
A novel registration-based semi-automatic mandible 
segmentation pipeline using computed tomography images to 
study mandibular development

Ying Ji Chuang, B.S. [Associate Research Specialist],
Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison

Benjamin M. Doherty, B.S. [Associate Research Specialist],
Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison

Nagesh Adluru, Ph.D. [Associate Scientist],
Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison

Moo K. Chung, Ph.D. [Associate Professor], and
Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison

Dept of Biostatistics and Medical Informatics, University of Wisconsin-Madison

Houri K. Vorperian, Ph.D. [Senior Scientist and Director]
Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison

Abstract

Objective—We present a registration-based semi-automatic mandible segmentation (SAMS) 

pipeline designed to process a large number of computed tomography studies to segment three-

dimensional (3D) mandibles.

Method—The pipeline consists of a manual preprocessing step, an automatic segmentation step, 

and a final manual post-processing step. The automatic portion uses a nonlinear diffeomorphic 

method to register each preprocessed input CT test scan on 54 reference templates aged birth to 19 

years. This creates 54 segmentations, which are then combined into a single composite mandible.

Results—This pipeline was assessed using 20 mandibles from CT studies ages 1–19 years, 

segmented using both SAMS-processing and manual segmentation. Comparisons between the 

SAMS-processed and manually-segmented mandibles revealed 97% similarity agreement with 

comparable volumes. The resulting 3D mandibles were further enhanced with manual post-

processing in specific regions.

Conclusions—Findings are indicative of a robust pipeline that reduces manual segmentation 

time by 75% and increases the feasibility of large-scale mandibular growth studies.
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1. Introduction

With the advent of modern medical imaging technologies, automatic and semi-automatic 

methods have been developed to segment mandible volumes from medical imaging studies. 

Such computer-assisted segmentation methods help reduce the time needed to create precise 

and accurate 3D mandible models, and can be particularly beneficial for large-scale studies. 

These methods have been devised for application in dental surgical/treatment planning1,2, 

orthodontic diagnoses3, and dental forensics4 to reconstruct three dimensional (3D) 

mandible models from imaging studies such as panoramic x-rays, cone-beam computed 

tomography (CBCT), and multi-detector computed tomography (MDCT).

To study mandibular growth, a handful of studies have used 3D models by manually 

segmenting mandibles from MDCT.5–8 Most of these studies have used small age ranges and 

a restricted sample size. However, to enable a lifespan perspective on sex-specific 

mandibular growth including changes in surface area or regions of bone deposition or 

resorption9, a large number of 3D mandible models covering the entire age range is needed. 

Such a perspective can also help establish a developmental age and sex-specific normative 

reference, including a range of variability in typical growth, for use in diagnostics and/or 

treatment such as for application in orthodontic treatment planning10 or craniofacial surgical 

planning.11 To our knowledge, there has been only one mandibular development study 

utilizing reconstructed 3D mandibles.6

The heterogeneity of the mandibular morphology across individuals and age groups makes 

3D mandible models difficult to extract from CT studies. The temporomandibular joint 

(TMJ) and dentition are often omitted from computer-assisted segmentation techniques due 

to difficulties in separating the condyle from the temporal bone and the dentition from its 

imaging artifacts. Since the growth and shifting of these structures affect mandibular growth 

and displacement, it is important to include them in mandibular growth studies and to 

establish a segmentation protocol that can segment the entire mandible.12,13

Given the morphological variations across individuals, manual segmentation of the entire 

mandible to generate 3D mandible models has been considered the ‘gold standard’ in both 

clinical and research settings.4 With this method, a human segmenter extracts the mandible 

from CT images through manual editing after 3D renderings or on a slice-by-slice basis. 

Manual segmentation requires 2–3 hours per mandible for a trained researcher to produce a 

complete 3D mandible model, and it is susceptible to inter- and intra-researcher variability. 

Thus, as noted earlier, manual segmentation is suboptimal for studying mandibular growth 

and development where large sample sizes are needed.

