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Abstract Rewards are fundamental to everyday life. They

confer pleasure, support learning, and mediate decisions.

Dopamine-releasing neurons in the midbrain are critical for

reward processing. These neurons receive input from more

than 30 brain areas and send widespread projections to the

basal ganglia and frontal cortex. Their phasic responses are

tuned to rewards. Specifically, dopamine signals code

reward prediction error, the difference between received

and predicted rewards. Decades of research in awake,

behaving non-human primates (NHP), have shown the

importance of these neural signals for learning and decision

making. In this review, we will provide an overview of the

bedrock findings that support the reward prediction error

hypothesis and examine evidence that this signal plays a

role in learning and decision making. In addition, we will

highlight some of the conceptual challenges in dopamine

neurophysiology and identify future areas of research to

address these challenges. Keeping with the theme of this

special issue, we will focus on the role of NHP studies in

understanding dopamine neurophysiology and make the

argument that primate models are essential to this line of

research.
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Introduction

Rewards are a central feature of everyday life that promote

learning, incentivize value-based decisions, and provide a

currency for social exchanges. Dopamine neurons respond

to rewarding events. Specifically, phasic dopamine activity

reflects the difference between received and predicted

rewards, i.e., reward prediction errors. Systems neuro-

science studies in non-human primates (NHP) have been

critical to understanding this coding scheme, as well as

investigating the behavioral implications of reward pre-

diction error coding.

Right now, we stand at the threshold of a new neuro-

scientific age. This age will be defined by big data and

molecular control of neural information processing. From

this vantage point, this review endeavors to provide a brief

introduction to dopamine neurons, examine the critical

findings revealed by NHP studies that have shaped our

understanding of dopamine function, and evaluate what

role this valuable species should have in future investiga-

tions. We will attempt to identify outstanding challenges to

our current understanding of this critical brain system,

propose areas for future research, and reinforce the need to

preserve and technologically advance behavioral neuro-

physiology studies in NHP. Keeping with the theme of this

special issue on NHP studies of basal ganglia function, this

review does not attempt to be comprehensive and passes

over many of the recent advances observed in rodent

models. In addition, we do not discuss the role of dopamine

cell loss in Parkinson’s disease, nor the valuable contri-

bution of the monkey MPTP Parkinson’s disease model

(Langston et al. 1983).

The majority of dopamine neuron cell bodies are located

in the midbrain, in cell groups designated A8, A9, and A10

(Dahlstroem and Fuxe 1964). These groups broadly
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overlap with the retrorubral field (RRF), substantia nigra

pars compacta (SNc), and ventral tegmental area (VTA),

respectively. (Dahlstroem and Fuxe 1964; German and

Manaye 1993) (Fig. 1a). Dopamine neurons express the

enzyme Tyrosine Hydroxylase (TH) that converts the

amino acid tyrosine to L-3,4-dihydroxyphenylalanine (L-

DOPA). L-DOPA is converted to dopamine via aromatic L-

amino acid decarboxylase (AAAD) and packaged into

vesicles by the vesicular monoamine transporter (VMAT)

(Lovenberg et al. 1962; Yelin and Schuldiner 1995).

Dopamine neurons are few in number, less than 200,000

in Rhesus macaque monkeys (Stark and Pakkenberg 2004).

Despite this, dopamine terminals are found throughout the

striatum (Lynd-Balta and Haber 1994a, b) (Fig. 1a) and

primate frontal cortex (Smiley et al. 1994; Smith et al.

2014; Williams and Goldman-Rakic 1993, 1998). Dopa-

mine neuron action potentials (AP) are recognized

according to their distinct electrophysiological profile that

features broad AP waveforms as well as low and irregular

baseline impulse rates (Guyenet and Aghajanian 1978).

Classical identification of dopamine neurons was based on

the tight correlation between these distinctive waveform

characteristics and apomorphine sensitivity (Bunney et al.

1973; Guyenet and Aghajanian 1978; Schultz 1986;

Schultz and Romo 1987). A partial survey of the literature

that used apomorphine injections to identify dopamine

neurons revealed that 77 of 85 putative dopamine neurons

were suppressed by apomorphine, whereas none of 39

putative non-dopamine neurons were inhibited by apo-

morphine (Aebischer and Schultz 1984; Bunney et al.

1973; Guyenet and Aghajanian 1978; Schultz 1986;

Schultz and Romo 1987; Studer and Schultz 1987). New

alternative techniques, such as optogenetic photo-identifi-

cation and juxtacellular labeling, promise similar reliability

(Brischoux et al. 2009; Cohen et al. 2012; Eshel et al. 2015;

Stauffer et al. 2016; Ungless and Grace 2012). Photo-

identification is especially promising, as it uses dopamine

neuron selective expression of optogenetic channels cou-

pled with optical stimulation to unambiguously identify

many dopamine neurons in each animal (Cohen et al. 2012;

Eshel et al. 2015; Lammel et al. 2012; Stauffer et al. 2016),

but see (Lammel et al. 2015). This strategy promises a less-

subjective criterion for dopamine neuron identification,

compared to identification via waveform characteristics,

and will be critical to achieve an unbiased picture of

dopamine neuron diversity.

Dopamine neuron activity is traditionally divided into

irregular, slow (0.3–8 imp/s) tonic activity and phasic

(burst firing) activity when the impulse rate can briefly

reach 20–30 imp/s (Grace and Bunney 1983). Phasic bursts

of dopamine neurons are the most efficient way to change

the dopamine concentration in their target structures

(Gonon 1988). These phasic bursts are thought to respond

to rewards, though there is significant disagreement about

the degree of functional heterogeneity (see section ‘‘Chal-

lenges and future research directions’’).

