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Abstract

Nisin is a complex lanthipeptide that has broad spectrum antibacterial activity. In efforts to 

broaden the structural diversity of this ribosomally synthesized lantibiotic, we now report the 

recombinant expression of Nisin variants that incorporate non-canonical amino acids (ncAAs) at 

discrete positions. This is achieved by expressing the nisA structural gene, cyclase (nisC) and 

dehydratase (nisB), together with an orthogonal nonsense suppressor tRNA/aminoacyl-tRNA 

synthetase pair in E.coli. A number of ncAAs with novel chemical reactivity were genetically 

incorporated into NisA, including an α-chloroacetamide-containing ncAA which allowed for the 

expression of Nisin variants with novel macrocyclic topologies. This methodology should allow 

for the exploration of lanthipeptide variants with new or enhanced activities.

Graphical abstract

The lanthipeptides are a subclass of a large family of ribosomally synthesized and post-

translationally modified macrocyclic peptides (RiPPs).1 Members that possess antibacterial 

activity are known as lantibiotics,2 and are defined by characteristic lanthionine or 

methyllantionine thioether bridges that impart backbone rigidity. The most studied member 

of the lanthipeptides, Nisin A, depicted as its prepeptide or mNisA (Figure 1), has been used 

as a food preservative for the past fifty years.3 It features multiple dehydrated amino acids 

arising from the activity of a dehydratase (NisB) on serine (Ser) and threonine (Thr) 

residues, and five thioether crosslinks (rings A, B, C and D/E) formed by a cyclase (NisC) 

that catalyzes thia-Michael reactions.4 Nisin exerts its antimicrobial activity through its N-

terminal domain that recognizes and sequesters the pyrophosphate moiety of Lipid II, and 

the C-terminal domain which inserts into the outer membrane.5-6 This dual mode of action, 

directed towards non-proteinaceous bacterial targets, has slowed the development of 
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resistant strains.7 However, its poor aqueous solubility and pH sensitivity have delayed its 

use as a human therapeutic.8

To further explore the potential utility of this complex natural product, various efforts have 

been undertaken to generate variants of Nisin and other lantibiotics,9 including the use of 

solid phase synthesis,10-12 biomimetic approaches,13 the in vitro biosynthesis of lanthionine-

containing peptides14-15 and an in vitro mutasynthetic approach.16

To expand the number of amino acids building blocks that can be biosynthetically 

incorporated into lantipeptides, we now report that orthogonal nonsense suppressor tRNA/

aminoacyl-tRNA synthetase pairs (tRNA/aaRS) can be used to site-specifically insert ncAAs 

into Nisin in bacteria.17

To date, two examples of ncAA incorporation into lanthipeptides using nonsense codon 

suppression have been reported by van der Donk.18-19 Kuipers also reported the 

incorporation of tryptophan analogues into Nisin using an auxotrophic strain.20 With the 

goal of creating Nisin variants through biomimetic cyclization reactions (Figure 2), we built 

upon the former system18 and began by recombinantly expressing wild type (WT) NisA in 

bacterial strains in which we have previously genetically encoded a large number of ncAAs. 

The nisA structural gene together with the dehydratase (nisB), were inserted into a pRSF-1 

vector to afford pRSF-NisA. The cyclase, nisC, was inserted into a pACYC backbone to 

afford pACYC-NisC. The Ser codon at position 5 of nisA was then mutated to the amber 

stop codon TAG (Ser5TAG), and the resulting plasmid (pZC1) was co-expressed, along with 

pACYC-NisC, and a pULTRA plasmid harboring either a polyspecific M.jannaschii 
tRNATyr/TyrRS or M.barkeri pyrrolysine tRNAPyl/PylRS.21 We then attempted to substitute 

a number of ncAAs containing diverse side chains including keto, azide and acetylene 

groups for Ser5 (Figure 3A). SDS-PAGE and MS analysis (Figure S1-S3) confirmed 

incorporation of pAcF, pAzF and ProcK at position 5 in yields ranging from 3 to 5 mg/L 

(Figure 3B). Although promising, in our hands the expression system afforded incomplete 

dehydration of Ser and Thr residues, giving rise to a distribution of products.

To solve this issue, we capitalized on the recent finding that the dehydratase NisB requires 

glutamylated tRNA (tRNAGlu) in order to acylate the Ser/Thr side chains of NisA with 

glutamate prior to dehydration.22 We reasoned that overexpressing tRNAGlu could improve 

the dehydration efficiency. To test this notion, we constructed a plasmid (pZC2) bearing 

E.coli tRNAGlu/GluRS downstream of a proK constitutive promoter encoded on pACYC-

NisC. Co-expression of pZC2 with pRSF-NisAWT, showed a substantial increase in 

dehydration efficiency (WT mNisA = 7299 Da), confirming our hypothesis (Figure S4, S5).

Given this optimized system, we next explored the possibility of taking advantage of 

electrophilic ncAAs and the innate reactivity of cysteine residues present in NisA, to 

generate Nisin variants with altered ring structures. We began by incorporating mildly 

reactive ncAAs23 in place of Ser/Thr residues at lanthionine ring junctions, starting with the 

ring A Ser3TAG mutant (pZC3). Fluoro-pAcF (Figure 3A) was incorporated into NisA at 

residue 3 in a yield of 2 mg/L. MS analysis showed a mass (7418 Da) corresponding to the 

loss of fluoride (Figure S6). This result, although encouraging, was somewhat cryptic due to 
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the similar molecular weight of fluorine and water. Because water acts as a leaving group 

during precursor peptide maturation, an extra post-translational dehydration would result in 

a product with a similar mass as that of the desired, cyclized peptide. This led us to 

reconsider the ncAA to be used.

