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Abstract Physiological constraints restrict specialist

pathogens from infecting new hosts. From an applied

perspective, a narrow host range makes specialist patho-

gens interesting for targeting specific pest insects since

they have minimal direct effects on non-target species.

Entomopathogenic fungi of the genus Entomophthora are

dipteran-specific but have not been investigated for their

ability to infect the spotted wing drosophila (SWD; Dro-

sophila suzukii) a fruit-damaging pest invasive to Europe

and America. Our main goal was to study whether SWD is

in the physiological host range of the entomophthoralean

species E. muscae. We investigated pathogenicity and

virulence of E. muscae towards its main natural host, the

housefly Musca domestica, and towards SWD. We found

that E. muscae readily infected and significantly reduced

survival of SWD by 27.3% with the majority of flies dying

4–8 days post-exposure. In comparison with SWD, infec-

tion of the natural host M. domestica resulted in an even

higher mortality of 62.9% and larger conidial spores of E.

muscae, reflecting the physiological constraints of the

pathogen in the atypical host. We demonstrated that

pathogens of the E. muscae species complex that typically

have a narrow natural host range of one or few dipteran

species are able to infect SWD, and we described a new

method for in vivo transmission and infection of an ento-

mophthoralean fungus to SWD.

Keywords Entomopathogen � Fly � Fungal pathogen �
Insect pest � Spotted wing drosophila

Key message

• Dipteran-specific pathogens are potential agents to

control the fruit-damaging Drosophila suzukii.

• This is the first report of the obligate insect-pathogenic

fungus Entomophthora muscae being able to infect and

kill male and female D. suzukii.

• An even higher virulence towards the natural host

Musca domestica and differences in spore morphology

may reflect physiological constraints of the tested E.

muscae isolate when infecting D. suzukii.

• Entomophthora species like the dipteran-specific E.

muscae have a potential for biological control of D.

suzukii.

Introduction

The Asian spotted wing drosophila (SWD; Drosophila

suzukii) is an invasive and serious economic pest in fruit

and berry. Since growers became aware of a SWD invasion

in Southern Europe and the Eastern USA in 2008, the fly
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expanded its geographic range dramatically within Europe

and the Americas (Asplen et al. 2015).

During geographic expansion, invasive insects come

into contact with previously un-encountered pathogens that

try to exploit the new species as a host. However, virulent

pathogens, parasites and predators can be sparse or unable

to regulate populations of pest species at early states of

invasion as exemplified by the devastating dispersal of

SWD. Pathogens that are able to develop diseases in a new

invasive pest consequently are of potential value to sup-

press population densities and thus the impact of the pest.

Active suppression of pest populations can be approached

through different strategies of biological control ranging

from measures that protect or enhance specific antagonists

in the environment, to the intentional release of control

agents (Eilenberg et al. 2001). Antagonists such as ento-

mopathogenic fungi are generally accepted as a safer

alternative to chemical insecticides, although direct and

indirect ecological effects on non-target organisms are

common and need to be considered in risk assessment of

any control measure (Flexner et al. 1986; Cory and Myers

2000; Goettel and Hajek 2000; Shah and Pell 2003).

Negative effects on beneficial and other non-target

arthropods were for example shown for entomopathogenic

fungi from the genera Metarhizium and Beauveria

(Vestergaard et al. 2003).

Entomopathogenic fungi are common in nature, have

significant impact on insect populations and are success-

fully applied as biological control agents (Hajek and St.

Leger 1994; Goettel et al. 2005; Wang and Wang 2017).

Insect-pathogenic fungi differ in the natural range of host

species they infect and are often designated as generalists

or specialists (Boomsma et al. 2014). The wide range of

host species used by generalist insect-pathogenic fungi,

such as many species within the genera Metarhizium and

Beauveria, imply that these fungi are likely to make ‘host-

shifts’ onto newly encountered hosts. Consequently,

hypocrealean fungi such as M. robertsii and B. bassiana

are commonly applied for insect control (Ferron 1981;

Meyling and Eilenberg 2007), and commercially available

fungal biological control agents based on generalist ento-

mopathogenic fungi have been studied for control of SWD

(Woltz et al. 2015; Cossentine et al. 2016; Cuthbertson and

Audsley 2016). Collectively these studies show that SWD

can be infected and killed by several different insect-

pathogenic fungi. In particular, a recent study showed high

insecticidal activity of Metarhizium brunneum when

applied in specifically designed lures to infect and kill

SWD (Yousef et al. 2017).

