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Abstract

Purpose of review—Interactions between neutrophils and platelets contribute to the 

progression of thromboinflammatory disease. However, the regulatory mechanism governing these 

interactions is poorly understood. The present review focuses on the crucial role of Ser/Thr protein 

kinase B (AKT)2-NADPH oxidase 2 (NOX2) signaling in regulating neutrophil and platelet 

activation and their heterotypic interactions under thromboinflammatory conditions.

Recent findings—Growing evidence has shown that platelets, leukocytes, and blood 

coagulation need to be considered to treat thromboinflammatory disease in which inflammation 

and thrombosis occur concurrently. In addition to plasma proteins and intracellular signaling 

molecules, extracellular reactive oxygen species (ROS) produced from activated leukocytes could 

be an important factor in the pathophysiology of thromboinflammatory disease. Recent studies 

reveal that AKT2-NOX2 signaling has critical roles in Ca2+ mobilization, ROS generation, 

degranulation, and control of the ligand-binding function of cell surface molecules, thereby 

promoting heterotypic cell–cell interactions in thromboinflammation. These findings have 

provided novel insights into attractive therapeutic targets for the prevention and treatment of 

thromboinflammatory disease.

Summary—Recent discoveries concerning molecular mechanisms regulating neutrophil–platelet 

interactions have bridged some gaps in our knowledge of the complicated signaling pathways 

exacerbating thromboinflammatory conditions.
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INTRODUCTION

Neutrophils are mainly responsible for innate immunity, whereas platelets are critical for 

hemostasis. Studies using real-time in vivo imaging techniques have demonstrated that 

neutrophil–platelet interactions on the activated endothelium result in microvascular 

Correspondence to Jaehyung Cho, PhD, 835 S. Wolcott Avenue, E403, Chicago, IL 60612, USA. Tel: +1 312 355 5923; fax: +1 312 
996 1225; thromres@uic.edu. 

Conflicts of interest
There are no conflicts of interest.

HHS Public Access
Author manuscript
Curr Opin Hematol. Author manuscript; available in PMC 2018 March 12.

Published in final edited form as:
Curr Opin Hematol. 2017 September ; 24(5): 460–466. doi:10.1097/MOH.0000000000000365.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



occlusion and tissue damage under thromboinflammatory conditions, including ischemia/

reperfusion injury [1,2■], transfusion-related acute lung injury [3,4], and sickle cell disease 

[4–6]. Despite high mortality rates in patients with thromboinflammatory disease, only a 

limited number of therapies are currently available. Thus, understanding the underlying 

mechanisms mediating neutrophil–platelet association might be of considerable importance 

for developing novel therapies. In this review, we will discuss the emerging understanding of 

the role for neutrophil and platelet AKT2-NADPH oxidase 2 (NOX2) signaling in the 

pathophysiology of thromboinflammation.

NEUTROPHIL–PLATELET INTERACTIONS IN THROMBOINFLAMMATION

Neutrophils are the first blood cells to be recruited to sites of inflammation. Initial neutrophil 

rolling over the inflamed endothelium is mediated by the interaction between selectins and 

their ligands [7]. Subsequently, activated neutrophil integrins, mainly αLβ2 and αMβ2, bind 

to their ligands such as intercellular adhesion molecule 1 and result in neutrophil adhesion 

and crawling. α4β1 in mouse neutrophils and α9β1 in human neutrophils also participate in 

neutrophil adhesion and transmigration through the interaction with vascular cell adhesion 

molecule 1 [8–10]. In the presence of chemoattractants or cytokines, crawling neutrophils 

rapidly transmigrate across the inflamed endothelium. Under sterile inflammatory 

conditions, adherent and crawling neutrophils exacerbate disease progression by releasing 

proinflammatory cytokines, interacting with platelets, and/or obstructing the vascular lumen. 

Unlike neutrophil-mediated inflammation occurring under low shear stress, platelet-

mediated arterial thrombosis occurs at sites of endothelial cell disruption or activation under 

high shear stress. Following arterial injury, platelets rapidly adhere to collagen and von 

Willebrand factor through the interaction with their receptors, leading to platelet activation 

and platelet–platelet aggregation. In addition to homotypic cell–cell interaction, adherent 

platelets also support neutrophil rolling and adhesion [11].

