 
the average of the two scores was used to connect the aggre-
gation level with fungi spread in populations.

Activity

At every 30 min of the video recording, a 10-s sequence 
was observed. The number of individuals moving during 
these 10 s was used to describe night and day movements 
within each arena. Overall averages for all 10-s periods for 
the first 3 nights were used to connect arena activity with 
horizontal transfer.

Results

Product virulence

The control treatments experienced no mortality, and neither 
PreFeRal or Mycotal caused significant bed bug mortality 
relative to this control (Kaplan–Meier log-rank test; PreF-
eRal vs. control: χ2 = 0.00, P = 1.0no mortality and Myco-
tal vs. control: χ2 = 2.02, P = 0.155, Fig. 2). BotaniGard 
and Aprehend significantly reduced survival compared to 
the control (Kaplan–Meier log-rank test; BotaniGard vs. 
control: χ2 = 83.59, P < 0.001 and Aprehend vs. control: 
χ2 = 109.77, P < 0.001, Fig. 2). Aprehend induced faster 
mortality compared to BotaniGard (Kaplan–Meier log-rank 
test; Apprehend vs. BotaniGard: χ2 = 75.45, P < 0.001, 
Fig. 2).

Population studies in arenas

A single bed bug died in the control arenas (0.4% mortal-
ity) without showing any sign of fungal growth, whereas 
all fatalities in the different contagion experiments were 
confirmed to be caused by fungi. Across all experimental 
treatments, Aprehend caused more than twice the number 
of mortalities compared to BotaniGard (paired t test 10, 17, 
24 days; t = 18.31, P < 0.001, Fig. 3a vs. 3b). In populations 
with individuals infected with Aprehend, the anticipated 
adult mortality levels of 33, 67 and 100% were reached at 
day 10, and we detected efficient horizontal transfer when 
mortality exceeded the initial infection after 17 and 24 days. 
In populations with individuals infected with BotaniGard, 
the anticipated mortality was not reached in either of the 
treatments, and horizontal transfer was therefore not reg-
istered (Fig. 3b). Nymph mortality induced by horizontal 
transfer was low using both products and did not reach more 
than 11% (Fig. 3c, d). Distribution of contagious individu-
als across two infection events did not significantly affect 
mortality compared to simultaneous release (paired t test; 
t = 0.44, P = 0.67), and increasing the dose from 2 to 4% in 
the oil formulation did not elevate mortality (paired t test; 
t = 0.48, P = 0.65).

There was an overall bed bug distribution of 81 and 
19% between the two harbourages. This distribution was 
persistent across treatments and was not influenced by the 
presence or absence of CO2 stimulation (Mann–Whitney 
rank sum test: T = 3373.0, P = 0.393), level of infection 
(Kruskal–Wallis ANOVA: H = 6.9 P = 0.073) or the type 
of fungus used (Mann–Whitney rank sum test: T = 3293.5, 
P = 0.891). In experiments where horizontal transfer to 
adults could be observed, i.e. 2 and 4% conidia concentra-
tions at 33 or 66% initial infections, the aggregation ratio 
ranged from 99 and 1% to 54 and 46%. No relationship 
between horizontal transfer and aggregation was observed 
among adults (linear regression: mortality R2  =  0.04, 
F = 2.11, P = 0.15, infection; R2 = 0.05, F = 2.42, P = 0.13) 
or nymphs (linear regression: mortality R2 = 0.00, F = 0.17, 
P = 0.685, infection; R2 = 0.04, F = 1.98, P = 0.17). Eggs 
deposited during the experiment were significantly influ-
enced by fungal infections (ANOVA: F = 6.75, P < 0.001, 
Fig. 4). When compared to the controls, five out of six treat-
ments were negatively affected, and Aprehend showed a 
decreasing egg production with increased levels of initial 
infection, in line with the observed mortality in the arenas.