Both automatic and semi-automatic mandible segmentation techniques reduce potential 

human variability and error and speeds up the 3D segmentation process because human 
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manual intervention or supervision is either not required (automatic segmentation) or limited 

(semi-automatic) to manual correction of segmentation errors.3,14–15 However, mandibular-

focused automatic segmentation techniques, such as threshold-based, region growing, gray-

level detection, active contour models, and statistical shape models (SSMs), often produce 

inaccurate segmentation of the teeth and the condyles, and some demonstrate only partial 

mandible delineation.2,15–17 Similarly, the available semi-automatic techniques are not 

particularly robust.3,14

Studies using automatic or semi-automatic mandible segmentation of images acquired using 

CBCT16–18 produce 3D models that are prone to low image quality and artifacts. In contrast, 

MDCT generates 3D models that show precise bony structures with high resolution and 

good signal-to-noise ratio, and this technology has been preferrentially used in 

developmental studies to assess morphological changes in the mandible.

This article presents a straightforward, easy-to-build semi-automatic mandible segmentation 

(SAMS) pipeline to generate accurate 3D models from MDCT. The aim of this pipeline is to 

generate a large number of 3D mandible models to study multidimensional mandibular 

development across the first two decades of life. We refer to this pipeline as semi-automatic 

because, although the majority of the processing is accomplished automatically, the initial 

(pre-processing) and final (post-processing) steps are manual. To demonstrate the utility of 

this pipeline, we present quantitative and qualitative assessments of the accuracy of the 

automatic portion of this pipeline in segmenting the mandible.

2. Methods

2.1 Image Acquisition / Dataset

An extant medical imaging database that covers the entire lifespan was used to establish the 

dataset that covers the first two decades of life to design and test this semi-automatic 

mandible segmentation method. The imaging database consisted of imaging studies 

collected retrospectively by our Vocal Tract Development Laboratory (VTLab), following 

University of Wisconsin–Madison Institutional Review Board (IRB) approval, with the aim 

of studying the growth of oral and pharyngeal structures in typically and atypically 

developing individuals. All imaging studies were stored in Digital Imaging and 

Communications in Medicine (DICOM) format, and all CT studies were acquired using 

General Electric helical CT scanners. Additional detail on the imaging database is provided 

in Vorperian et al.19 and Kelly et al.20 The dataset selected from the imaging database used 

in this study included 518 head and neck MDCT imaging studies from 266 typically 

developing patients, ranging in age from birth to 20 years, who were imaged for medical 

reasons not affecting the growth and development of the head and neck, and who were 

determined to have Class I bite (normognathic). All imaging studies in this dataset were 

visually inspected to ensure that the scan captured the whole mandible geometry while 

tolerating some dental artifacts. Additional inclusion criteria included: (1) slice thickness 

smaller or equal to 2.5 mm, (2) 14.0–22.0 cm FOV, and (3) 512 × 512 matrix size.

From this dataset, two groups of scans were formed. The first group (Group I) was used to 

create reference templates for the semi-automatic segmentation process. Group I consisted 
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of 54 imaging studies (27 males / 27 females) that were carefully selected to represent an 

equal distribution of age and sex from age 13 months to 18 years, 8 months, and deemed to 

be an adequate number for reasonable pipeline processing speed without compromising 

segmentation accuracy. A second group of scans (Group II) was used to test the accuracy of 

the semi-automatic segmentation process. Group II consisted of 20 imaging studies (10 

males / 10 females) that were randomly selected from the same dataset, after excluding cases 

selected for Group I, to equally represent both sexes in the age range of 0–20 years.

2.2 Manual Segmentation

Two-dimensional (2D) axial slices of all scans in Groups I and II were first reconstructed 

into 3D cubic volumes by a trained researcher using the Analyze 12.0 software package 

(AnalyzeDirect, Overland Park, KS).21 The reconstructed 3D cubic volume is referred to as 

the “reconstructed CT scan.” In this reconstruction, the anatomic geometry is preserved. The 

Volume Render and Volume Edit modules in Analyze 12.0 software were used to manually 

segment each 3D mandible model from the reconstructed CT scan. A global threshold that 

excludes all non-osseous tissues and provides the best visualization of mandible surface was 

determined and applied to each of the reconstructed CT scans as described in Whyms et al.22 

and Kelly et al.20 The 3D mandible models were then extracted from the skeleton using 

Analyze 12.0. Cases with image artifacts were further edited slice-by-slice using multiplanar 

views (coronal, sagittal, and axial). These modules were also used to patch holes in the 

mandible models. Manually segmented mandibles and the reconstructed CT scans were then 

saved in Analyze75 [.hdr/.img] file format for the initial preprocessing step described in 

section 2.4.1. For additional details on segmentation modules and criteria, see Whyms et al.
22 and Kelly et al.20