Dopamine neurons code reward prediction error

Early evidence that dopamine neurons are involved in

reward came from self-stimulation studies in maze-running

rats (Olds and Milner 1954). However, behavioral neuro-

science experiments in awake, head-fixed monkeys

revealed the fundamental insight that phasic dopamine

responses reflect reward prediction errors (Bayer and

Glimcher 2005; Bayer et al. 2007; Bromberg-Martin et al.

2010; Enomoto et al. 2011; Fiorillo 2013; Fiorillo et al.

2003, 2008, 2013a, b; Hollerman and Schultz 1998;

Kobayashi and Schultz 2008; Lak et al. 2014, 2016;

Ljungberg et al. 1992; Matsumoto and Hikosaka 2009;

Mirenowicz and Schultz 1994, 1996; Nakahara et al. 2004;

Nomoto et al. 2010; Schultz et al. 1993, 1997; Stauffer

et al. 2014; Tobler et al. 2005; Waelti et al. 2001). Reward

prediction errors are defined in animal learning theory and

Fig. 1 Dopamine anatomy and physiology. a Dopamine cell bodies

in the VTA and SNc and dopamine terminals in the putamen and

caudate tail are marked by brown DAB staining. Cdt caudate tail, Put

putamen, SNc substantia nigra pars compacta, VTA ventral tegmental

area. b–d Dopamine responses code for reward prediction error.

b Peri-stimulus time histogram (PSTH) of dopamine activity shows a

strong response to unpredicted reward (indicated by the drop of juice).

c PSTH of dopamine activity when a conditioned stimulus fully

predicts reward. Dopamine neurons respond to the unpredictable onset

of conditioned stimulus (CS1), but not to the fully predicted reward.

d PSTH of dopamine activity when a high order conditioned stimulus

(CS2) predicts the temporal onset of CS1 and delivery of reward.

Dopamine neurons respond to unpredictable onset of CS2, but not to

the fully predicted CS1 or reward. b–d Adapted from Schultz et al.

(1993)
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machine learning as the differences between received and

predicted rewards (Sutton and Barto 1998). A central tenet

of animal learning theory is that temporal contiguity

between a conditioned stimulus (CS) and reward (uncon-

ditioned stimulus, US) is not sufficient to drive learning.

Rather, the reward must be unexpected; it must evoke a

prediction error (Rescorla and Wagner 1972). Accordingly,

reward prediction errors are teaching signals (Sutton and

Barto 1998), and the reward prediction error nature of

phasic dopamine responses strongly implicates these

responses in learning.

Phasic dopamine responses are dependent on learning,

and are time locked to unpredicted rewards and stimuli that

elicit behavioral reactions (Mirenowicz and Schultz

1994, 1996; Romo and Schultz 1990; Schultz 1986;

Schultz and Romo 1990). Early on in learning, when the

associative strength between CS and reward is low, reward

delivery strongly activates dopamine neurons (Ljungberg

et al. 1992; Schultz et al. 1993) (Fig. 1b). Later, as the

rewards become well predicted by the CS, dopamine

neurons respond more strongly to the CS and less strongly

to rewards (Ljungberg et al. 1992; Schultz et al. 1993)

(Fig. 1c). With enough training, even higher order reward

predictors (higher order CS) can activate dopamine neu-

rons (Pan et al. 2005; Schultz et al. 1993) (Fig. 1d).

Together, these studies provide overwhelming evidence

that the phasic activity of dopamine neurons encodes

reward prediction errors.

Dopamine reward prediction error responses are an ideal

neural mechanism to mediate behavioral reinforcement

learning, because they indicate both the occurrence of

prediction errors and the proper direction to updating pre-

dictions. Rewards that are better than predicted activate

dopamine neurons (positive prediction error responses),

whereas rewards that are worse than predicted inhibit

dopamine activity (negative prediction error responses).

Modeling studies demonstrated that the prediction error

term in popular reinforcement learning (RL) algorithms

closely resembles the phasic dopamine signal (Montague

et al. 1996; Schultz et al. 1997).

Using RL models, many studies have shown that

dopamine responses conform to key principles of learning

theory. For instance, when a US is predicted by a CS, a

second CS presented at the same time or later than the first

CS is ‘blocked’ from forming an association with the

already predicted US, and dopamine neurons consistently

fail to develop a response to the secondary, blocked CS

(Steinberg et al. 2013; Waelti et al. 2001). Similarly,

dopamine neurons are sensitive to temporal jittering of

reward delivery. Early delivery of a predicted reward

causes dopamine activation, whereas later than, predicted

delivery leads to a diminished response (Hollerman and

Schultz 1998). Moreover, dopamine responses reflect the

discounting of future rewards, as suggested by reinforce-

ment learning and economic theory (Enomoto et al. 2011;

Fiorillo et al. 2008; Kobayashi and Schultz 2008). Trial-by-

trial dopamine responses reflect the reinforcement history,

a weighted average of past outcomes, in simple learning

contexts (Bayer and Glimcher 2005). When the experi-

mental context involves more complicated inter-trial task

structure, dopamine neurons use this task structure to

quickly update their responses on one trial, for instance,

during reversal learning (Bromberg-Martin et al. 2010).

Together, these results demonstrate the fidelity of dopa-

mine responses to predictions made by learning theory, and

they provide compelling evidence that phasic dopamine

responses play a role in learning.

Dopamine activity reflects economic value

The magnitudes of dopamine prediction error responses

scale positively with reward parameters that increase value,

including reward size (Bayer and Glimcher 2005; Tobler

et al. 2005), and probability (Fiorillo et al. 2003; Lak et al.

2016; Nakahara et al. 2004; Nomoto et al. 2010), and

negatively with reward parameters that decrease value,

including delays (Fiorillo et al. 2008; Kobayashi and

Schultz 2008) and bitter substances (Fiorillo et al. 2013b).

Moreover, when monkeys indicate preference rankings

between goods that have the same reward magnitude,

expected value, and delay, dopamine responses vigorously

reflect the preference rankings for reward type (Lak et al.

