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Summary

In comparing two treatments with the event time observations, the hazard ratio (HR) estimate is 

routinely used to quantify the treatment difference. However, this model dependent estimate may 

be difficult to interpret clinically especially when the proportional hazards (PH) assumption is 

violated. An alternative estimation procedure for treatment efficacy based on the restricted means 

survival time or t-year mean survival time (t-MST) has been discussed extensively in the statistical 

and clinical literature. On the other hand, a statistical test via the HR or its asymptotically 

equivalent counterpart, the logrank test, is asymptotically distribution-free. In this paper, we assess 

the relative efficiency of the hazard ratio and t-MST tests with respect to the statistical power 

under various PH and non-PH models theoretically and empirically. When the PH assumption is 

valid, the t-MST test performs almost as well as the HR test. For non-PH models, the t-MST test 

can substantially outperform its HR counterpart. On the other hand, the HR test can be powerful 

when the true difference of two survival functions is quite large at end but not the beginning of the 

study. Unfortunately, for this case, the HR estimate may not have a simple clinical interpretation 

for the treatment effect due to the violation of the PH assumption.
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1. Introduction

In a randomized, comparative clinical trial with an event time as the study end point, 

treatment difference is often summarized by the hazard ratio (HR) by assuming a 

proportional hazards (PH) model, namely, the ratios of two hazard functions between two 

treatment groups, labeled as 1 and 0, are approximately constant over time (Cox, 1972). 

Under the PH assumption, the HR can be consistently estimated by maximizing a partial 
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likelihood function from the Cox model. However, a HR of, for instance, 0.7 for treatment 1 

versus treatment 0 cannot be interpreted as a 30% event rate reduction in favor of treatment 

1 since the hazard is not a simple probability of event occurrence. The clinical interpretation 

of a HR depends on the temporal profile of the hazard function for the reference group. For 

example, it is not clear whether a HR of 0.7 alone is clinically meaningful: a 30% reduction 

of hazard in treatment group 1 may not be clinically important for a “low” hazard function in 

treatment group 0, while quite meaningful for a “high” hazard function in the treatment 

group 0. However, there is a lack of a simple nonparametric estimator for the hazard 

function as the Kaplan-Meier (KM) estimator for the survival function. Oftentimes the HR is 

interpreted as the inverse ratio of the median event times in practice assuming an exponential 

distribution for the survival outcome and thus provides an informative summary for the 

treatment effect when coupled with the median survival time in group 0. However, such an 

interpretation may be problematic when the exponential assumption does not hold. 

Furthermore, when the PH assumption is violated, the HR estimator from the Cox model 

converges to a parameter which is difficult to interpret (Kalbeisch and Prentice, 1981; Lin 

and Wei, 1989). For this case, one often considers the estimated HR as an approximation to 

a weighted average of the HR’s over time. Unfortunately, the weights depend on the 

censoring distributions. This adds another complexity of translating HR for effective clinical 

decision making. Other model-based summary measures for the group difference have 

similar issues as the HR (Wei, 1992).

There are several alternatives to summarize a survival distribution. For example, the median 

survival time, the t-year event rate and the t-year mean survival time, t-MST. The t-year 

mean survival time is also coined as the restricted mean survival time. In this paper we are 

interested in studying properties of using a summary measure as a group contrast based on 

the t-MST. The inference procedures for t-MST and the function thereof have been studied 

extensively, for example, by Karrison (1987); Zucker (1998); Royston and Parmar (2011); 

Zhao et al. (2012); Tian et al. (2014) and Uno et al. (2014). The t-MST has a clear physical 

and clinical interpretation. For example, an observed 2.5 year of the 3-year mean survival 

time indicates if a patient is followed up to 3 years, on average, he or she would survive 2.5 

years. The t-MST can be readily estimated via the area under the corresponding Kaplan-

Meier (KM) curve up to t year. Contrary to the model-dependent nature of the HR, the 

treatment effect can be quantified by, for example, the difference in t-MST between two 

treatment groups, which is purely nonparametric without requiring any model assumption. 