2.3 Reference Template Preparation

Each case in Group I – reference templates for this pipeline – consisted of a raw CT scan 

acquired as described in section 2.1 (template scan), and a manually segmented 3D mandible 

model as described in section 2.2 (template model). The 54 template scans and template 

models were preprocessed and cropped down to their minimum enclosing boxes using 

methods outlined in section 2.4.1. To reduce the influence of human variability in editing 

and artifacts during the manual segmentation of the template models, we ran each of the 54 

template scans through the Semi-Automatic Mandible Segmentation (SAMS) pipeline 

described in section 2.4 (using the manually segmented template models from Group I). 

Thus, each initial, manually segmented template model was replaced with its post-processed, 

automatically segmented 3D mandible model. Once the post-processing steps were 

completed, generating a set of semi-automatically-segmented template models for each of 

the template scans, the reference templates were used for all subsequent SAMS processing. 

This template preparation process is represented in Figure 1.

2.4 Semi-Automatic Mandible Segmentation (SAMS)

The semi-automatic mandible segmentation (SAMS) pipeline was designed to take in, as 

input, the preprocessed reconstructed CT scan, here referred to as “test scan,” and to output 

a 3D binary mask of the resulting segmented mandible. The pipeline, presented in Figure 2, 

first maps each test scan to each of the 54 reference templates (prepared as described in 
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section 2.3), generating 54 independent registrations (these registrations can be done in 

parallel). Next, the output of the registrations are compiled into one single 3D mandible 

model, which is then manually post-processed by editing regions that need further 

refinement. The registration and processing tools are from the Advanced Normalization 

Tools (ANTs) package, fMRIB Software Library (FSL; the Oxford Centre for Functional 

MRI of the Brain)23 and ITK-SNAP’s Convert3D (C3D) module.24

2.4.1 Preprocessing—All reconstructed CT scans were examined by a rater using both 

Analyze 12.0 and FSL23 to collect: 1) A threshold in Hounsfield Units (HU) that removes 

non-osseous tissues (obtained using steps similar to threshold determination process 

described in section 2.2), and 2) the minimal enclosing box of the mandible, represented as 

minimum and maximum x-, y-, and z-coordinates that enclose the mandible. An automated 

preprocessing script was then used to take this information as input to apply a threshold to 

the reconstructed CT scan and crop the scan within the minimal enclosing box. Depending 

on the age and head orientation of the selected cases, the enclosing box dimensions ranged 

from a minimum of 80.63 × 43.60 × 61.65(mm) to a maximum of 133.60 × 90.35 × 

107.93(mm), with cubic volumes of 216.72 cm3 to 1302.75 cm3. N4 bias correction was also 

applied to decrease inhomogeneity of the mandibular bone intensity.25 These scans were 

saved in zipped NIfTI format and ready for automatic segmentation. All manually 

segmented 3D mandible models created for Group I and Group II were preprocessed without 

the threshold application step.

2.4.2 Diffeomorphic Registration-based Automatic Segmentation—The 

diffeomorphic registration and segmentation portion of the pipeline is entirely automatic. 

Our scripts first register the test scan to each of the template scans of the 54 reference 

templates (prepared as described in 2.1), generating 54 separate, nonlinear diffeomorphic 

registration processes.26 Next, our scripts use the output from these registrations to 

transform the 3D mandible template model of the respective template scans into a mandible 

model that maps to the input test scan.

The initial step of using the test scan to affinely register to a template scan yields a 

deformation field output (deformation of warping the test scan to a template scan). Warping 

the test scan into the template scan space yields a transformation matrix (transformation of 

the test scan into the template scan). The inverse transformation of both of these outputs is 

applied to the mandible template model of the template scan, deforming the template model 

and propagating the deformed template model into the test scan’s native space. This 

deformed template model is similar to the mandibular structure in the test scan.