Regardless of blood shear, the receptors and ligands required for neutrophil–platelet 

association are similar. As key surface molecules, neutrophil P-selectin glycoprotein 

ligand-1 (PSGL-1) and αMβ2 integrin interact with platelet P-selectin and glycoprotein Ibα 
(GPIbα), respectively. Furthermore, neutrophil αMβ2 and αLβ2 integrins bind to platelet 

junctional adhesion molecule 3 and intercelullar adhesion molecule 2, respectively. Readers 

are referred to recent reviews on this subject [12,13]. Neutrophil–platelet interactions in 

vessels participate in a myriad of pathophysiological events such as neutrophil 

transmigration [4], endothelial cell permeability [14], vascular occlusion [2■,5], sterile 

tissue injury [2■], and thrombosis [15].

AKT2 AND NOX2 SIGNALING IN NEUTROPHIL FUNCTION

Stimuli, such as bacteria-derived N-formyl peptides (G-protein-coupled receptor ligands) 

and Fcg receptor ligation, activate neutrophil Ser/Thr protein kinase B (AKT) which 

regulates numerous cellular processes [16]. Full activation of AKT requires phosphorylation 

of two critical residues, Thr308 in the activation loop by phosphoinositide-dependent 

kinase-1 and Ser473 in the C-terminal hydrophobic region by the mammalian target of 

rapamycin complex 2. In addition, Ser477 and Thr479 were identified as novel 
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phosphorylation sites which promote AKT activation [17]. Activated AKT phosphorylates 

Ser/Thr residues on numerous substrates such as glycogen synthase kinase 3β [16]. Among 

three AKT isoforms, human and mouse neutrophils express AKT1 and AKT2. A previous 

study revealed that AKT2, but not AKT1, translocates to the leading edge of migrating 

neutrophils and phosphorylates p47phox, a key cytosolic component of the NOX2 complex 

[18]. Another study showed that AKT1 deletion enhances phosphorylation of signal 

transducer and transcription activator 1 in lipopolysaccharide-stimulated neutrophils and 

promotes bactericidal activity and acute lung injury, suggesting its negative role in 

neutrophil function [19]. Using intravital microscopy in mice deficient in each AKT 

isoform, we demonstrated that AKT2, but not AKT1 and AKT3, is important for neutrophil–

endothelial cell and neutrophil–platelet interactions during tumor necrosis factor (TNF)-α-

induced vascular inflammation [5]. Neutrophil AKT2 had no effect on PSGL-1 shedding and 

neutrophil rolling during inflammation but controlled the membrane translocation 

(degranulation) and activation of αMβ2 integrin required for the interaction of neutrophils 

with both endothelial cells and platelets (Fig. 1). Current investigations suggest that AKT2-

mediated Ca2+ mobilization may be involved in regulatory functions [5].

Several NOXs including NOX1, NOX2, NOX4, and NOX5 are expressed in human 

intravascular cells, and NOX-produced reactive oxygen species (ROS) have both 

homeostatic and pathological functions [20]. Among the isoforms, NOX2 is dominant in 

neutrophils, as shown in patients with chronic granulomatous disease [21] and NOX2-

deficient mice [22]. The NOX2 complex has two membrane molecules, gp91phox and 

p22phox, and cytosolic regulatory components, p47phox, p67phox, p40phox, and Rac1/2 (Fig. 

1). During neutrophil activation, p47phox is phosphorylated at eight to nine Ser residues by 

several protein kinases, including AKT2 and protein kinase C [18,23]. Phosphorylation and 

membrane translocation of p47phox is required for the recruitment of other cytosolic 

components and the enzymatic activity of NOX2. In addition to the phagocytic function, 

ROS produced from neutrophil and monocyte/macrophage NOX2 contribute to the 

pathophysiology of cardiovascular diseases, such as atherosclerosis, restenosis, and 

hypertension [20]. Furthermore, NOX2-produced ROS modulate a variety of cellular 

functions including endoplasmic reticulum stress, apoptosis, and autophagy [20]. The 

differential roles of ROS in cellular functions are likely to depend on the spatiotemporal 

dynamics of NOX-derived ROS generation.

Our recent studies using mice deficient in NOX2 and adoptive cell transfer demonstrated 

that NOX2 deletion does not affect neutrophil adhesion to TNF-α-inflamed endothelium but 

abrogates neutrophil–platelet association on the vessel wall [2■]. Interestingly, NOX2-

produced ROS are important for binding of talin1 to the cytoplasmic domain of the β2 

integrin subunit and the ligand-binding activity of αMβ2 integrin following neutrophil 

activation, but do not alter αMβ2 membrane translocation [2■]. NOX2 deletion has no effect 

on intracellular Ca2+ release but impaired Ca2+ influx through store-operated Ca2+ entry in 

stimulated neutrophils. Although it has been controversial whether neutrophils isolated from 

patients with chronic granulomatous disease exhibit a defect in cytosolic Ca2+ levels during 

cell activation or phagocytosis [24,25], our mouse studies provide evidence that AKT2-

mediated intracellular Ca2+ release contributes to the exocytosis-mediated membrane 

translocation of αMβ2 integrin during neutrophil activation, whereas Ca2+ influx promoted 
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by ROS produced from AKT2-activated NOX2 is involved in integrin activation. 