2014) and information content (Bromberg-Martin and

Hikosaka 2009). These results indicate that dopamine

reward prediction error responses reflect subjective value.

To demonstrate the functional relationship between

subjective value and dopamine activity, it is necessary to

measure a psychometric function of subjective value.

Economic theory demonstrates that choices between risky

options reveal subjective value (utility) as a function of

physical value (Debreu 1959; von Neumann et al. 1944).

Risk-avoiding individuals display concave utility func-

tions, where the potential loss is greater than potential gain

(Fig. 2a). In contrast, risk seekers have convex utility

functions, where the potential utility gain outweighs the

potential utility loss (Fig. 2b). A psychometric utility

function with a consequential shape—a shape that can be

meaningfully correlated with a neurometric function—can,

therefore, be measured from choices under risk (Caraco

et al. 1980; Machina 1987; Stauffer et al. 2014). Choices

between risky rewards show that monkeys are risk seeking

for small rewards (McCoy and Platt 2005; O’Neill and

Schultz 2010; Yamada et al. 2013), but become more risk

avoiding as rewards get larger (Genest et al. 2016; Stauffer

et al. 2014). This behavioral pattern, risk seeking for small
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rewards and risk avoiding for large rewards, translates into

a convex then concave utility function (Fig. 2c) (Genest

et al. 2016; Stauffer et al. 2014). The magnitudes of

dopamine responses to unpredicted rewards are highly

correlated with the shapes of the measured utility functions

(Fig. 2d). In addition, when more reward than delivered is

predicted, the prediction error response of dopamine neu-

rons depends on the local slope of the utility function

(Stauffer et al. 2014). These results demonstrate that the

fundamental variable coded by dopamine prediction error

responses is the same variable used to make decisions.

An outstanding question related to economic value

coding is whether economic costs reduce the magnitude of

dopamine responses. In one study, increasing the effort

required to get a reward resulted in reduced responses of

some dopamine neurons, but not others (Pasquereau and

Turner 2013). The behavioral measures used to gauge

effort, however—reaction time and error rate—do not map

linearly onto economic value. Thus, the true economic costs

remained unknown. More studies are required to determine

whether dopamine neurons code a net utility signal that

accounts for the economic costs associated with effort.

When behavioral decisions are made, dopamine

responses reflect the chosen value, which is a post-decision

variable (Lak et al. 2016; Morris et al. 2006). The current

data suggest that dopamine neurons do not play a direct

Fig. 2 Phasic dopamine responses code value. a–b Example utility

functions predict preferences between equi-probable (50:50) two

outcome gambles (0.1, 0.9, arbitrary units) and the gambles’ expected

values (EV) (0.5 a.u.). a Concave utility function indicates risk

avoiding. b Convex utility function indicates risk seeking. Orange and

brown two-sided arrows indicate the potential utility gain (G) and loss

(L), respectively, relative to the utility of the expected value (uEV).

For concave (risk avoiding) functions G\L, whereas for risk seeking

(convex) functions G[L. c Measured utility function shows the

utility of juice rewards. Convex regions of the utility (lower reward

sizes) represent reward ranges, where the monkey was risk seeking.

Concave regions (larger reward sizes) represent reward ranges, where

the monkey was risk avoiding. Black dots represent points of

subjective equivalence—termed certainty equivalents—between risky

and safe rewards, measured through binary choices between risky and

safe rewards. Solid line was fitted to the certainty equivalent data

using cubic splines. d Dopamine neuron action potential responses are

strongly correlated with the shape of the utility function. Action

potentials were measured, while unpredicted rewards were delivered

to the animals (sized 0.1–1.2 ml in 0.1 ml increments). Black bars

represent impulse rate in a 500 ms window following reward. Error

bars are SEM across 17 neurons. Red line represents utility functions

and corresponds to secondary y-axis. c, d Adapted from Stauffer et al.

(2014)
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role in selecting options for a particular choice. Never-

theless, the close correlation between dopamine response to

rewards and reward utility suggests that dopamine-teaching

signals play a fundamental role in the choices we make

over time. This functional role in value-based decisions

was demonstrated by a recent study using optogenetic

stimulation of dopamine neurons in a macaque monkey.

Reward predicting objects that were followed by optoge-

netic activation of dopamine neurons were chosen more

frequently than identical objects that were not followed by

optogenetic activation (Stauffer et al. 2016) (Fig. 3). Thus,

the likely role of the dopamine prediction error response is

to train downstream brain structures about value.

Challenges and future research directions

Despite the overwhelming evidence for the reward pre-

diction error hypothesis of dopamine function, several

outstanding challenges remain unaddressed. Here, we will

attempt to define and outline three critical challenges

deserving of attention. These include (1) determining

whether dopamine neurons are functionally homogenous,

(2) elucidating the relationship between behavioral mea-

sures and striatal dopamine release, and (3) defining the

functional role of dopamine signals in the cortex.

Functional diversity in dopamine neurons

Several studies have reported that a fraction of dopamine

neurons are excited by novel or aversive stimuli and out-

comes (Brischoux et al. 2009; Cohen et al. 2012; Fiorillo

2013; Fiorillo et al. 2013b; Lak et al. 2016; Matsumoto and

Hikosaka 2009; Schultz and Romo 1987). Although there

is significant anatomical diversity in the input–output

pathways between medial and lateral dopamine neurons

(Lynd-Balta and Haber 1994a, b, c; Watabe-Uchida et al.

2012), it remains unclear whether these non-reward-related

activations represent the activity of distinct dopamine

neuron circuits.