The ANTs parameters for the nonlinear diffeomorphic registrations were set using Mean-

Squared Difference (MSQ) similarity metric with a window radius of 1, Gaussian 

regularization with sigma of 4, and a Greedy Symmetric Normalization (SyN) algorithm 

with a gradient step size value of 0.4. After applying the inverse transformation to each of 

the template models, the deformed template model was obtained. Next, ITK-SNAP’s 

convert3D (C3D) module24 was used to binarize these models, creating 54 independently 

segmented 3D binary mandibles for the input test scan.
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Once all 54 registrations and segmentations were completed, the resulting 54 binary 

mandibles were merged into a single output in time using the fslmerge tool from the FSL 

toolkit23, to create a single composite mandible. The FSL toolkit then normalized the 

composite mandible based on its mean intensity and agreement, and removed composite 

voxels that were of less than 45% agreement, a percentage yielding the most accurate result 

during preliminary testing of the pipeline. This helped diminish the effect of aberrant 

variability in each individual model, giving to the final segmentation of a 3D mandible 

model of the test scan. A flowchart of our SAMS pipeline steps is shown in Figure 2.

2.4.3 Post-Pipeline Inspection and Touch up—The mandibles processed with the 

automatic portion of our SAMS pipeline, henceforth referred to as SAMS-processed 

mandibles, were converted to triangle meshes using the marching cubes algorithm 

implemented in MATLAB (The MathWorks Inc., Natick, MA, USA)27 to allow for 

visualization of the 3D mandible.28 The 3D meshes were visually inspected to carefully 

evaluate for regions that needed manual editing. Mandibles with artifacts were converted 

into Analyze 12.0 software-compatible Object Map file format for researchers to manually 

edit anatomic inaccuracies such as regions that were over-segmented and needed removal, or 

regions that were under-segmented and needed “patch-up” or addition of voxels. An 

example of the post-processing editing is shown in Figure 3.

2.5 Cluster Computing

This pipeline is designed to work with cluster computing resources due to the need to 

segment a large amount of input data, where a parallel computing environment allows more 

resources to run multiple template-based CT image registration jobs at the same time. It is, 

however, not limited to the environment described in this study if appropriate configurations 

were made to ensure sufficient computing power. Using a parallel strategy, the registration 

and compositing steps of the SAMS pipeline were entirely automatic, and completed using 

the high-throughput computing (HTC) resources –HTCondor – offered by the Center of 

High Throughput Computing (CHTC) at the University of Wisconsin-Madison. Each of the 

54 nonlinear diffeomorphic registrations was submitted to HTCondor as an independent job 

and assigned to Linux machines with requirements set at a minimum of 1 CPU, 6GB disk 

space and 4GB memory. These jobs were coordinated using the DAGMan (Directed Acrylic 

Graph Manager) meta-scheduler for HTCondor to ensure that the compositing step would 

only be initiated when all 54 registration jobs were successful.29

2.6 Segmentation Accuracy Evaluation

To evaluate the accuracy of the automatic portion of our SAMS pipeline, defined as the 

process of section 2.4.2 that was executed by nonlinear diffeomorphic registrations and its 

subsequent compositing step, we carried out quantitative and qualitative assessments using 

the cases in Group II (described in section 2.1), where each of the 20 cases had both a 

SAMS-processed mandible and a manually segmented mandible. All statistical analyses 

below were carried out with MATLAB27 and R packages (R Foundation for Statistical 

Computing, Vienna, Austria).30
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2.6.1 Quantitative Assessment—We compared the accuracy of SAMS-processed 

mandibles against the manually segmented mandibles by computing: 1) the overlap 

probability using a modified version of the Dice coefficient31 which is a similarity measure, 

2) the intraclass correlation coefficients (ICC)32 of the segmented mandibles’ volumetric 

measurements as a measure of similarity, and 3) the Bland-Altman analysis to assess 

agreement of the volumetric measurements from the two methods.33

To estimate the overlap probability between mandibles segmented using automatic and 

manual segmentation techniques, we computed the Dice coefficient defined as:

where |A| and |B| are size of the individual objects and A B is the size of the intersection or 

the overlap of the object.31 The definition of the Dice coefficient has been extended for 

multiple objects as follows. Given n objects A1, A2 … An, the Dice coefficient is defined as:

The Dice coefficient gives number between 0 and 1 and provides the measure of overlap 

between the objects. If we further normalize the object size such that |A1| = |A2| = … |An| = 

1, then the Dice coefficients can be written as:

The Dice coefficient can be viewed as the overlap probability of binary segmentations, and a 

measure of the overall accuracy of segmentation. Comparing only between the manually 

segmented and automatically segmented mandible, as |A1| and |A2| respectively, the closer 

the resulting values was to 1, the better agreement existed between the two mandibles.