Because of limitations in time-to-kill and difficulty with

application of infective conidia, insect-pathogenic fungi

are generally used in combination with other measures as

part of an integrated pest management (IPM) strategy

(Haye et al. 2016; Shah and Pell 2003). To avoid disruption

of current IPM strategies in fruit and berry control that for

example may involve non-target effects on predators and

parasitoids, pest-specific pathogens would be desirable but

have so far not been explored for biological control of

SWD (Cuthbertson and Audsley 2016; Hamby and Becher

2016; Yousef et al. 2017). Diptera-infecting entomoph-

thoralean fungi (Jensen et al. 2006; Vega et al. 2012) are

known to cause natural epizootics, killing large numbers of

insects and can decimate pest populations (Roberts and

Humber 1981). Entomophthoralean fungi in the Ento-

mophthora muscae species complex are morphologically

distinguishable based on the number of nuclei in conidia

and include E. muscae, E. schizophorae and E. syrphi

(Keller et al. 1999; Jensen et al. 2006, 2009). Each species

is, in contrast to generalist hypocrealean fungi such as M.

robertsii and B. bassiana, considered to have narrow nat-

ural host ranges. Within Entomophthora species, individual

populations are genetically distinct as for example isolates

of E. muscae from cabbage fly (Delia radicum) are

genetically distinct from E. muscae isolates from house

flies (Musca domestica) (De Fine Licht et al. 2017; Jensen

et al. 2001). Despite high specificity, isolates of several

Entomophthora species are capable of infecting other

species of diptera than the natural host (Jensen et al. 2006).

Entomophthora schizophorae (isolate originally described

as E. muscae) from housefly (M. domestica) is for example

able to infect the common fruit fly (D. melanogaster) at

low prevalence (Steinkraus and Kramer 1987; Keller

2007).

Here, our main goal was to investigate whether SWD is

in the physiological host range of the entomophthoralean

fungus, Entomophthora muscae s. str. (here after called E.

muscae), which is an important natural enemy of the

common housefly, Musca domestica (Kalsbeek et al.

2001). E. muscae is an obligate insect-pathogen that grows

as protoplasts inside the fly host. After typically ca.

6–7 days, E. muscae takes over the behaviour of infected

hosts and forces them to seek out elevated positions. The

host is eventually killed in a characteristic posture with

wings spread away from the abdomen, while E. muscae

grows out through the intersegmental membranes in the

abdomen where it releases infective conidia (Gryganskyi

et al. 2017; Hansen and De Fine Licht 2017). Entomoph-

thora muscae causes natural epizootics in housefly popu-

lations (Kalsbeek et al. 2001), and here we explored the

infectivity of E. muscae towards SWD. In the laboratory,

we tested for infection of SWD with E. muscae by direct

exposure to sporulating housefly cadavers and documented

pathogenicity, virulence and conidia morphology of E.

muscae-infected SWD.

782 J Pest Sci (2018) 91:781–787

123



Materials and methods

Isolates and flies

House flies (M. domestica, strain: 772a) were provided as

pupae from the Department of Agroecology, Aarhus

University, Denmark. Flies of SWD (D. suzukii) originated

from a laboratory strain maintained at SLU, Alnarp on a

cornmeal diet (Revadi et al. 2015). Entomophthora muscae

isolate hhdfl130914-01, that was originally obtained from a

dead infected M. domestica collected in a cow byre near

Slangerup, Sealand, Denmark (Hansen and De Fine Licht

2017), and is deposited in the insect-pathogenic fungal

culture collection at Department of Plant and Environ-

mental Sciences, University of Copenhagen (acc. no. KVL-

14-115). The E. muscae isolate was maintained in vivo by

continuous infections in house flies as previously described

(De Fine Licht et al. 2017). Briefly, house flies were kept in

groups of 20–40 flies of mixed sex in containers with

diameter: 7.5 cm, height: 8 cm. Containers were closed

with insect net and administered with water and dry yeast

and sugar mixed 1:6 and kept at 21 ± 1 �C. For infection,
three fresh (dead\12 h) E. muscae-sporulating fly cadav-

ers actively discharging conidia were placed at the top of

the container for 24 h at ca. 100% humidity. After 7 days’

post-exposure, dead, infected and sporulating fly cadavers

were removed from containers and used to infect new

healthy flies.