Furthermore, consistent with previous reports showing that H2O2 can oxidize Cys residues 

on phosphatases and impair their activities [26], we found that NOX2-generated ROS 

attenuate the activity of phosphatase and tensin homolog and conversely enhance the activity 

of AKT and its downstream kinases upon agonist stimulation [2■]. Therefore, NOX2-

produced ROS are required to activate a feed-forward mechanism of the AKT2 signaling 

pathway by inhibiting the activity of phosphatases. A recent report showed that neutrophil-

platelet interactions can induce neutrophil extracellular trap (NET) formation under non-

septic conditions [27■■]. Because NOX2-produced ROS are critical for NETosis [28], it 

would be of interest to study the role of AKT2-NOX2 signaling in NETosis.

AKT2 AND NOX2 SIGNALING IN PLATELET FUNCTION

Human and mouse platelets express all three AKT isoforms which have overlapping but 

distinct roles during platelet activation [29–31]. Although it is not a dominant isoform in 

platelets, AKT1 is crucial for Ca2+ mobilization, granule secretion, and platelet aggregation 

following stimulation with low concentrations of thrombin and participates in hemostasis 

[29]. We and others showed that AKT2 deletion impairs granule secretion, Ca2+ release 

from intracellular stores but not Ca2+ influx, fibrinogen binding, and platelet aggregation in 

response to low concentrations of thrombin and thromboxane A2 and reduces arterial 

thrombosis without affecting the bleeding time [5,30]. Although earlier work reported the 

absence of AKT3 in platelets [32], a later study identified AKT3 as a major AKT isoform 

that promotes granule secretion and platelet aggregation after low concentrations of 

thrombin and thromboxane A2 and participates in in-vivo thrombus formation [31]. Using a 

platelet–neutrophil aggregation assay under conditions mimicking blood shear, we reported 

that all AKT isoforms in platelets regulate the interaction with neutrophils by promoting the 

surface exposure of P-selectin, which binds to neutrophil PSGL-1 [5]. Nevertheless, this 

study using isolated cells could not explain our findings that AKT2, but not AKT1 or AKT3, 

knockout mice exhibited a remarkable reduction in neutrophil–platelet interactions during 

vascular inflammation [5]. The cell aggregation assay using AKT1- or AKT2-null 

neutrophils further showed that neutrophil AKT2 enhances the ligand-binding activity of 

αMβ2 integrin, a counter receptor for platelet GPIbα, and promotes neutrophil–platelet 

aggregation [5]. Therefore, these results suggest the contribution of both platelet and 

neutrophil AKT2 to the cell–cell interaction. Because AKT2 gene is associated with platelet 

hyperreactivity in genome-wide meta-analyses [33], these studies strongly suggest that 

AKT2 could be an attractive therapeutic target to treat thromboinflammatory disease.

Compared to neutrophil NOX2, platelet NOX1 and NOX2 produce low amounts of ROS. A 

study using a NOX1 inhibitor and NOX2 knockout mice suggested that platelet NOX1, but 

not NOX2, is key for ROS production following stimulation with collagen-related peptide 

(CRP), a GPVI ligand and that neither NOX1 nor NOX2 regulates CRP-induced granule 

secretion and platelet aggregation [34]. However, using mice deficient in NOX1 or NOX2, 

Delaney et al. demonstrated a distinct role for NOX1 and NOX2 in platelet function: both 

NOX1 and NOX2 promote platelet activation and aggregation induced by a low 

concentration of thrombin, whereas only NOX2 is crucial for platelet functions following 

stimulation with CRP [35■]. The discrepancy between the two studies may result from the 
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concentration of agonists used and off-target effects of the NOX1 inhibitor. Interestingly, 

only platelet NOX2 has an important role in laser-induced arteriolar thrombus formation 

without prolonging tail bleeding times [35■]. Using intravital microscopic studies in NOX2 

knockout mice combined with adoptive cell transfer, we reported that platelet NOX2 is also 

important for neutrophil-platelet interactions during TNF-α-induced vascular inflammation 

by promoting P-selectin exposure and the ligand-binding function of GPIbα (Fig. 1) [2■]. 