In addition to the above described measure of overlap, the similarity between the two sets of 

3D mandible volumes was assessed by computing the ICC using a two-way mixed-model 

with single measure of consistency.32 ICC also used a range of 0–1, where the closer the 

value to 1, the higher the similarity/reproducibility. For this study, we considered an ICC 

value greater than 0.75 as excellent, values between 0.5–0.75 as acceptable, and values less 

than 0.49 as not acceptable.

Since we did not set a priori ‘ground truth’ for this study but assumed the manual 

segmentation as a “reference standard,” the Bland-Altman method was also used to provide 

a downstream assessment of the difference and agreement of volumes produced using the 

two segmentation techniques.33 Bland-Altman is able to infer correlational information of 

the two sets of measurements without requiring a reference standard to be established a 
priori, which is ideal for our dataset, where manual segmentations have known limitations.34
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2.6.2 Qualitative Assessment—For the qualitative assessment, we developed a rating 

scale to rate the general or overall accuracy of the mandible models, as well as specific 

mandibular regions that can be problematic for modeling. Figure 4 shows the major 

mandibular regions using three SAMS-processed male mandible models ages 2 years 10 

months, 10 years 11 months and 18 years 10 months, highlighting major developmental 

changes in size and shape. The rating scale ranged from 1 to 5, with higher numbers 

representing more accuracy with respect to the original scan. Appendix A shows the rating 

scale used to rate two general categories for overall mandible accuracy and usability for 

anatomical landmark-placement, and to determine the models’ general utility. Appendix A 

also shows the scale used to rate three region-specific categories, namely the teeth, the 

condyles, and the coronoid processes with detailed descriptions of the 1–5 ratings for each 

region.

Two raters who were experienced in segmenting mandibles from CT scans independently 

rated a total of 40 models from the 20 subjects in Group II. Raters were blinded to whether 

the mandible models were automatically-segmented (SAMS-processed mandibles that were 

segmented through the automatic portion of the pipeline and have yet to be processed 

through the final post-processing step) or manually segmented. ICC, used in the previous 

section to compare volumetric measurements, is a typical measure to assess reliability of 

multiple raters examining the same set of data.35 It was therefore used again to conduct a 

reliability analysis between the two raters based on a two-way mixed model with average 

measure of consistency. ICC between the two raters was calculated for each of the general 

and specific regions of interest to determine if the ratings of the two segmentation methods 

were reliably similar among raters.

3. Results

3.1.1 Accuracy Evaluation: Quantitative results

Using the 20 CT studies in Group II, the average similarity overlap between the manually 

segmented mandibles and automatically segmented mandibles, as measured by the modified 

Dice coefficient, was 0.976 (SD=0.106) indicating very high segmentation accuracy. 

Average similarity overlap for male cases was 0.977 (SD=0.103), and for female cases was 

0.974 (SD=0.110). Figure 3 displays the modified Dice coefficient values as a function of 

age for each of the 20 mandibles. All male and female cases show a high Dice coefficient 

reflective of over 95% segmentation accuracy (Figure 5).

The ICC for volume between manual and automatic segmentation methods was 0.998 

(P<0.001; 95% CI, 0.996 to 0.999), showing high level of agreement (99%) for volume 

measurements between mandibles segmented using two different methods. The regression 

line between the two methods also showed good agreement between volumes obtained from 

manual and automatic segmentation as seen in Figure 6a. The Bland-Altman plot showed a 

slight over-segmentation effect of 0.14 cm3 between volumes of automatically segmented 

mandibles and manually segmented mandibles, but otherwise showed a small range of 

differences with most data points placed within the limits of agreement (Figure 6b).

Chuang et al. Page 8

J Comput Assist Tomogr. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1.2 Accuracy Evaluation: Qualitative results

Tables 1 and 2 provide a summary of the ratings and ICC for the general and region-specific 

ratings. Qualitative analysis findings show a generally favorable view of both manually and 

automatically segmented mandibles. For interrater reliability between the two raters, the ICC 

value was 0.73 (P< 0.001) which is considered to be acceptable/good reliability.