Experimental set-up

Adult 3-day-old SWD flies were exposed to fresh M.

domestica cadavers infected with E. muscae. For infecting

SWD, two dead sporulating housefly cadavers were fixed

with Vaseline underneath the cotton lid inside a Drosophila

food vial for 24 h. Control treatments consisted of the exact

same set-up, except two uninfected housefly cadavers were

fixed at the lid with Vaseline. Each Drosophila food vial

contained 12–27 unmated male or female SWD flies, with

eight replicate vials per treatment. Two strips of filter paper

were added within each vial to facilitate climbing of

infected flies. Vials were kept at room temperature

(23 �C ± 2), with a photoperiod of 12:12 (L:D). Number

of dead SWD flies and inspection of cadavers for presence

of external fungal growth and general observations were

recorded daily for 10 days. To obtain comparable infec-

tivity measurements for E. muscae infections in house flies,

vials of diameter: 7.5 cm, height: 8 cm with 28–46 house

flies were similarly exposed for 24 h to two sporulating E.

muscae-infected housefly cadavers. Number of dead house

flies and inspection of cadavers for presence of external

fungal growth were recorded daily for 10 days as described

for SWD.

Conidia exposure dosage and conidia morphology

The exposure dosage of E. muscae conidia during the 24-h

infection scheme was calculated based on eleven sporu-

lating housefly cadavers placed individually over a 1-ml

solution containing 1% Triton-X and 0.2% maleic acid to

prevent germination of discharged conidia (Hajek et al.

2012). Following 24-h exposure, conidia were counted

using a hemocytometer placed under a microscope. To

examine conidia morphology in the two different hosts, E.

muscae-infected cadavers of house flies and SWD were

placed on microscope slides at high humidity to induce

discharge of conidia onto the microscope slides. Micro-

scope slides with conidia were stained with aceto-orcein

and examined with a microscope at 1009 magnification.

Length, width and number of nuclei within individual

conidia from housefly and SWD cadavers were measured.

Statistical analyses

Generalized linear models (GLMs) with a binomial distri-

bution were used to analyse the effect of the fungus on the

proportion of overall mortality of adult flies. The models

included treatment (E. muscae application vs. control),

species (D. suzukii vs. M. domestica) and sex of the flies as

explanatory variables. Model selection was performed

using likelihood ratio tests based on X2 and Akaike’s

information criterion in a stepwise backward selection

process from full models testing main effects and two-way

interactions between the explanatory variables. Pairwise

comparisons were performed using Tukey’s HSD post hoc

test, with a Bonferroni correction.

In order to test the effect of E. muscae on the survival of

D. suzukii and M. domestica in a time dependent manner

the Cox proportional hazards (PH) regression model (Cox

1972) was used. Due to very low percentage of mortality in

the control groups of both fly species, which resulted in

high levels of censored data, these groups were excluded

and survival was analysed as a function of species and sex

of the flies. Differences in number of nuclei between E.

muscae conidia from house flies and fruit flies were anal-

ysed with a Wilcoxon rank-sum test, whereas conidia dif-

ferences in length, width and aspect ratio were analysed

using Student’s t tests after log-transforming data. All

analyses were carried out in R (v. 3.3.0; R Core Team

2013) using the packages car, multcomp and survival.
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Results

Entomophthora muscae infections of D. suzukii

A significant effect of treatment (v2 = 130.027, df = 1,

P\ 0.001) and species (v2 = 37.696, df = 1, P\ 0.001)

was observed on the overall mortality of flies, while sex did

not affect the response variable (v2 = 3.316, df = 1,

P = 0.068). All pairwise comparisons revealed significant

differences (P\ 0.001) except from the comparison

between the control groups of the two species (z = 0.263,

P = 0.993) (Fig. 1). From a total of 205 SWD flies

exposed to infected M. domestica cadavers, 56 died within

10 days, from which, 53.6% (C.I. 39.7–67.0%) developed

visible external mycelium (Fig. 2). Moreover, in several

SWD infection induced characteristic behavioural symp-

toms with flies climbing elevated positions where they died

with wings raised above the body confirming the involve-

ment of the fungus. However, the timing of this beha-

vioural manipulation and death was less synchronized in

SWD than house flies, with SWD starting to die earlier than

M. domestica but with mortality distributed over more days

(Fig. 1). In the respective group of M. domestica, from a

total of 124 flies exposed to sporulating M. domestica

cadavers, 78 died, all of which developed visible conidia.

Analysis with the Cox PH regression model revealed a

significant effect of species on the survival of flies exposed

to infected M. domestica cadavers (v2 = 32.5794, df = 1,

P\ 0.001), while sex of the flies was marginally non-

significant (v2 = 3.5836, df = 1, P = 0.0584).