Bed bugs showed activity peaks during the night and 
limited movements during the day (Fig. 5a). In addition to 
increased movement during nights with CO2 release, the two 
nights following the activation period maintained an elevated 
activity. Nocturnal peaks were reduced after night 6. During 
nights 1–6, when the differences between CO2-stimulated 
and CO2-unstimulated bed bugs were most pronounced, the 
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Fig. 2   Bed bug (Cimex lectularius) survival after exposure to four 
different products with three different fungus species. Survival was 
tested on 48 adults per fungus, and bed bugs were exposed through 
cloth inoculated with conidia for the initial 10 days of the experiment. 
Different letters (a, b and c) denote significant differences (P < 0.05)
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activity was significant (paired t test; t = 6.84, P < 0.001, 
Fig.  5b), and peak activity was approximately 2.5 times 
higher in stimulated bed bugs compared to non-stimulated 
ones. Both activated and non-activated populations showed 
a gradual increase in activity lasting for 5–6 h into the night 
before declining towards the arrival of day (Fig. 5b). In popu-
lations having an initial infection ratio of 33%, we observed 
a significant relationship between horizontal transfer and 
activity. A higher level of activity reduced the horizontal 
transfer in both CO2-stimulated (linear regression: R2 = 0.42, 
F = 7.12, P = 0.024) and CO2-unstimulated individuals (lin-
ear regression: R2 = 0.22, F = 4.546, P = 0.049). At higher 
initial infection levels and among nymphs, there was no con-
nection between movement and horizontal transfer (Fig. 6). 
The general activity (average of the three infection levels) also 
increased significantly with the disease burden (Wilcoxon 

signed rank test: Z = 13.94, P < 0.001, Fig. 7a vs. 7b, and 
Z = 2.42, P = 0.016, Fig. 7b vs. 7c), thus creating more rest-
less populations close to mortality. This was particularly evi-
dent with Aprehend (high control efficiency), where activity 
also paralleled the infection levels around the expected time 
of death (majorities of deaths occurred after 4–6 days in the 
product virulence experiment). BotaniGard (low control effi-
ciency) showed no consistent connection to infection levels 
apart from being elevated relative to the control.  

Discussion

Only one of the products was specifically adapted for killing 
bed bugs, and it was superior to the other tested products. 
This was likely due to the higher conidial concentrations and 
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Fig. 3   Accumulated average (±  SE) bed bug (Cimex lectularius) 
mortality and fungal infection at day 10, 17 and 24 in experimen-
tal populations with 33, 67 and 100% of the adults being exposed 
to conidia (Beauveria bassiana) inoculated substrates for 1  h at the 
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oil formulation benefits. A full screening, where formula-
tion, dose, all relevant species and strains are accounted for, 
is needed for a complete demonstration of the potential of 
insect pathogenic fungi in bed bug control. However, the 
mortality appears strongly dependent on conidial concentra-
tion (BotaniGard—0.02% and Aprehend—2.00%) in both 
the product virulence test and in the population studies in 
the arenas. B. bassiana consequently seems promising as 
additional developments, product modifications and species-
specific adaptions are likely to further improve efficiency 
(Lacey et al. 2015; Wang and Wang 2017). The results 
cannot be used to conclude the non-functionality of the 
other products, but the differences between B. bassiana, I. 
fumosoroseus and L. muscarium, at the three low doses, all 
dissolved in water, indicate that B. bassiana holds the high-
est potential for use as a bio-pesticide against bed bugs. B. 
bassiana is also the choice of species in the bed bug adapted 
product and our lack of improved control by doubling the 
dose may indicate that Aprehend’s 2% conidia solution is 
optimized according to bed bug behaviour. High conidial 
density also appears to be crucial for inducing horizontal 
transfer, capable of increasing population mortality, without 
the need for direct contact between bed bugs and the inocu-
lated substrate. In the arena bioassays, we also observed a 
concurrence with expected behaviour, as questing mainly 
occurred during the night (Reis and Miller 2011; Romero 
et al. 2010), and increased with the presence of a host signal 
(Aak et al. 2014; Suchy and Lewis 2011). It is also likely that 
the free choice of harbourage, combined with thigmotaxis 

(Olson et al. 2009), produced a skewed aggregation that was 
strengthened by semiochemicals (Gries et al. 2015; Olson 
et al. 2017; Siljander et al. 2008; Ulrich et al. 2016) and bed 
bug movement between harbourages (Cooper et al. 2015). 
This natural order of conduct indicates authenticity of the 
bioassay, allowing extrapolation of results towards field 
applications.