Multiple aspects of dopamine signaling may contribute

to the observed complexity of dopamine responses,

including context dependency and complex temporal

dynamics. Dopamine neurons are exquisitely sensitive to

the experimental context. For instance, when visual stimuli

predict both appetitive and aversive stimuli, approximately

40% of dopamine neurons respond to the stimulus pre-

dicting the aversive outcome (Matsumoto and Hikosaka

2009; Mirenowicz and Schultz 1996). When the sensory

stimuli are more perceptually distinct, as in when reward is

predicted by an auditory cue and aversive outcome pre-

dicted by a visual cue, the number of dopamine neurons

that respond to the aversive cue drops dramatically

(Mirenowicz and Schultz 1996). This shows that stimulus

context influences the activity of dopamine neurons.

Likewise, the distribution of outcomes also alters dopamine

responding. Highly rewarding contexts, such as behavioral

situations with high reward probability, increase dopamine

activations to neutral cues (Kobayashi and Schultz 2014;

Matsumoto et al. 2016) and cues that predict aversive

outcomes (Matsumoto et al. 2016). Even trial-by-trial

behavioral measures in mice and monkeys predict whether

dopamine neurons will respond to the current behavioral

stimuli (Lak et al. 2017; Matsumoto et al. 2016). Such

Fig. 3 Optical stimulation of ChR2 expressing dopamine neurons

leads to neuronal and behavioral correlates of value. a Top, monkeys

viewed visual stimuli that predicted liquid reward delivered with

(blue) or without (red) accompanying optical stimulation. a Bottom,

larger neuronal response (blue) occurred to cues that predicted optical

stimulation, compared to neuronal responses (red) to cues that did not

predict optical stimulation. Blue raster plot and PSTH aligned onto

the appearance of cues predicting reward plus optical stimulation. Red

raster plot and PSTH aligned onto the appearance of cues predicting

reward alone in the same neuron. b Monkeys made saccade guided

choices between two visual cues (same reward scheme as in a). When

the optical fiber was placed in the channelrhodopsin-infected

hemisphere, monkeys learned to choose the cue that predicted optical

stimulation, over the cue that did not predict optical stimulation (blue,

‘injected’). When the optical fiber was placed in the contralateral

hemisphere, where no channelrhodopsin virus was injected, the

monkeys continued to choose either option with equal frequency (red,

‘control). Thus, the monkeys’ choices indicated that optical stimu-

lation added value. Two choice sessions are shown, one with the

optical fiber in the infected hemisphere (blue) and one session with

the optical fiber in the control, uninfected hemisphere (red). The ‘x’

indicates trial-by-trial choices in each session. The smoothed lines

represent a running average of the choices (10 trial sliding window).

This figure was adapted from Stauffer et al. (2016)
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context-, and even trial-, specific effects seem to demand a

systems neuroscience perspective that places focus on the

behavior of the animal and not just the underlying neural

circuits. Well-controlled experiments will be critical to

understand the behavioral consequences of dopamine

activity in real-world environments with complex emo-

tional contexts.

The temporal dynamics of the dopamine response can

further complicate the interpretation of these responses.

Short latency activations can occur 50–90 ms following

behavioral events that reflect physical impact, novelty, and

stimulus generalization (Fiorillo 2013; Fiorillo et al. 2013b;

Lak et al. 2014; Matsumoto and Hikosaka 2009; Nomoto

et al. 2010). These short latency responses are not modulated

by value, whereas later response components are (Fiorillo

et al. 2013a; Lak et al. 2016). Likewise, robust rebound

activations are often observed following negative prediction

error responses when dopamine neurons can be silent for

200–500 ms (Bayer et al. 2007; Fiorillo et al. 2013b).

Together, these complex dynamics, such as short latency and

rebound activations, can complicate the interpretation of

negative prediction error responses. It is important to note

that an abundance of caution should be exercised with the

interpretation of this neuronal behavior. Despite the various

conclusions that can be reached by applying statistics to

selected time windows, it is unclear how an aversive out-

come-predicting stimulus that evokes a short latency acti-

vation, a long pause in firing, and then a rebound activation

would influence dopamine release in the striatum.

The relationship between behavior and striatal

dopamine release

Classic studies have repeatedly shown that, even during

operant paradigms, dopamine responses are time-locked to

external reward predictors, rather than to the onset of well

controlled, single joint movements or associated EMG

activity (Fig. 4a) (Ljungberg et al. 1992; Schultz et al.

1993; Schultz and Romo 1990). In contrast, larger, multi-

muscle movements in monkeys (Schultz et al. 1983) or

whole-body movements in rodents (Dodson et al. 2016;

Howe and Dombeck 2016; Howe et al. 2013) are correlated

with increased dopamine activity in midbrain cell bodies

and striatal dopamine release sites. For instance, a recent

study in freely behaving rodents found that phasic dopa-

mine release was time-locked to behavior as well as stimuli

(Fig. 2d) (Hamid et al. 2016). Investigating this discrep-

ancy and exploring the larger question of how information

processing in the striatum is modulated by incoming

dopamine signals are of critical importance. Local striatal

neurons (cholinergic interneurons) and afferent connec-

tions can influence dopamine release at dopamine terminals

in the striatum (Cachope and Cheer 2014; Threlfell et al.

2012). This local influence might be especially significant

in primates, because the basal ganglia are spatially orga-

nized according to cortical inputs (Alexander and DeLong

1985a, b; Alexander et al. 1986). The activity of dopamine

neurons and cholinergic neurons is correlated in the NHP

basal ganglia, but it is unclear how the behavioral variables

coded by cholinergic neurons influence dopamine release

(Morris et al. 2004). It is, therefore, important to charac-

terize dopamine release in different functional regions of

the striatum and observe the relationship between release

and well-controlled behaviors. Recently, cyclic voltam-

metry was used to monitor dopamine reward responses in

NHP striatum (Min et al. 2016; Schluter et al. 2014;

Yoshimi et al. 2015), and this technique can shed light on

how local network effects influence dopamine release and

whether release reflects behavioral parameters other than

reward, such as movements and actions.