This group difference measure with a reference value of t-MST from the control arm in a 

comparative study is more informative than the HR.

Since the HR estimate is routinely used for making inference about the treatment effect, it 

would be interesting to compare it with the t-MST based inference procedure. However, 

since these two estimation procedures empirically quantify different parameters, it seems 

difficult, if not impossible, to study their relative merits from an estimation point of view. On 

the other hand, under the testing hypothesis paradigm, the HR based test is asymptotically 

distribution-free. Therefore, it is possible to compare the t-MST and HR based tests with 

respect to, for example, their conventional statistical power profiles. It is interesting to note 

that recently Trinquart et al. (2016) utilized the data from a large number of clinical trials to 
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show empirically these two types of tests are quite concordant in terms of the conventional 

statistical significance interpretation.

In this paper, we formally compare these two types of tests under a more theoretical setting. 

To be specific, we first present the testing procedures based on HR and t-MST in Section 2. 

The asymptotic relative efficiency (ARE) of these two tests is derived in Section 3. In 

Section 4, the performance of the two tests are studied theoretically and compared 

empirically via extensive numerical study. We also use the data from a recent clinical trial to 

illustrate our findings in the same section. In general, we find that the test based on t-MST 

performs well compared with its HR counterpart when the PH assumption is valid. For 

certain non-PH models, for instance, when the two survival functions are quite large at the 

end but not the beginning of the study followup time, the HR test is quite powerful. 

Unfortunately, the corresponding HR estimate is difficult to interpret clinically. With this 

additional finding, the robust, easily interpretable t-MST based inference procedure provides 

a useful alternative tool to the HR based counterpart in survival analysis.

2. The HR and t-MST based tests for the equivalence of two survival 

functions

Let T1 and T0 be the event times in treatment groups 1 and 0, respectively. The group 

difference in t-MST up to the time point t is defined as

D = E(T1 ∧ t) − E(T0 ∧ t),

which is the area between two survival curves over the time interval [0, t] :

0
t{S1(u) − S0(u)}du,

where Sj(·) is the survival function of the failure time Tj in arm j, j = 0, 1. In order to make D 
identifiable based on observed data, πj(t) = pr (Tj ∧ Cj ≥ t) needs to be bounded away from 

zero, where Cj denotes the censoring time in treatment group j, j = 0, 1, i.e., min{π0(t), 
π1(t)} > 0. In practice, t can be chosen, for example, as the minimum of the 95th percentiles 

of observed Tj ∧ Cj from two treatment groups. The difference in t-MST can then be 

estimated by

D = 0
t

S1(u) − S0(u) du,

where Ŝj(t) is the KM estimator for Sj(t). As the sample size n → ∞, n(D − D) converges 

weakly to a mean zero Gaussian distribution whose variance can be consistently estimated 

by
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σD
2 =

0

t

υ

t
S0(u)du

2 dΛ0(υ)
p0π0(υ) +

0

t

υ

t
S1(u)du

2 dΛ1(υ)
p1π1(υ) , (1)

where pj is the proportion of patients randomized into group j, π̂
j(υ) is the empirical 

counterpart of πj(υ) and Λĵ(t) is the Nelsen-Aalan estimator for the cumulative hazard 

function in group j, j = 0, 1 (Pepe and Fleming, 1989, 1991; Zhao et al., 2012). Under the 

null hypothesis that there is no difference between two survival functions, the distribution of 

nD/σD is approximately the standard normal for large n.

Similarly, let θ̂ be the estimator of θ =log(HR) by maximizing the partial likelihood function 

over the time interval [0, tH]. Under the PH model, as n → ∞, n(θ − θ) converges weakly 

to a mean zero Gaussian distribution, whose variance can be consistently estimated by

σθ
2 =

0

tH
eθ p0p1π0(u)π1(u)

p0π0(u) + eθ p1π1(u)
dΛ∼0(u)

−1

, (2)

where Λ̃
0(u) is the Breslow estimator for the cumulative hazard function at the treatment 

group 0 (Cox, 1972; Fleming and Harrington, 2011). Under the null hypothesis, θ = 0 and 

the distribution of nθ /σθ is approximately standard normal for large n. Therefore, tests 

based on both D̂ and θ̂ are asymptotical valid in retaining the appropriate type I error rate.