We reasoned that a chloroacetamide ncAA24 (Figure 3A, 1) would be the best compromise 

in terms of reactivity and leaving group MW for mass analysis. Gratifyingly, when 1 was 

incorporated into ring A of mNisA (Ser3TAG), MS analysis showed a mass of 7433 Da 

[M/z]+1, consistent with a fully dehydrated and cyclized peptide containing a novel ring A 

thioether architecture. We next investigated whether this approach could be extended to 

other ring junctions as a general strategy towards lanthipeptides diversification. To this end, 

the remaining dehydratable residues (Ser/Thr) involved in ring cyclization were individually 

point mutated to TAG and the resulting constructs co-transformed with pULTRA and pZC2. 

Upon expression and isolation of the prepeptides, SDS-PAGE (Figure 4A) and mass analysis 

revealed cyclization of thioether rings A, B, and C, corresponding to the Ser3TAG, Thr8TAG 

and Thr13TAG mutations, respectively, in yields of 1.5 to 3 mg/L (Figure 4B, C and D, 

Figure S7 to S9). Efforts to create intertwined thioether ring D/E (Thr23TAG and 

Thr25TAG), were troublesome giving rise to a mixture of desired and truncated products at 

Lys22.

Our next goal was to further characterize the newly formed bond in the Ser3 to 1 mutant. To 

simplify analysis, we decided to generate a monocyclic Nisin. To this end, we constructed 

two plasmids emanating from the common vector, NisA Ser3TAG (pZC3). In the first 

construct (pZC4), we sequentially mutated all cysteine residues to Ala (Cys7, 11, 19, 26, 

28Ala). The second construct (pZC5) retained Cys7 and all the remaining Cys were mutated 

to Ala (Cys11, 19, 26, 28Ala). Each construct was individually co-transformed with the 

accessory plasmids (pULTRA, pZC2), expressed in the presence of 1, and the mature 

peptides were isolated. MS analysis confirmed cyclization only for the peptide bearing 

reactive Cys7 (Figure S11). In contrast, the fully mutated Cys to Ala construct showed a MS 

spectrum for a peptide carrying the unreacted chloroacetamide. Interestingly, this non-

cyclized peptide showed an extra dehydration event that was ablated upon Ser29 to Ala 

mutation in the core peptide (Figure S10). This observation is in accordance with the 

hypothesis that dehydration and cyclization events in Nisin biosynthesis are coupled, and 

that precise PTM control depends upon conformationally restricted substrates.25-26

To obtain NMR evidence for the novel thioether linkage, we synthesized isotopically-labeled 

ncAA (1) bearing a 13C at the reaction center (2-chloroacetamide position) using 

chloroacetyl chloride-2-13C as a starting material. Incorporation of 13C-1 into Nisin mutants 

should afford chemical shift differences between cyclized and non-cyclized product. As a 

control experiment, we recorded the 13C-NMR spectrum of labeled 1, and then treated it 

with excess glutathione (GSH) to form a thioether bond as a standard. A substantial 

chemical shift difference between the starting ncAA-chloroacetamide (42.78 ppm) and the 

GSH-displaced product 2 (36.09 ppm), was observed (Figure 4E). We then expressed and 

HPLC purified mutants Ala7, Ala11, Ala19, Ala26, Ala28 and Cys7, Ala11, Ala19, Ala26, 

Ala28 encoded on pZC4 and pZC5, respectively, incorporating 13C-(1). The peptide lacking 

all cysteines showed 13C NMR peaks consistent with the presence of a chloroacetamide 
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(43.16 ppm) and its GSH adduct. On the other hand, the peptide harboring reactive Cys7, 

showed a 13C resonance (36.84 ppm) consistent with the standard thioether 2, confirming 

the macrocyclization event (Figure 4F). The additional thioether resonance (36.30 ppm) is 

likely due either to GSH addition to 1, with Cys7 cyclizing to dehydroalanine 5 (Dha5), or 

GSH addition to Dha5 of the expanded cyclic peptide. Upon trypsin-mediated cleavage of 

the leader peptide, Nisin analogues bearing novel thioeter linkages were tested for 

antibacterial activity. Unfortunately, while a halo assay against M. luteus indicated that this 

Nisin ring variants are devoid of antibacterial activity (while WT Nisin retained activity) 

(Figure S19), the possibility of constructing non-natural lanthipeptides with positional 

precision should allow for the interrogation of broader chemical space.

In summary, we genetically incorporated diverse ncAAs containing either biorthogonal 

handles or mildly reactive functional groups into Nisin A. NMR and tandem MS 

spectroscopy confirmed the formation of a novel ring A thioether bond for one of the 

mutants. We are currently probing various ring topologies with the aim to restore 

biologically active conformations. The ability to diversify lanthipeptide macrocycles at the 

ribosomal stage may lead to improvements in their pharmacological properties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Wild type mNisA. Highlighted thioether rings and key residues for this study (residues 

30-34 omitted for simplicity).
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Figure 2. 
Altered ring structures of Nisin created by ncAA incorporation.
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Figure 3. 
(A) ncAAs used in this study (B) Biorthogonal chemical handles incorporated into Ser5TAG 

NisA.
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Figure 4. 
(A) SDS-PAGE mNisA ring variants incorporating 1. Lane 1: ring A, lane 2: ring B, lane 3: 

ring C. (B-D) QTOF-ESI for mNisA ring variants incorporating 1: (B) Ser3TAG, ring A. (C) 

Thr8TAG, ring B. (D) Thr13TAG, ring C. (E)13C-NMR of labeled 1 (red) and 2 (green). (F) 
13C-NMR mNisA Cys to Ala mutants incorporating labeled 1, non-cyclized (red) and 

cyclized (green) peptides. Asterisks indicate GSH addition products.
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