The role of fast dopamine signals in the frontal

cortex

It is widely believed that phasic dopamine signals update

action values in the striatum (Shen et al. 2008), but it is less

well known what role these signals have in the frontal

cortex. There was an extensive expansion of frontal cortex

dopamine projections that accompanied the evolution of

Fig. 4 Temporal discrepancy between dopamine action potential

responses recorded in the midbrain and dopamine release monitored

in the striatum. a PSTH (top) and raster plot (bottom) of dopamine

response to reward predicting cues. Responses were aligned onto cue

onset (solid line). The time of movement onset during each trial is

indicated by the dark hatches in the raster plot. This panel was

adapted from (Schultz et al. 1993). b Profile of dopamine concen-

tration change in the striatum of a rat after reward prediction.

Dopamine concentration profiles are aligned to the time when the rats

inserted their nose into a center port (white dashed lines). The time of

instruction cues for each trial is indicated by the red ticks. This

figure panel was adapted from Hamid et al. (2016)
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higher cognitive abilities in primates (Lewis et al. 1987;

Smiley et al. 1994; Williams and Goldman-Rakic

1993, 1998). Accordingly, several studies have examined

the role of dopamine in attention, working memory, and

associative learning (Jacob et al. 2013, 2016; Noudoost and

Moore 2011a; Puig and Miller 2012; Vijayraghavan et al.

2007; Williams and Goldman-Rakic 1995). These studies

and others like them have relied upon the (relatively) slow

process of agonist or antagonist infusion. Even when done

with high spatial and temporal precision (Noudoost and

Moore 2011b), these manipulations cannot approximate the

natural dynamics of phasic dopamine signals. Instead,

optogenetics can be employed for millisecond timescale

control of dopamine release (Boyden et al. 2005; Tsai et al.

2009). Recently, a dual virus injection was shown to

selectively label wild-type NHP dopamine neurons. Optical

stimulation of cell bodies positively modulated behavioral

read-outs of value. It was not known from that study

whether the opsin was expressed in neuron terminals

(Stauffer et al. 2016), but future research using next gen-

eration molecular tools in NHPs will permit projection

specific recording and perturbation of neural activity.

Conclusions

Electrophysiological recordings from dopamine cell bodies

in the midbrain have demonstrated that phasic dopamine

responses code reward prediction error, the difference

between received and predicted reward. Studies in awake,

behaving NHP have been critical to this endeavor, because

they are highly trainable and can provide a wealth of data

through in-depth exploration of single unit dopamine

activity. NHP possess a rich and complex behavioral

repertoire which has led to advanced understanding of the

role of dopamine in learning, movement, and decision

making. Not discussed here but worth mentioning, the

MPTP monkey model has been critical to the study of

neuronal and behavioral deficits associated with Parkin-

son’s disease. In short, the unique properties of NHP

models have made them essential to understanding mid-

brain dopamine function and dysfunction.

The findings reviewed here demonstrate that, even for

studying a relatively simple and evolutionarily old neural

structure like dopamine neurons, there are significant

advantages to using NHP models. Non-human primates

possess behavioral and anatomical characteristics that are

more similar to humans than any other experimental animal

model. From a behavioral standpoint, the cognitive capa-

bility and choice flexibility reviewed here and demon-

strated elsewhere (Eiselt and Nieder 2013; Stauffer et al.

2015) resembles human choice behavior. From an

anatomical perspective, NHP dopamine projections to the

striatum and frontal cortex are most analogous to those in

humans. The NHP striatum contains the densest concen-

tration of dopamine terminals (Lynd-Balta and Haber

1994a, b) and is functionally organized according to cor-

tical inputs (Alexander and DeLong 1985a, b; Alexander

et al. 1986). Likewise, the dopamine projections to the

frontal cortex are massively expanded in NHP, where they

primarily target executive and motor regions (Smiley et al.

1994; Williams and Goldman-Rakic 1993, 1998). For these

reasons, and because of the clinical relevance of dopamine

to numerous movement and mental health disorders

including but not limited to Parkinson’s disease, dystonia,

ADHD, OCD, psychosis, depression, and schizophrenia, it

is critical to maintain and advance behavioral neurophys-

iology in awake, behaving primates.

A new generation of molecular tools—including opto-

genetics and in vivo single cell imaging—has revolution-

ized how we ask questions and even what questions we can

ask. These technologies, however, have not been widely

incorporated into monkey neurophysiology studies.

Although progress is being made, as reviewed elsewhere in

this issue (Galvan et al. 2017), there are many technical

challenges impeding easy implementation of next genera-

tion molecular tools in NHP. Efficient light delivery, large-

scale viral infection, and the lack of genetically modified

NHP lines all pose significant challenges. Nevertheless,

recent developments, including red shifted opsins and

improved optical fibers (Acker et al. 2016), better record-

ing/stimulating devices (Yazdan-Shahmorad et al. 2016),

and virally mediated cell-type-specific ChR2 expression

(El-Shamayleh et al. 2017; Klein et al. 2016; Stauffer et al.

2016), point towards a promising future for optogenetic

NHP studies. These new technologies coupled with the

enormous and oft-demonstrated utility of the NHP model

should ensure continued focus on and research in this most

evolutionarily relevant experimental species.

Acknowledgements The authors would like to thank Andreea

Bostan, Jing He, and Amber Torrise for comments and discussion.

This work was supported by the University of Pittsburgh Brain

Institute and by the National Institutes of Health through the NIH

Director’s New Innovator Award 1DP2MH113095.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, distri-

bution, and reproduction in anymedium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

Acker L, Pino EN, Boyden ES, Desimone R (2016) FEF inactivation

with improved optogenetic methods. Proc Natl Acad Sci USA

113:E7297–E7306

Reward and value coding by dopamine neurons in non-human primates 571

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Aebischer P, Schultz W (1984) The activity of pars compacta neurons

of the monkey substantia nigra is depressed by apomorphine.