Note that similar to t-MST, in theory the large sample normal approximation to the 

distribution of HR estimator is only valid with observations within a finite time interval, say 

[0, tH], where max{π0(tH), π1(tH)} > 0 (p289–290, Chapter 8, Fleming and Harrington 

(2011)). There is a misconception that the exp(θ̂) approximates the HR at all time points. In 

practice, the interpretation of this estimated HR should be restricted to the finite time 

interval [0, tH], where tH is smaller than the maximum the followup time. Compared with t 
in t-MST, tH and t can be identical under the condition that sup{u | π1(u) > 0} = sup{u | 

π0(u) > 0}. Otherwise, without loss of generality assume that sup{u | π0(u) > 0} < sup{u | 

π1(u) > 0}. In such a case, one may choose tH = sup{u | π0(u) > 0}, which is greater than t = 

sup{u | π0(u) > ε} for some positive ε. However, in theory, the difference between t and tH 

can be made small by choosing ε close to zero.

3. Asymptotical efficiency of the test based on D̂ and θ̂

In this section, we derive the asymptotic efficiencies of the tests based on D̂ and θ̂ under a 

sequence of contiguous alternatives (Hoeffding and Rosenblatt, 1955; Hodges and Lehmann, 

1956). Specifically, for the current case, these alternatives are defined as
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log
λ1n(u)
λ0(u) = α(u)

n
,

where λ0(t) and λ1n(t) are the hazard functions of the failure time T0 from the treatment 0 

and T1n from the treatment 1, whose distribution depends on the sample size n, respectively 

(Lagakos, 1988; Slud, 1991). Here, α(·) is a deterministic function over time providing a 

specific alternative hypothesis of interest. For any given α(·), we can derive the asymptotic 

efficiency of the test under the mild regularity conditions given in p230–232, Chapter 6, 

Fleming and Harrington (2011).

For study size n, it follows from similar arguments in Schoenfeld (1981) and Harrington and 

Fleming (1982) that under the above contiguous alternatives nD is asymptotic normal with 

mean

0
t

0
υ

α(u)λ0(u)du S0(υ)dυ

and variance

σD
2 =

0

t

υ

t
S0(u)du

2 λ0(υ)
w(υ) dυ, (3)

which is the limit of σD
2  defined in (1), where

w(υ) =
p0p1π0(υ)π1(υ)

p0π0(υ) + p1π1(υ) .

Thus, the asymptotic efficiency of the test based D̂ is

ξ1 =
∫ 0

t {∫ υ
t S0(u)du}α(υ)λ0(υ)dυ

2

∫ 0
t ∫ υ

t S0(u)du
2
w(υ)−1λ0(υ)dυ

.

Similarly, it follows from Lin and Wei (1989) that under above contiguous alternatives the 

test statistic nθ  is also asymptotic normal with mean

∫ 0
tHw(u)α(u)λ0(u)du

∫ 0
t w(u)λ0(u)du

and variance
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σθ
2 =

0

tH
w(u)λ0(u)dt

−1
, (4)

which is the limit of σθ
2 in (2). The asymptotic efficiency for this test is

ξ2 =
∫ 0

tHw(u)α(u)λ0(u)du
2

∫ 0
tHw(u)λ0(u)du

.

It follows that the ARE of the t-MST based test relative to the HR-based test is ξ1/ξ2, which 

can be interpreted approximately as the inverse of the ratio of the sample sizes needed for 

two tests to have the same power to detect the alternative λ1n(u) = exp{α(u)/ n}λ0(u).

Note that the standard logrank test, a score test based on the Cox partial likelihood function 

for testing the equivalence of two survival functions, is asymptotically equivalent to the 

Wald-type of test based on the HR and therefore ξ1/ξ2 is also the ARE of the t-MST based 

test relative to the logrank test.