The failure to find a connection between the aggrega-
tion level and horizontal transfer was surprising, because 
we assumed that increased aggregation would bring con-
tagious and healthy individuals into closer proximity, thus 
promoting fungal infection. We cannot completely discard 
this hypothesis, as our experiments did not identify position-
ing or harbourage-to-harbourage movement of contagious 
individuals, and an equal relative distribution of infectors 
may balance horizontal transfer across aggregation levels. If 
males and females also search each other out for mating, the 
lack of connection with aggregation suggests that individual 
behaviour plays a more important role than spatial distribu-
tion. All our experimental populations had a balanced sex 
ratio, and we expect normal mating activity and limited 
trauma from repeated inseminations (Benoit et al. 2012; 
Kilpinen et al. 2012). However, mating activity is impor-
tant for horizontal transfer in other insects (García-Munguía 
et al. 2011; Garza-Hernández et al. 2015; Peng et al. 2011; 
Quesada-Moraga et al. 2004; Reyes-Villanueva et al. 2011; 
Scholte et al. 2004; Toledo et al. 2007; Ugine et al. 2014), 
and the traumatic insemination of bed bugs is probably a 
key to elevated disease burden, as it promotes close indi-
vidual contact and may let spores bypass the cuticle barrier 
(Reinhardt et al. 2005). This fits well with the observed dif-
ferences between adults and nymphs and helps to explain the 
negative impact due to increased movement, since mating 
should be limited when adults are searching for a host. As 
observed among other blood feeding arthropods with com-
parable lifestyles, there may also be distinct differences in 
fungi efficacy or behaviour connected to life stage (Butt et al. 
2016; Kirkland et al. 2004a, b; Wassermann et al. 2016) that 
may have played a role in affecting horizontal transfer and 
overall mortality across stages. A more speculative explana-
tion relates to the anti-fungal properties of the aggregation 
volatiles (Ulrich et al. 2015). An elevated horizontal transfer 
of conidia in dense aggregations may have been masked by a 
parallel increase in anti-fungal secretions, but as the fungus 
appears to be highly functional in our experimental setting, 
these effects seem limited.

The study units with variable infection levels provide 
an insight into potential outcomes of B. bassiana treat-
ment of bed bug-infested rooms. Considering that bed bug 
populations with only 33% of infected individuals resulted 
in twice as many fatalities, the potential of this control 
method appears to be good. As opposed to our fixed num-
bers of infective events and contagious individuals, a field 
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population will gradually pick up new spores, which will 
replenish the conidia in the harbourages over time. The 
exact duration of B. bassiana horizontal transfer capa-
bilities is unknown, but spores will either grow attached 
to the exoskeleton or lose their infective abilities. Flies 
and beetles infected with conidia often show a decline 
in potential conidia transfer during the initial days after 
exposure (Cárcamo et al. 2015; Peng et al. 2011; Toledo 
et al. 2007; Ugine et al. 2014). This creates a short trans-
fer opportunity, but when considered in combination with 
the observed infection-induced stress, an interesting aspect 
regarding efficiency of transfer emerges. If the disease bur-
den creates increasingly restless individuals, which are 
disengaged from natural aggregation and mating activi-
ties within just days of infection, the harbourage ratio of 
healthy to infectious individuals may shift in favour of 
disease carriers. When considered in combination with a 

conidia replenishment over time, this behavioural response 
may provide an escalation in fungus-induced mortality, as 
the population moves towards extermination.

The movement pattern of bed bugs with host signal 
responses (Aak et al. 2014; Suchy and Lewis 2011), and 
the intermingling of individuals between harbourages 
(Cooper et  al. 2015) offer the potential to manipulate 
behaviour to optimize the impact from the fungi. To ensure 
that as many individuals as possible will come into contact 
with the conidia, it may prove valuable to promote the 
collection of spores by using a CO2 stimulant to increase 
activity in the treated room (Aak et al. 2016; Singh et al. 
2013). The negative connection between activity and hori-
zontal transfer highlights the need for an applied system 
to strike a balance between activity and rest, in order to 
benefit from horizontal transfer as well. Attract and infect 
is a strategy used to improve the delivery of biological 

Fig. 5   Bed bug (Cimex 
lectularius) activity in 
experimental arenas simulating 
control situations using insect 
pathogenic fungi (Beauveria 
bassiana). White background 
colour indicates lights on (day) 
and grey background colour 
indicates light off (night). CO2 
levels were elevated by yeast 
fermentation of a sugar solu-
tion releasing approximately 
150 mL/min for 6 h during the 
night (b) on experimental day 1, 
2, 5 and 6 (a)
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control agents, by deploying attractive and inoculated 
devices to infect pest insects, which subsequently dis-
seminate conidia into the population (Lacey et al. 2015). 
This approach also seems to fit the control of bed bugs, but 
since no strong attractant exists, a variation of the strategy 
could be to develop an activate-auto-disseminate approach, 
where both males and females cross-contaminate each 
other and infect healthy individuals. Manipulation of vola-
tiles is easy in small accommodations like bedrooms (Aak 
et al. 2016), and there is therefore a potential low-cost 

improvement for bed bug control with insect pathogenic 
fungi.