Conidia exposure dosage and morphology

In our experimental set-up, a single E. muscae-sporulating

housefly cadaver produces 2.259106 ± 3.469105 conidia

(mean ± SE, N = 11) during the first 24 h. The SWD and

M. domestica vials and containers were therefore exposed

to a minimum dosage of 4.509106 conidia over the 24 h.

There was no difference in number of nuclei between

conidia from E. muscae when infecting the natural host M.

domestica and the experimental host SWD (W = 149.5,

p = 0.249, Table 1). In contrast, mean length and width of

the conidia were significantly smaller on SWD than on M.

domestica (t = 2.66, df = 37.4, p = 0.012; t = 5.08,

df = 38.0, p\ 0.001, respectively). The shape of conidia

measured as the aspect ratio between length and width of

the conidia was similarly significantly different between

conidia from E. muscae when infecting the natural host M.

domestica and the experimental host SWD (t = 4.37,

df = 27.9, p\ 0.001), with a wider range of aspect-ratios

present in conidia from SWD (Table 1).

Discussion

The spotted wing drosophila is a most prominent example

of insect species that currently invade new geographic

regions where they become pests through fast increase in

distribution and abundance. Management of invasive pests

is a challenge that requires understanding of physiological

and ecological mechanisms underlying their dispersal and

invasion, and the development of tools to control their

impact in natural and agricultural systems (Cini et al. 2014;

Hamby et al. 2016).
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Fig. 1 Percentage of overall mortality over 10 days (bars ±SE) and

temporal decline of survival (lines) in M. domestica (black) and D.

suzukii (grey) following 24 h exposure to housefly cadavers with E.

muscae conidiospores and uninfected control cadavers. Exposure to

E. muscae conidia had a significant effect on both M. domestica and

D. suzukii survival. The letters above each bar denote significantly

different overall mortality percentage

Fig. 2 Abdomen of dead D. suzukii with conidiophores of E. muscae

growing out between the tergites and sclerites of the abdomen. Insert

shows an E. muscae spore from D. suzukii with the characteristic

Entomophthoralean oval shape of a rounded base with a pointed apex.

Several nuclei can be seen inside

784 J Pest Sci (2018) 91:781–787

123



The release from natural enemies like pathogens and

predators is regarded as an important factor contributing to

the establishment of invasive species in new habitats

(Keane 2002; Comont et al. 2014). Pathogens, as one cat-

egory of natural antagonists, consequently are applied to

counteract enemy release. Entomopathogenic fungi in the

orders Hypocreales and Entomophthorales are the most

commonly used pathogens for biocontrol of insect pests.

Biological control strategies using entomopathogenic fungi

range from the approach of protecting and enhancing nat-

ural enemies already present in the environment to the

intentional release of exotic control agents (Eilenberg et al.

2001; Pell et al. 2010). Sustainable control of SWD that do

not disrupt currently employed IPM strategies requires the

development of new strategies. Undoubtedly, our ecosys-

tems host many pathogenic fungi of unknown value for

control of pest populations (Pell et al. 2010), and here we

wanted to know if SWD is in the host range of the ento-

mophthoralean fungus E. muscae as a basis for the poten-

tial application of entomophthoralean entomopathogens as

biocontrol agents. In the present study, we therefore

explored the physiological host range by exposing SWD to

E. muscae from house flies and demonstrated that E.

muscae is able to infect, behaviourally manipulate and

sporulate in SWD.

Higher infectivity and a larger spore size in house flies

than in SWD likely illustrates special adaptations of E.

muscae to the main natural hostM. domestica. Nevertheless,

infected SWD, similar to house flies, showed climbing and

posturing of the abdomen with conidiospores growing out

between the tergites and sclerites, to get actively discharged.

In the natural housefly host, E. muscae disease development

is characterized by initial exponential growth (Hansen and

De Fine Licht 2017), immune avoidance by proliferating as

protoplasts without cell walls (Latge et al. 1988) and beha-

vioural manipulation of hosts to enhance transmission at the

final stages of infection (Roy et al. 2006; Gryganskyi et al.

2017). Although less synchronized in time-to-kill, the dis-

ease ontogeny and complex behavioural manipulation of E.

muscae in SWD is similar to infections in housefly. The near-

natural E. muscae infection of SWD is consistent with pre-

vious work that also documented the potential host range of

E. muscae being broader than the known natural host range

(Jensen et al. 2006) similar as for E. schizophorae (isolate

originally designated E. muscae) that was shown to be

infectious for another Drosophila species, D. melanogaster

(Steinkraus and Kramer 1987).