Mean ratings across all rating categories, mandibles, and between raters revealed an average 

score of 3.71 (SE=0.11) for the automatically segmented mandibles, and a score of 4.40 

(SE=0.06) for the manually segmented models, where both values were rated on a scale of 

1–5. Of the three mandible regions set for comparison, for manually segmented mandibles, 

the coronoid processes showed the highest ratings, with a mean score of 4.88 (SE=0.06), 

while for automatically segmented mandibles, the teeth region had the highest ratings, with a 

mean score of 4.15 (SE=0.20). The condyles had the lowest ratings for both segmentation 

methods, with a mean score of 3.03 (SE=1.25) for automatically segmented mandibles and a 

mean score of 4.05 (SE=0.66) for manually segmented mandibles.

Ratings on the general shape of the mandible had an ICC of 0.771 (P=0.001), indicative of 

high agreement between raters for the overall shape of the mandibles generated between the 

two segmentation methods. However, the low agreement for coronoid processes and 

condyles implies that these regions are different between the two segmentation methods. 

Similarly, ratings on the usability for landmark placement also showed that the automatically 

segmented mandibles had lower usability compare to manually segmented mandibles (mean 

score of 3.70, SE=0.23; vs. mean score of 4.50, SE=0.12).

3.2 Computational Cost

The average disk usage for each registration and compositing job ranged from 4–20 GB, 

while memory usage ranged from 1–10 GB. The average computational time for each 

registration job was around 3 hours. The time needed to segment a mandible for one input 

test scan (54 registration jobs plus one compositing job) ranged from 3–8 hours, depending 

on the pooling and coordination schedule as described in section 2.4, because registration 

jobs were submitted and run in parallel. The automatic portion of the pipeline was 

completed in less than 12 hours for all 20 of the preprocessed test scans. The total duration 

of segmenting whole mandibles from 20 subjects, including the manual pre-processing and 

post-processing steps, was between 16 and 18 hours.

4. Discussion

This study documents the steps used for an easy-to-build semi-automatic mandible 

segmentation pipeline and to document its performance in maintaining high precision of 

anatomical accuracy with minimal experimental bias. Quantitative assessments indicate that 

the SAMS pipeline presented here is able to consistently produce 3D mandible models of 

the same quality as mandible models generated manually by trained researchers, with less 

variability. The difference in overlap and volume measurements between manually and 

automatically segmented mandibles indicated high agreement between mandibles from these 

two segmentation methods. As for qualitative assessment, the two raters generally favored 
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the manually segmented mandibles over the automatically segmented models. Ratings 

evaluating the overall shape and usability of the models also favored the manually 

segmented mandibles, but indicated fair ratings for automatically segmented mandibles.

Differences between the two segmentation methods can be clearly visualized in Figures 7 

and 8, with superimposition of an automatically segmented mandible on the manually 

segmented mandible from the same case. The overall body is similar except in the condyles, 

coronoid processes, and teeth, further confirming our expectation that automatic 

segmentations are lacking in these three regions, most evidently in condyles due to bone 

density ambiguity in the TMJ. Manual editing of 3D models presented the full anatomy, but 

showed condyles with irregular surfaces and superior borders. Automatic segmentation 

methods could render condyles with even surfaces, but often overestimated or 

underestimated the surfaces, requiring manual editing to fix the absent or additional voxels, 

as seen in Figure 3. Similarly, automatic segmentation typically underestimated the coronoid 

processes, likely due to lower bone density, and needed post processing for enhancement. 

The manually segmented mandible captured a better-defined anatomy of the condyles and 

coronoid processes, but showed rather irregular teeth edges and borders (Figure 7). In the 

dental region, automatic segmentation seemed to under-segment but more closely outlined 

the teeth borders than the manually segmented teeth region (Figure 7). The lower ratings of 

the automatically segmented dental region were likely due to dental artifacts that had to be 

manually edited during post-processing.

The small difference in volume between the mandibles segmented using the two different 

methods suggested that the SAMS-processed mandibles, even before post processing, are 

comparable to manually segmented mandibles. Thus, the automatic portion of the SAMS 

pipeline presented in this study successfully produce mandible models that closely 

approximate manually-segmented mandible models, and only require minimal post-

processing in limited regions. Such a pipeline provides more consistency in the segmentation 

of the mandibular structure from CT imaging studies, and reduces the effort needed to 

produce highly accurate mandible models.