Even though the killing capability appears promis-
ing, the time needed to drive a field population towards 
elimination by using insect pathogenic fungi is currently 
unknown. The total time required could in a worst-case 
scenario be as much as 30 days. As it is unlikely that spore 
application will reach the inside of all harbourages, and the 
horizontal transfer from adults to nymphs is low, the final 
instar nymphs taking a blood meal just before application 

Fig. 6   Horizontal transfer plotted against activity in experimental are-
nas simulating control situations using insect pathogenic fungi (Beau-
veria bassiana) to decimate bed bug (Cimex lectularius) populations. 

Populations had an initial adult infection of 33, 67 or 100%, and each 
population (n = 6, 12 or 18) contained 12 adults with a balanced sex 
ratio and 8 nymphs
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will not be reached until after 5–10 days, when they have 
moulted and start questing. These newly emerged adults 
also need 5–10 days to succumb to the pathogens, and 
although infection reduced the egg production through 
increased mortality, we observed a large number of eggs 
in all arenas. These eggs will hatch to produce a new 
cohort, which needs an additional 5–10 days to be killed 
by the fungi. In such a worst-case scenario, it might also 
be possible for nymphs to moult and shed cuticle with 
conidia to avoid infection to delay or prevent full eradica-
tion. Additionally, all studies to date, including this one, 
have used forced conidia exposure although behavioural 
avoidance (Kaakeh et al. 1996; Kilpinen and Steenberg 
2016; Meyling and Pell 2006; Ormond et al. 2011; Thomp-
son et al. 2007) may impact field effects strongly. These 
uncertainties connected to efficiency may prove to be a 
major obstacle, as biting will persist for the duration of the 

treatment, and because the challenges connected to closing 
bed rooms or hotel rooms create the desire for a fast and 
efficient eradication. A related challenge is the dry indoor 
environment, which may reduce the overall efficiency of 
the fungi (Jaronski 2010; Lacey et al. 2015). This is unfor-
tunate because the survival of a single female may lead to 
rebounding populations and consequently encourages the 
use of high conidia concentrations and possibly repeated 
applications. Although mostly harmless as an infectious 
agent in mammalian tissue (Zimmermann 2007), B. 
bassiana spore application in bedrooms clearly poses an 
elevated inhalation risk (Madsen 2011). It is well recog-
nized that indoor fungal exposure is associated with the 
development or exacerbation of a variety of allergic and 
respiratory symptoms (Jaakkola et al. 2013; Kanchong-
kittiphon et al. 2015; Mendell et al. 2011). The potential 

Fig. 7   Activity in experimental 
arenas simulating control situ-
ations using insect pathogenic 
fungi (Beauveria bassiana) to 
decimate bed bug (Cimex lectu-
larius) populations. Initial adult 
infection levels were 33, 67 or 
100%, and the individual graphs 
show activity levels using Apre-
hend (2% conidia in oil) (a), 
BotaniGard (0.02% conidia in 
water) (b) and no infection (c)
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health impacts of the treatment therefore need to be fully 
addressed to safeguard the residents’ health.

The use of fungi as part of bed bug control is an inter-
esting option that should be pursued further on both an 
individual level and a population level. More knowledge 
connected to behaviour, behaviour-modifying factors, physi-
ology, reproduction and senescence is needed for a greater 
understanding of the interactions between bed bugs and B. 
bassiana and, combined with application knowledge and 
field efficiency tests, it appears likely that fungi can con-
tribute towards future bed bug control. The disadvantages 
connected to time and efficiency may be many when using 
fungi as a single method, but as a part of an IPM strategy, the 
consistent mortality and horizontal transfer may counteract 
pesticide resistance (Barbarin et al. 2017) and help in reach-
ing hidden or passive individuals. This study indicates that 
fungi have the potential to utilize the natural bed bug biol-
ogy to get carried to harbourages and by doing so, offer an 
elevated probability of control success, even without being 
the main contributor to population eradication.
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