Neurosci Lett 50:25–29

Alexander GE, DeLong MR (1985a) Microstimulation of the primate

neostriatum. I. Physiological properties of striatal microex-

citable zones. J Neurophysiol 53:1401–1416

Alexander GE, DeLong MR (1985b) Microstimulation of the primate

neostriatum. II. Somatotopic organization of striatal microex-

citable zones and their relation to neuronal response properties.

J Neurophysiol 53:1417–1430

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of

functionally segregated circuits linking basal ganglia and cortex.

Annu Rev Neurosci 9:357–381

Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode

a quantitative reward prediction error signal. Neuron 47:129–141

Bayer HM, Lau B, Glimcher PW (2007) Statistics of midbrain

dopamine neuron spike trains in the awake primate. J Neuro-

physiol 98:1428–1439

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005)

Millisecond-timescale, genetically targeted optical control of

neural activity. Nat Neurosci 8:1263–1268

Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic

excitation of dopamine neurons in ventral VTA by noxious

stimuli. Proc Natl Acad Sci 106:4894–4899

Bromberg-Martin ES, Hikosaka O (2009) Midbrain dopamine

neurons signal preference for advance information about

upcoming rewards. Neuron 63:119–126

Bromberg-Martin ES, Matsumoto M, Hong S, Hikosaka O (2010) A

pallidus-habenula-dopamine pathway signals inferred stimulus

values. J Neurophysiol 104:1068–1076

Bunney BS, Aghajanian GK, Roth RH (1973) Comparison of effects

of L-dopa, amphetamine and apomorphine on firing rate of rat

dopaminergic neurones. Nature 245:123–125

Cachope R, Cheer JF (2014) Local control of striatal dopamine

release. Front Behav Neurosci 8:188

Caraco T, Martindale S, Whittam TS (1980) An empirical demon-

stration of risk-sensitive foraging preferences. Anim Behav

28:820–830

Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-

type-specific signals for reward and punishment in the ventral

tegmental area. Nature 482:85–88

Dahlstroem A, Fuxe K (1964) Evidence for the existence of

monoamine-containing neurons in the central nervous system.

I. Demonstration of monoamines in the cell bodies of brain stem

neurons. Acta Physiol Scand Suppl 232:231–255

Debreu G (1959) Cardinal utility for even-chance mixtures of pairs of

sure prospects. Rev Econ Stud 26:174–177

Dodson PD, Dreyer JK, Jennings KA, Syed ECJ, Wade-Martins R,

Cragg SJ, Bolam JP, Magill PJ (2016) Representation of

spontaneous movement by dopaminergic neurons is cell-type

selective and disrupted in parkinsonism. Proc Natl Acad Sci

113:E2180–E2188

Eiselt AK, Nieder A (2013) Representation of abstract quantitative

rules applied to spatial and numerical magnitudes in primate

prefrontal cortex. J Neurosci 33:7526–7534

El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD (2017)

Selective optogenetic control of Purkinje cells in monkey

cerebellum. Neuron 95:51–62

Enomoto K, Matsumoto N, Nakai S, Satoh T, Sato TK, Ueda Y,

Inokawa H, Haruno M, Kimura M (2011) Dopamine neurons

learn to encode the long-term value of multiple future rewards.

Proc Natl Acad Sci USA 108:15462–15467

Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, Uchida N (2015)

Arithmetic and local circuitry underlying dopamine prediction

errors. Nature 525:243–246

Fiorillo CD (2013) Two dimensions of value: dopamine neurons

represent reward but not aversiveness. Science 341:546–549

Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward

probability and uncertainty by dopamine neurons. Science

299:1898–1902

Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision

of reward prediction in dopamine neurons. Nat Neurosci

11:966–973

Fiorillo CD, Song MR, Yun SR (2013a) Multiphasic temporal

dynamics in responses of midbrain dopamine neurons to

appetitive and aversive stimuli. J Neurosci 33:4710–4725

Fiorillo CD, Yun SR, Song MR (2013b) Diversity and homogeneity

in responses of midbrain dopamine neurons. J Neurosci

33:4693–4709

Galvan A, Caiola MJ, Albaugh DL (2017) Advances in optogenetic

and chemogenetic methods to study brain circuits in non-human

primates. J Neural Transm (Vienna). doi:10.1007/s00702-017-

1697-8

Genest W, Stauffer WR, Schultz W (2016) Utility functions predict

variance and skewness risk preferences in monkeys. Proc Natl

Acad Sci USA 113:8402–8407

German DC, Manaye KF (1993) Midbrain dopaminergic neurons

(nuclei A8, A9, and A10): three-dimensional reconstruction in

the rat. J Comp Neurol 331:297–309

Gonon FG (1988) Nonlinear relationship between impulse flow and

dopamine released by rat midbrain dopaminergic neurons as

studied by in vivo electrochemistry. Neuroscience 24:19–28

Grace AA, Bunney BS (1983) Intracellular and extracellular electro-

physiology of nigral dopaminergic neurons—1. Identification

and characterization. Neuroscience 10:301–315

Guyenet PG, Aghajanian GK (1978) Antidromic identification of

dopaminergic and other output neurons of the rat substantia

nigra. Brain Res 150:69–84

Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R,

Vander Weele CM, Kennedy RT, Aragona BJ, Berke JD (2016)

Mesolimbic dopamine signals the value of work. Nat Neurosci

19:117–126

Hollerman JR, Schultz W (1998) Dopamine neurons report an error in

the temporal prediction of reward during learning. Nat Neurosci

1:304–309

Howe MW, Dombeck DA (2016) Rapid signalling in distinct

dopaminergic axons during locomotion and reward. Nature

535:505–510

Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM

(2013) Prolonged dopamine signalling in striatum signals

proximity and value of distant rewards. Nature 500:575–579

Jacob SN, Ott T, Nieder A (2013) Dopamine regulates two classes of

primate prefrontal neurons that represent sensory signals.