Infection of hosts outside the recorded natural host range

is known for other infectious pathogens and likely reflects

optimized laboratory conditions for pathogen transmission

rarely experienced in nature. Under natural conditions,

examples of non-host infections are often pathogen spill-

over events without prolonged ecological persistence in the

new host population (Poulin et al. 2011). Remarkably,

specific E. muscae isolates have been described to cause

high natural infection levels and epizootics in other dip-

teran pests like the carrot fly Psila rosae or the onion fly

Delia antiqua (Carruthers et al. 1985; Eilenberg and Phi-

lipsen 1988). Interestingly, carrot flies caught in the

hedgerow showed higher infection levels than flies in the

adjacent field, illustrating the potential value of E. muscae

for control strategies that build on the enhancement of

natural enemies in non-crop reservoirs (Eilenberg and

Philipsen 1988; Pell et al. 2010). Hedges and other vege-

tation adjacent to crops are also known as important refu-

ges for SWD (Baroffio et al. 2014; Diepenbrock and

Burrack 2017; Kenis et al. 2016), and thus zones where

flies may be concealed from conventional pest control

strategies used in the field and particularly could get

attacked by pathogens and other natural enemies. More-

over, as SWD uses bushes and woods as overwintering

sites (Pelton et al. 2016; Briem et al. 2016), a decrease in

flies through the presence of pathogens might delay the

build-up of dense populations early in season.

As E. muscae is able to infect and kill SWD and fur-

thermore is known to cause epizootics in other dipteran

species, it is relevant to contemplate if members of the E.

muscae species complex could be used in biological control.

Attributes that generally are considered as beneficial for the

application of entomophthoralean fungi are a specialized

Table 1 Spore morphology of E. muscae on the natural host (M. domestica) and the experimental host (D. suzukii)

Host species Mean no. of nuclei Mean length (lm) Mean width (lm) Mean aspect ratio

M. domestica 12.6 ± 0.3 (11–16) 30.4 ± 0.5 (26.2–34.5) 25.9 ± 0.4 (23.2–29.6) 1.17 ± 0.01 (1.11–1.23)

D. suzukii 13.3 ± 0.5a (11–16) 28.5 ± 0.6 (25.2–36.8) 22.8 ± 0.4 (19.7–27.6) 1.25 ± 0.02 (1.15–1.39)

t test (t)/Wilcoxon

(W)

W = 149.5

p = 0.249

t = 2.66, df = 37.4

p = 0.012

t = 5.08, df = 38.0

p\ 0.001

t = 4.37, df = 27.9b

p\ 0.001

The mean (n = 20) with standard error of the mean and the range in brackets are given
a Nuclei could only be counted in 12 E. muscae spores from D. suzukii
b Aspect ratios were log-transformed to normalize data before performing Student’s t test
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host range, the potential to cause epizootics and the exis-

tence of persisting resting spores (Hajek and Delalibera

2010). However, many Entomophthorales are difficult to

mass-produce and grow in vitro (Hajek et al. 2012), and so

far devices for autoinoculation have been developed against

dipteran pests including SWD only with hypocrealean

entomopathogenic fungi (Maniania et al. 2006; Migiro et al.

2010; Yousef et al. 2017). Therefore, control measures

operating by release of infected animals that disseminate the

pathogens, or enhancement of entomophthoralean fungi in

the environment of agroecosystems (e.g. by providing

refuges adjacent to crops) might be the most practical way to

circumvent the challenging development of formulations for

spray application (Tobin and Hajek 2012; Zúbrik et al.

2016). An advantageous attribute for application in pest

control is that members of the E. muscae species complex

are dipteran-specific, which in comparison with generalist

pathogens implies a smaller range of susceptible non-target

species. Intricate molecular interactions underlying host-

specific adaptation of E. muscae have led to a more narrow

host range as compared to generalist hypocrealean fungi

such as M. robertsii and B. bassiana (De Fine Licht et al.

2017; Hansen and De Fine Licht 2017).

Feasible biological control with the here tested isolate of

E. muscae would require a pathogen host shift from the

indigenous host species, Musca domestica, on to the

invasive SWD. Should a host shift as generated in the

laboratory also occur in the field it would be highly ben-

eficial and potentially provide the basis for further devel-

opment of biological control measures. Other isolates

within the E. muscae species complex are known to natu-

rally infect Drosophilid species (Goldstein 1927; Turian

and Wüest 1969). Naturally infected species of the genus

Drosophila have rarely been collected, but would provide

an ideal starting point for developing new diptera-specific

biological control strategies for SWD.
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