Since ARE is approximately a ratio of the sample size of two tests to have similar power for 

testing the same alternative hypothesis, this connection provides a clear practical 

interpretation of ARE (Schoenfeld and Richter, 1982; Zhang and Quan, 2009). Specifically, 

assuming that the alternative hypothesis consists of two fixed unequal hazard functions, say, 

λ0(u) and λ1(u), the sample size needed for the t-MST based test can be approximated by 

(z1−α/2 + z1−β)2/ξ1, if this alternative is “close” to the null hypothesis, where zq is qth 

quantile of the standard normal and α and β are the Type I and II error rates, respectively. 

More generally, a more accurate sample size estimator for 100(1 − β)% power at the two-

sided significance level of α is

(z1 − α/2 + z1 − β)2
∫ 0

t ∫ υ
t S0(u)du 2 λ0(υ)

p0π0(υ) + {∫ υ
t S1(u)du}2 λ1(υ)

p1π1(υ) dυ

∫ 0
t {S1(u) − S0(u)}du 2 , (5)

for any pair of {λ0(u), λ1(u)}. Similarly, the corresponding sample size estimate analogy for 

HR based test is

(z1 − α/2 + z1 − β)2
∫ 0

t w(u)2 λ0(u)
p0π0(u) +

λ1(u)
p1π1(u) du

∫ 0
t w(u){λ1(u) − λ0(u)}du 2 . (6)
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When λ1(u) for the treated arm is close to λ0(u) for the control arm, the ratio of the two 

sample size estimates is approximately equal to the inverse of ARE. The ARE, coupled with 

these two sample size estimates, may provide a meaningful comparison of these two tests. 

However, when λ1(u) is quite different from λ0(u), ARE may not be a good approximation 

to such a ratio of the sample sizes. In this case, one may consider the empirical relative 

efficiency (ERE), ED
2 /Eθ

2, where

ED = E(D)
se(D)

  and  Eθ = E(θ )
se(θ )

are the effect sizes standardized by their standard errors for tests based on D̂ and θ̂, 
respectively. While ERE in general can only be approximated numerically, a close-form 

expression for ARE can often be obtained via a series of first order approximations under 

the contiguous alternative. For example, the approximation

E(D) ≈
0

t
{S1(u) − S0(u)}du =

0

t
S0(υ) e

−∫ 0
υ{λ1(u) − λ0(u)}du

− 1 dυ

≈
0

t

∫0
υ

λ0(u) log{λ0(u)/λ1(u)}du S0(υ)dυ,

may be used to compute the asymptotic efficiency of the test based on t-MST. While the first 

approximation above is fairly accurate in general, the second approximation is sensitive to 

the distance between λ1(u) and λ0(u). Similar approximation has been employed to derive 

σD
2  in (3). Consequently, the asymptotic efficiency ξ1 may not be a good approximation to 

the ratio {E(D̂)}2/var(D̂), which ultimately dictates the actual power of the test based on t-
MST, especially when λ1(u) and λ0(u) are markedly different at some time points. On the 

other hand, for any given sample size, we may simulate a large number of D̂s according to 

the postulated survival and censoring distributions under the alternative and directly 

approximate E(D̂) and var(D̂) by the empirical average and variance of simulated D̂s, 

respectively, without relying on any assumption on the difference between λ1(u) and λ0(u). 

This approach is even more appealing in estimating the expectation and variance of the HR 

estimator, which is the solution of a complex nonlinear estimating equation and does not 

have an exact close-form expression. In summary, although estimating ERE is more 

computational intensive, the power calculation based on ERE is more robust and the 

approximations to (5) and (6) can be used to evaluate the relative merits of two tests under 

any alternative. An example is given in the next section to illustrate this point.