The processing of all 20 cases in Group II through the SAMS pipeline, from preprocessing, 

automatic segmentation, and post-processing took only around 16–18 hours, in comparison 

to manual segmentation of all 20 cases, which could take over 80 hours for a trained 

researcher to complete. Since the registration jobs are parallelizable, increasing the number 

of imaging studies to be processed for each job submission does not necessarily increase the 

processing time, making such automatic registration appealing for studies that require large 

sample sizes. Also, there may be potential for further automation to replace the manual 

preprocessing steps, further increasing the efficiency of the method.

The high success rate of the SAMS pipeline in this study is in part due to the reference 

template parameters optimized for the age range of our data set, but this pipeline can be 

easily modified to better meet user needs and preferences. For example, the reference 

templates can be modified to become age-specific or population-based by switching out the 

54 reference templates and replaced with cases adjusted to different age range or cases of a 

specific disordered group.
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The ultimate purpose in developing the SAMS pipeline was to make it feasible to conduct a 

large-scale, across-the-lifespan analysis of human mandibular growth using a 

multidimensional perspective. Such knowledge will not only help advance the understanding 

on typical mandibular growth where developmental sexual dimorphism of the mandible 

emerges, but also make it feasible to establish a normative reference for clinical application. 

Examples of the latter include assessment of typical growth or deviation from typical 

growth36, planning for orthodontic treatment10 or surgical reconstruction37, as well as 

predictions necessary in the forensic sciences.38 Similar segmentation pipelines applied to 

other structures of interest could make large-scale studies more feasible by reducing the time 

and effort required to produce accurate 3D anatomical models.

Conclusion

The SAMS pipeline we describe in this article performed well, with a significant reduction 

in the number of man-hours spent segmenting cases, although some cases required manual 

inspection and touching up. The pipeline is easy to configure for different age and disease 

groups, as well as different anatomical structures. Users can adjust the parameters and 

reference templates as needed according to their study focus. The assessment in this study 

showed that the pipeline is efficient and able to produce accurate 3D mandible models, 

permitting large-scale segmentation of mandibles for development-focused surface 

morphological study in the future. Further investigation is warranted into the performance of 

the semi-automatic mandible segmentation pipeline to accurately segment mandibles from 

imaging studies of older adults or of atypically developing mandibles, such as from 

individuals with Down syndrome.
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Appendix A

Mandible Segmentation Rating Scale: Qualitative Assessment

This form contains the rating descriptions for the different mandibular regions of interest.

General ratings

Overall—General rating based on entire model, taking into account ratings for teeth, 

condyle, and coronoid, as well as any discontinuity in the rest of the model.

Landmarking—General rating based on ability to accurately place landmarks, using model 

as the main reference.

Regions-specific ratings

Teeth

1. individual teeth are not discernable or missing, unable to place any landmarks

2. front teeth discernable, still unable to identify individual molars, able to place 
some landmarks
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3. front teeth and posterior point of last erupted molar visible, superior and lateral 

borders of teeth still messy AND/OR small portions missing, able to place all 
landmarks (endomolare, sublingual fossa, posterior dental border)

4. all individual teeth discernable, superior border still messy, able to easily place 
all landmarks

5. all individual teeth discernable, clean superior borders, able to easily place all 
landmarks

Condyles

1. large portions of superior and/or lateral borders of condyle obviously missing, 

unable to place any landmarks

2. model contains full condyle but includes large amount of surrounding tissue that 

should easily have been removed, able to place some landmarks

3. superior and lateral borders rough, but generally visible AND/OR missing small 

portions of condyle, such that the borders do not match the true anatomy/

DICOM, able to place all landmarks

4. clean lateral condyle borders, superior borders of condyle may be slightly rough, 

able to easily place all landmarks

5. superior and lateral borders of both condyle and coronoid clean and clearly 

visible, able to easily place all landmarks

Coronoid Processes

1. coronoid process missing, unable to place any landmarks

2. parts of coronoid process obviously cut-off, able to place some landmarks

3. model contains full coronoid but includes some surrounding tissue that should 

easily have been removed AND/OR missing small sections of the coronoid, such 

that the borders do not match the true anatomy/DICOM, able to place all 
landmarks

4. superior and lateral borders slightly rough, but generally visible, able to easily 
place all landmarks

5. full coronoid process clean and fully visible, able to easily place all landmarks
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Figure 1. 
Flowchart describing template preparation to yield the 54 reference templates used in the 

Semi-Automatic Mandible Segmentation (SAMS) pipeline (see Figure 2). Each template is 

made up of a CT image (template scan) and a 3D mandible model (template model), both of 

which were processed through steps shown in this diagram/flowchart before being used as 

reference template for the pipeline. The template model was first segmented manually by a 

trained researcher, represented in the figure above as Manual Template Model. The template 

preparation process entailed the following three steps: Pre-processing, where each template 

scan and its Manual Template Model was cropped down into its minimal enclosing box. 