These results indicate that the low amount of platelet NOX2-mediated ROS is still important 

for the progression of thromboinflammation, and suggest that the local redox environment is 

crucial for neutrophil–platelet interactions.

CLINICAL IMPLICATIONS

Ischemia reperfusion injury

Animal models of stroke induced by middle cerebral artery occlusion have been utilized to 

understand the pathophysiological mechanism of ischemic stroke. During ischemia, blood 

cells, such as platelets and leukocytes, adhere to the activated endothelium. Reperfusion 

injury following ischemia induces leukocyte transmigration into the brain parenchyma, 

resulting in tissue damage because of the release of granular molecules and the production 

of ROS and cytokines [36]. Inhibition or deletion of GPIbα and αMβ2 integrin, but not 

αIIbβ3, reduces infarct volumes and improves neurological status following I/R injury in 

animals [37,38], suggesting that both platelets and leukocytes, but not platelet aggregation 

per se, have a pathological role in ischemic stroke. Because ROS-mediated reperfusion 

injury is crucial for disease progression, the role of NOXs in stroke has been evaluated [39]. 

A study using NOX2 bone marrow chimeric mice suggested that ROS generated from blood 

cell NOX2 are responsible for tissue damage during ischemic stroke [40]. Our study showed 

that platelet and neutrophil NOX2-produced ROS control the function of cell surface 

molecules essential for neutrophil–platelet interactions, thereby participating in the 

pathophysiology of hepatic ischemia reperfusion (I/R) injury, another model of 

thromboinflammatory disease [2■]. NET initiates inflammatory responses and induces organ 

damage during hepatic I/R injury [41■■]. Since ROS generated from neutrophil NOX2 are 

required for NET formation [28], these results support the long-term premise that NOX2 

could be a therapeutic target for thromboinflammatory disease [21]. However, it remains 

unknown whether patients with chronic granulomatous disease are protected from ischemic 

stroke and other thrombotic diseases.

Although AKT has been speculated as a signaling molecule in the pathogenesis of ischemic 

stroke, little information is available to define a direct role for AKT. A study using AKT1 

knockout mice revealed that AKT1 does not affect the infarct induced by middle cerebral 

artery occlusion, presumably due to the compensatory effect of other AKT isoforms in the 

knockout mice [42]. However, lentivirus-mediated overexpression of constitutively active 

AKT1 or AKT3 diminished neuronal cell death after ischemia-induced stroke in rats [43]. 

Future studies are needed to determine the precise role for each AKT isoform in the 

pathophysiology of stroke.
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Sickle cell disease

Sickle cell disease (SCD) is an inherited blood disorder, which results in hemolysis of red 

blood cells, oxidative stress, endothelial cell activation, and chronic inflammation [44]. 

Vaso-occlusive pain crisis (VOC), a hallmark of SCD, is mediated by intravascular cell–cell 

aggregation and increases mortality in SCD patients. Although stem cell therapy is a 

potential cure for the patients, there are major obstacles such as the lack of suitable donors 

and graft-versus-host disease [45]. A recent preclinical study using CRISPR/Cas9 

demonstrated efficient correction of Glu6Val mutation in CD34+ hematopoietic stem/

progenitor cells derived from SCD patients [46], which requires future clinical studies to 

evaluate the benefit and risk of the genome editing therapies. To treat acute VOC, many 

drugs blocking platelet and neutrophil functions are in clinical trials [44]. Although 

hydroxyurea is currently the only FDA-approved drug treatment for SCD, the patients 

undergoing hydroxyurea therapy still suffer from VOC. Recent clinical studies with 

rivipansel (a pan selectin inhibitor) or crizanlizumab (an antibody against P-selectin) 

demonstrated that inhibition of the leukocyte–endothelial cell interaction attenuates VOC in 

patients with SCD [47,48]. We reported that the basal level of AKT phosphorylation is 

enhanced in neutrophils and platelets isolated from patients with SCD, compared with those 

from healthy donors and that treatment with an AKT2-specific inhibitor attenuates 

aggregation of platelets and neutrophils of patients with SCD in vitro and blocks platelet–

neutrophil aggregation in microvessels of TNF-α-challenged SCD mice, improving blood 

flow rates [5]. Importantly, co-administration of hydroxyurea and an AKT2-specific 

inhibitor increases the plasma level of nitric oxide, which is protective against oxidative 

stress, and inhibits AKT2 phosphorylation in neutrophils and platelets, thereby efficiently 

reducing cell–cell aggregation in vessels and improving survival in TNF-α-challenged SCD 

mice [6]. Similar beneficial effects were also observed after oral administration of 

hydroxyurea and ARQ 092, a highly selective, orally available AKT inhibitor in SCD mice 