4. Example and Numerical Study

In this section, we will evaluate the empirical performance of these two tests. To gain 

insights for the numerical results to be presented, we first note that under the contiguous 

alternative, the t-MST based test is asymptotically equivalent to the test based on
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0

t ∫ υ
t S0(u)du

∫ 0
t S0(u)du

d Λ1(υ) − Λ0(υ) ,

while the HR-based test is equivalent to the test based on

0

tH
SC(υ)S0(υ)d Λ1(υ) − Λ0(υ) .

Here we assume that the survival functions of the censoring distributions at two groups are 

identical and denoted by SC(·). If t = tH, the difference between these two tests thus only 

depends on the choice of weight function. To be specific, let

wD(υ) =
∫ υ

t S0(u)du

∫ 0
t S0(υ)dυ

   and   wθ(υ) = SC(υ)S0(υ)

be the weight functions of the t-MST and HR based tests, respectively. wD(υ) is independent 

of the censoring distribution and monotone decreasing from 1 to 0, while wθ(υ) depends on 

the censoring distribution and monotone decreasing from 1 to SC(t)S0(t) > 0. In Figure 2, we 

plot the weight functions for both tests with following survival functions for the failure and 

censoring time distributions:

S0(υ) = exp( − 0.016υ0.826)  and  SC(υ) = e
−λcυ{τu − max(υ, τl)}

(τu − τl)
I(υ ≤ τu),

where λc = 0.06% or 2.5% and [τl, τu] = [24, 43]. Those model parameters are selected to 

mimic the ECOG-ACRIN study described in the next subsection. It is clear that wD(υ) 

assigns less weights to later difference in hazard function compared with wθ(υ) when the 

censoring is light. In such a case, the relative performance of t-MST and HR based tests 

should depend on the temporal profile of the difference between two hazard functions. For 

example, when the treatment difference is anticipated at later study time points, the t-MST 

based test tends to be less powerful than the HR based test. On the other hand, when the 

drop-out rate is high, wD(υ) can be very similar to wθ(υ), suggesting similar performance of 

these two tests. In the next two subsections, we will present detailed results from numerical 

study, which confirms the aforementioned expectation.

4.1 Real Data Example

We first use a study recently conducted by the ECOG-ACRIN Cancer Research Group to 

compare low- and high-dose dexamethasone for treating newly diagnosed multiple myeloma 

(Rajkumar et al., 2010) to illustrate how to interpret the ARE (t-MST vs. HR based tests). 

This study randomized 222 patients to the low-dose group and 223 patients to the high-dose 

group. Figure 1a shows the resulting KM curves of overall survival by treatment groups. 

Visually it seems that the patients in the low-dose group survived longer than those in the 
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high dose group. The p-values from the tests based on HR and t-MST are 0.47 and 0.04, 

respectively. The discrepancy is likely due to the presence of crossing hazards. In this study, 

the nonparametric KM curves are fairly similar to their parametric counterparts based on a 

Weibull model (Figure 1b). Now, suppose that we are interested in designing a new study 

using the results from this ECOG-ACRIN study. That is, assume that the observed pattern of 

the two observed hazard functions from this study is the alternative hypothesis for a new 

study. The question is how the t-MST test would perform compared with the HR based test 

with respect to the ARE and how to interpret this ratio measuring the relative merit of these 

two tests. To this end, we assume that the event time follows Weibull distributions as shown 

in Figure 1b. Furthermore, we assume this new study would have similar patient’s accrual 

and follow up time patterns, that is the entire study duration is about 43 months with a 19-

month enrollment period. Furthermore, we let the time of loss of follow-up follows an 

exponential distribution with an annual drop-off rate of 1% for both arms without accounting 

for the administrative censoring due to the staggered entry of study patients. We also let t = 