Automatic Segmentation and Compositing (gray-shaded box), where each pre-processed 

template scan was run through the SAMS pipeline with the pre-processed Manual Template 

Models as the deformable model to apply the deformation field of the registration between 

the input template scan and all of the template scans in the reference templates line-up. The 

resulting segmented mandibles were then combined into a single composite mandible. Post-
processing: The post-processed segmented mandibles from this step were then used as the 

final template models in the SAMS pipeline.
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Figure 2. 
Flowchart of the SAMS pipeline. Pre-processing: An input raw CT image is reconstructed 

in 3D, cropped at its minimum enclosing box, and corrected for intensity inhomogeneity. A 

predetermined global threshold (Hounsfield Unit, HU) is applied. See text for details. 

Automatic Segmentation and Compositing: The preprocessed input CT image (test scan) is 

run through 54 separate ANTs-based nonlinear diffeomorphic registration processes. Each 

of the 54 processes results in its respective segmented mandible. The segmented mandibles 

are then composited into a single composite. Post-processing: The composite mandible is 
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inspected to determine if manual editing in Analyze 12.0 is necessary. The gray-shaded box 

represents the automatic segmentation process with n=54.
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Figure 3. 
Examples of post-processing addition and removal of voxels for under-segmented and over-

segmented regions displayed in all three orientations. Top panel: CT image A displays the 

temporomandibular joint region of a male case (13 years 10 months old). Red represents the 

automatically segmented condyle region while green represents the voxel additions edited 

manually by a trained researcher. Lower panel: CT image B displays the temporomandibular 

joint region of another male case (2 years and 5 months old). Cyan represents the over-

segmented region, originally segmented automatically, but edited for removal manually by a 

trained researcher.
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Figure 4. 
3D models of three male SAMS post-processed mandibles at age 2 years 10 months (left), 

10 years 11 months (middle) and 18 years 10 months (right) showcasing the developmental 

changes in size and shape. The characteristic downward and forward growth of the mandible 

is well-depicted with the increased length of the ramus, length of the mandible body, and 

protrusion of the mental protuberance. Note also the changes in the location of the gonion 

relative to the condyle.
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Figure 5. 
Overlap probability between manually and automatically segmented mandibles for each of 

the twenty mandibles in Group II using the measure of modified Dice coefficient as a 

function of age. Mean value of similarity measure is 0.976 (SD=0.106), range=0.960 to 

0.985. See text for details.
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Figure 6. 
Results of the regression (6a, left panel) and Bland-Altman analysis (6b, right panel). Figure 

6a shows the linear regression plot between volumetric measurements of the 20 mandibles 

segmented automatically using SAMS pipeline, and the manually segmented mandibles. 

Solid line is the line of best fit, the dashed line is the identity line. Figure 6b displays the 

Bland-Altman scatter plot representing the difference between mandible volumes obtained 

from manual and automatic segmentation methods. Solid line is the mean difference 

(0.14cm3, P=0.61) the dashed lines are two standard deviations away from the mean 

difference (±1.96 SD).
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Figure 7. 
3D superimposition of surface models of an automatically generated mandible segmentation 

(gray) over a manually created mandible segmentation (blue) of a female case at the age of 6 

years 2 months old. The automatic segmentation had no manual adjustment applied. This 

example shows that manual segmentation captures the anatomy in coronoid processes and 

condyles better, but produces an uneven surface in the teeth region. The modified Dice 

coefficient for this case was 0.977 (SD=0.104).
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Figure 8. 
2D superimposition of the mandible described in Figure 2 lining up against its raw CT 

images in all three anatomical views. Second rows represented overlaps of automatically 

segmented mandible (white) and manually-segmented mandible (black) of a female case at 

the age of 6 years 2 months old. Modified Dice coefficient in this case is 0.977 (SD=0.104). 

The crosses in each image represent the center of the minimal enclosing box that contains 

the mandible.
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