J Neurosci 33:13724–13734

Jacob SN, Stalter M, Nieder A (2016) Cell-type-specific modulation

of targets and distractors by dopamine D1 receptors in primate

prefrontal cortex. Nat Commun 7:13218

Klein C, Evrard HC, Shapcott KA, Haverkamp S, Logothetis NK,

Schmid MC (2016) Cell-targeted optogenetics and electrical

microstimulation reveal the primate koniocellular projection to

supra-granular visual cortex. Neuron 90:143–151

Kobayashi S, Schultz W (2008) Influence of reward delays on

responses of dopamine neurons. J Neurosci 28:7837–7846

Kobayashi S, Schultz W (2014) Reward contexts extend dopamine

signals to unrewarded stimuli. Curr Biol 24:56–62

Lak A, Stauffer WR, Schultz W (2014) Dopamine prediction error

responses integrate subjective value from different reward

dimensions. Proc Natl Acad Sci USA 111:2343–2348

Lak A, Stauffer WR, Schultz W (2016) Dopamine neurons learn

relative chosen value from probabilistic rewards. Elife 5:e18044

572 A. Alikaya et al.

123

http://dx.doi.org/10.1007/s00702-017-1697-8
http://dx.doi.org/10.1007/s00702-017-1697-8


Lak A, Nomoto K, Keramati M, Sakagami M, Kepecs A (2017)

Midbrain dopamine neurons signal belief in choice accuracy

during a perceptual decision. Curr Biol 27:821–832

Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM,

Deisseroth K,Malenka RC (2012) Input-specific control of reward

and aversion in the ventral tegmental area. Nature 491:212–217

Lammel S, Steinberg EE, Foldy C, Wall NR, Beier K, Luo L, Malenka

RC (2015) Diversity of transgenic mouse models for selective

targeting of midbrain dopamine neurons. Neuron 85:429–438

Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic

Parkinsonism in humans due to a product of meperidine-analog

synthesis. Science 219:979–980

Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH

(1987) The distribution of tyrosine hydroxylase-immunoreactive

fibers in primate neocortex is widespread but regionally specific.

J Neurosci 7:279–290

Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey

dopamine neurons during learning of behavioral reactions.

J Neurophysiol 67:145–163

Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino

acid decarboxylase. J Biol Chem 237:89–93

Lynd-Balta E, Haber SN (1994a) The organization of midbrain

projections to the striatum in the primate: sensorimotor-related

striatum versus ventral striatum. Neuroscience 59:625–640

Lynd-Balta E, Haber SN (1994b) The organization of midbrain

projections to the ventral striatum in the primate. Neuroscience

59:609–623

Lynd-Balta E, Haber SN (1994c) Primate striatonigral projections: a

comparison of the sensorimotor-related striatum and the ventral

striatum. J Comp Neurol 345:562–578

Machina MJ (1987) Choice under uncertainty: problems solved and

unsolved. J Econ Perspect 1:121–154

Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron

distinctly convey positive and negative motivational signals.

Nature 459:837–841

Matsumoto H, Tian J, Uchida N, Watabe-Uchida M (2016) Midbrain

dopamine neurons signal aversion in a reward-context-dependent

manner. Elife 5:e17328

McCoy AN, Platt ML (2005) Risk-sensitive neurons in macaque

posterior cingulate cortex. Nat Neurosci 8:1220–1227

Min HK, Ross EK, Jo HJ, Cho S, Settell ML, Jeong JH, Duffy PS,

Chang SY, Bennet KE, Blaha CD et al (2016) Dopamine release

in the nonhuman primate caudate and putamen depends upon site

of stimulation in the subthalamic nucleus. J Neurosci

36:6022–6029

Mirenowicz J, Schultz W (1994) Importance of unpredictability for

reward responses in primate dopamine neurons. J Neurophysiol

72:1024–1027

Mirenowicz J, Schultz W (1996) Preferential activation of midbrain

dopamine neurons by appetitive rather than aversive stimuli.

Nature 379:449–451

Montague PR, Dayan P, Sejnowski TJ (1996) A framework for

mesencephalic dopamine systems based on predictive Hebbian

learning. J Neurosci 16:1936–1947

Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004)

Coincident but distinct messages of midbrain dopamine and

striatal tonically active neurons. Neuron 43:133–143

Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006)

Midbrain dopamine neurons encode decisions for future action.

Nat Neurosci 9:1057–1063

Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004)

Dopamine neurons can represent context-dependent prediction

error. Neuron 41:269–280

Nomoto K, Schultz W, Watanabe T, Sakagami M (2010) Temporally

extended dopamine responses to perceptually demanding

reward-predictive stimuli. J Neurosci 30:10692–10702

Noudoost B, Moore T (2011a) Control of visual cortical signals by

prefrontal dopamine. Nature 474:372–375

Noudoost B, Moore T (2011b) A reliable microinjectrode system for

use in behaving monkeys. J Neurosci Methods 194:218–223

Olds J, Milner P (1954) Positive reinforcement produced by electrical

stimulation of septal area and other regions of rat brain. J Comp

Physiol Psychol 47:419–427

O’Neill M, Schultz W (2010) Coding of reward risk by orbitofrontal

neurons is mostly distinct from coding of reward value. Neuron

68:789–800

Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells

respond to predicted events during classical conditioning:

evidence for eligibility traces in the reward-learning network.

J Neurosci 25:6235–6242

Pasquereau B, Turner RS (2013) Limited encoding of effort by

dopamine neurons in a cost-benefit trade-off task. J Neurosci

33:8288–8300

Puig MV, Miller EK (2012) The role of prefrontal dopamine D1

receptors in the neural mechanisms of associative learning.