[49■]. Because heme derived from the hemolysis of red blood cells induces AKT 

phosphorylation in neutrophils [50], our recent finding warrants further clinical studies of 

this drug to determine whether AKT specific inhibitors could be novel therapies for the 

treatment of VOC in patients with SCD or a supplement to hydroxyurea therapy. Cell-free 

hemoglobin binds and consumes nitric oxide [51]. Further, extracellular heme induces 

NETosis [52] and activates the inflammasome, presumably through NOX2-generated ROS 

in leukocytes [53]. Although apocynin, a nonspecific NOX inhibitor, reduces ROS-mediated 

oxidative stress in SCD mice [54], future studies are needed to examine whether NOX2 is 

the major source of ROS generation in patients with SCD and participates in VOC.

Transfusion-related acute lung injury

Transfusion-related acute lung injury (TRALI) is the major cause of mortality related to 

blood transfusion, but there is no effective therapy to treat these patients [55]. Disruption of 

the lung endothelial barrier by activated neutrophils and inflammatory responses are critical 

for initiating TRALI. In addition, growing evidence shows that neutrophil-platelet 

interactions may contribute to disease progression. Studies using mice challenged with both 

lipopolysaccharide and an antibody against major histocompatibility complex I revealed that 

deletion of αMβ2 integrin or inhibition of PSGL-1 or depletion of platelets or neutrophils 

improved survival [4]. Treatment of mice with aspirin reduced TRALI and mortality, but 

Li and Cho Page 6

Curr Opin Hematol. Author manuscript; available in PMC 2018 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhibition of αMβ2 integrin had no beneficial effect [3,56]. Furthermore, NETs were 

observed in the plasma and lungs of humans and mice with TRALI [57], suggesting that 

targeting NETosis may be a novel therapy for the treatment of TRALI. Consistent with the 

finding that ROS are critical for NETosis [28], NOX2-generated ROS contribute to the 

progression of TRALI [58]. It would be of interest to investigate the role for AKT2-NOX2 

signaling in the pathophysiology of TRALI.

CONCLUSION

Multiple groups have studied the mechanisms regulating neutrophil–platelet interactions 

under different disease conditions. In this review, we summarized the emerging 

understanding of AKT2-NOX2 signaling in neutrophil and platelet activation and the cell–

cell interaction under thromboinflammatory conditions. Recent studies have raised several 

questions: Do endothelial cell AKT and NOX-generated ROS have a role in neutrophil–

platelet interactions in thromboinflammatory disease? Are other NOX isoforms in 

intravascular cells important for neutrophil–platelet interactions? Do ROS act as signaling 

molecules or directly oxidize neutrophil and platelet receptors? Understanding the 

underlying mechanisms of neutrophil–platelet interactions would help identify potential 

therapeutic targets for the prevention and treatment of thromboinflammatory disease.
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KEY POINTS

• Neutrophil–platelet interactions participate in the progression of 

thromboinflammatory disease.

• AKT2 and NOX2-generated ROS control the function of neutrophil and 

platelet surface molecules required for the cell–cell interaction.

• Specific inhibitors of AKT and NOX2 could be potential therapies for the 

treatment of thromboinflammatory disease.
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FIGURE 1. 
AKT2-NOX2 signaling regulates neutrophil–platelet interactions in thromboinflammation. 

During neutrophil activation, phosphorylated and activated AKT2 (AKT2-p) promotes Ca2+ 

release and the membrane translocation and activation of αMβ2 integrin. Furthermore, 

AKT2 phosphorylates p47phox and activates the NOX2 complex, producing ROS. Neutrophil 

NOX2-generated ROS affect Ca2+ influx, and H2O2, a cell-diffusible ROS, triggers 

neutrophil NET formation and inhibits the activity of phosphatases which activates a feed-

forward mechanism to amplify AKT2 signaling. In platelets, activated AKT2, along with 

other AKT isoforms, increases P-selectin exposure by degranulation. Platelet NOX2 

generates ROS upon glycoprotein VI (GPVI) or G-protein-coupled receptor (GPCR) agonist 

stimulation and regulates intracellular Ca2+ release and the ligand-binding function of 

GPIbα, thereby enhancing neutrophil–platelet interactions. AKT, Ser/Thr protein kinase B.
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