Neuron 74:874–886

Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning:

variations in the effectiveness of reinforcement and non

reinforcement. In: Black AH, Prokasy WF (eds) Classical

conditioning II: current research and theory. Appleton-Century-

Crofts, New York, pp 64–99

Romo R, Schultz W (1990) Dopamine neurons of the monkey

midbrain: contingencies of responses to active touch during self-

initiated arm movements. J Neurophysiol 63:592–606

Schluter EW, Mitz AR, Cheer JF, Averbeck BB (2014) Real-time

dopamine measurement in awake monkeys. PLoS One 9:e98692

Schultz W (1986) Responses of midbrain dopamine neurons to

behavioral trigger stimuli in the monkey. J Neurophysiol

56:1439–1461

Schultz W, Romo R (1987) Responses of nigrostriatal dopamine

neurons to high-intensity somatosensory stimulation in the

anesthetized monkey. J Neurophysiol 57:201–217

Schultz W, Romo R (1990) Dopamine neurons of the monkey

midbrain: contingencies of responses to stimuli eliciting imme-

diate behavioral reactions. J Neurophysiol 63:607–624

Schultz W, Ruffieux A, Aebischer P (1983) The activity of pars

compacta neurons of the monkey substantia nigra in relation to

motor activation. Exp Brain Res 51:377–387

Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey

dopamine neurons to reward and conditioned stimuli during

successive steps of learning a delayed response task. J Neurosci

13:900–913

Schultz W, Dayan P, Montague PR (1997) A neural substrate of

prediction and reward. Science 275:1593–1599

Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous

dopaminergic control of striatal synaptic plasticity. Science

321:848–851

Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1

dopamine receptor immunoreactivity in human and monkey

cerebral cortex: predominant and extrasynaptic localization in

dendritic spines. Proc Natl Acad Sci USA 91:5720–5724

Smith Y, Wichmann T, DeLong MR (2014) Corticostriatal and

mesocortical dopamine systems: do species differences matter?

Nat Rev Neurosci 15:63

Stark AK, Pakkenberg B (2004) Histological changes of the

dopaminergic nigrostriatal system in aging. Cell Tissue Res

318:81–92

Stauffer WR, Lak A, Schultz W (2014) Dopamine reward prediction

error responses reflect marginal utility. Curr Biol 24:2491–2500

Stauffer WR, Lak A, Bossaerts P, Schultz W (2015) Economic

choices reveal probability distortion in macaque monkeys.

J Neurosci 35:3146–3154

Reward and value coding by dopamine neurons in non-human primates 573

123



Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, Boyden ES,

Schultz W (2016) Dopamine neuron-specific optogenetic stim-

ulation in rhesus macaques. Cell 166(1564–1571):e1566

Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak

PH (2013) A causal link between prediction errors, dopamine

neurons and learning. Nat Neurosci 16:966–973

Studer A, Schultz W (1987) The catecholamine uptake inhibitor

nomifensine depresses impulse activity of dopamine neurons in

mouse substantia nigra. Neurosci Lett 80:207–212

Sutton R, Barto A (1998) Reinforcement learning: an introduction.

MIT Press, Cambridge

Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ

(2012) Striatal dopamine release is triggered by synchronized

activity in cholinergic interneurons. Neuron 75:58–64

Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward

value by dopamine neurons. Science 307:1642–1645

Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L,

Deisseroth K (2009) Phasic firing in dopaminergic neurons is

sufficient for behavioral conditioning. Science 324:1080–1084

Ungless MA, Grace AA (2012) Are you or aren’t you? Challenges

associated with physiologically identifying dopamine neurons.

Trends Neurosci 35:422–430

Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF

(2007) Inverted-U dopamine D1 receptor actions on prefrontal

neurons engaged in working memory. Nat Neurosci 10:376–384

von Neumann J, Morgenstern O, Kuhn HW, Rubinstein A (1944)

Theory of games and economic behavior (60th anniversary

commemorative edition). Princeton University Press, Princeton

Waelti P, Dickinson A, Schultz W (2001) Dopamine responses

comply with basic assumptions of formal learning theory. Nature

412:43–48

Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012)

Whole-brain mapping of direct inputs to midbrain dopamine

neurons. Neuron 74:858–873

Williams SM, Goldman-Rakic PS (1993) Characterization of the

dopaminergic innervation of the primate frontal cortex using a

dopamine-specific antibody. Cereb Cortex 3:199–222

Williams GV, Goldman-Rakic PS (1995) Modulation of memory

fields by dopamine D1 receptors in prefrontal cortex. Nature

376:572–575

Williams SM, Goldman-Rakic PS (1998) Widespread origin of the

primate mesofrontal dopamine system. Cereb Cortex 8:321–345

Yamada H, Tymula A, Louie K, Glimcher PW (2013) Thirst-

dependent risk preferences in monkeys identify a primitive form

of wealth. Proc Natl Acad Sci USA 110:15788–15793

Yazdan-Shahmorad A, Diaz-Botia C, Hanson TL, Kharazia V,

Ledochowitsch P, Maharbiz MM, Sabes PN (2016) A large-

scale interface for optogenetic stimulation and recording in

nonhuman primates. Neuron 89:927–939

Yelin R, Schuldiner S (1995) The pharmacological profile of the

vesicular monoamine transporter resembles that of multidrug

transporters. FEBS Lett 377:201–207

Yoshimi K, Kumada S, Weitemier A, Jo T, Inoue M (2015) Reward-

induced phasic dopamine release in the monkey ventral striatum

and putamen. PLoS One 10:e0130443

574 A. Alikaya et al.

123


	Reward and value coding by dopamine neurons in non-human primates
	Abstract
	Introduction
	Dopamine neurons code reward prediction error
	Dopamine activity reflects economic value
	Challenges and future research directions
	Functional diversity in dopamine neurons
	The relationship between behavior and striatal dopamine release
	The role of fast dopamine signals in the frontal cortex

	Conclusions
	Acknowledgements
	References