40 and tH = 43 months for defining the follow-up period of interest for t-MST and HR, 

respectively. Under these assumptions, the required sample size for 80% power at the 

significance level of 0.05 is nθ = 2532 per arm for the HR-based test and nD = 564 per arm 

for the t-MST based test. The ARE is 2.23, which also strongly favors t-MST based test but 

quantitatively different nθ/nD. In this case, we also can use simulation to directly estimate 

the ERE, the finite sample analogy of ARE. To this end, we simulate 5000 sets of data 

consisting of 1000 patients each under the assumed alternatives and obtain the 

corresponding D̂ and θ̂ from each simulated data set. We then approximate the expectation 

and variance of D̂ (and θ̂) by their empirical counterparts. The resulting ERE is 4.41, which 

is pretty close to nθ/nD. It suggests that the “alternative” of interest is not adequately close to 

null and ARE may not accurately reflect the ratio of the needed sample sizes of the two tests 

in this case. With the above sample size estimates, one still can assess the practical gain from 

the t-MST test over the HR test. We have performed the additional simulation studies to 

empirically estimate the true power of HR and t-MST based tests with the estimated sample 

sizes. The empirical powers based on 5000 simulations are 80.1% and 80.9% for t-MST and 

HR based tests, respectively, which confirms the adequacy of the estimated sample sizes 

based on (5) and (6). The required sample size is much greater than that in actual study, 

since more patients are needed to ensure 80% chance of obtaining a p-value smaller than 

0.05.

Now, we use the above setting, but modify the underlying Weibull distribution of the low 

dose group to follow the PH assumption with a true HR of 0.70 against the high-dose arm. 

The survival curves of this alternative are plotted in Figure 1c. With this specific PH 

alternative, the required sample sizes are nD = 641 for t-MST based test and nθ = 591 for HR 

based test. Both ARE and ERE are 0.96 and 0.91, respectively, which are pretty close to 

nθ/nD. This example suggests that even when the PH assumption is valid, the t-MST test is 

essentially as powerful as the HR test.

4.2 Simulation Study

In this subsection, we further explore extensively the relative merits between the two tests 

under various scenarios. We focus on the settings, where the survival functions are ordered 
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without crossing during the followup and we can claim patients from one arm live longer 

than those from another during the time interval of interest without any ambiguity. When 

two KM curves cross during the study followup period, one may explore whether there is a 

subgroup of patients who may not benefit from the new therapy based on the patients 

baseline covariates. Note that the hazard functions may still cross during the followup even 

if the survival curves don’t. Now, for our study, firstly, we consider the case where tH ≥ t and 

the PH assumption holds true, i.e., α(u) = 1. For this case, the ARE

≤
∫ 0

t {∫ υ
t S0(u)du}λ0(υ)dυ]2

∫ 0
t ∫ υ

t S0(u)du
2
w(υ)−1λ0(υ)dυ × ∫ 0

t w(u)λ0(u)du
,

which is always ≤ 1 by Cauchy inequality, suggesting that the HR-based test is more 

powerful under the PH assumption. To quantify the efficiency loss of the t-MST based test 

under practical settings, we assume that the study has a recruitment period of 19 months and 

additional follow-up of 24 months after the last patient entered the trial as in the 

aforementioned ECOG-ACRIN study. Specifically, the censoring time is assumed to be the 

minimum of CL ~ EXP(λc) and CA ~ U(τL, τU), reflecting the loss of follow-up and 

administrative censoring due to staggered entry, respectively. It follows that the survival 

function for the censoring time is

SC(u) = e
−λcu{τU − max(u, τL)}

(τU − τL) I(u ≤ τU),

where [τL, τU] = [24, 43]. Here, we let t = 40 and tH = 42.5 months. Furthermore, we set λc 

= 0.06% matching the annual loss of follow-up rate observed in the ECOG-ACRIN study 

and λc = 2.5%, an annual loss of follow-up rate of 26%, to represent heavier censoring 

caused by, for example, drop-out. Lastly, we also assume that the survival time in the 

treatment group 0 follows a Weibull distribution with the shape parameter being the 

maximum likelihood estimator in the high-dose group of the ECOG-ACRIN study, that is, 

having a decreasing hazard function λ0(u) = a0u−0.174. With this setup, ARE is determined 

by a0, the scale parameter of the Weibull distribution in the treatment group 0. We adjusted 

the scale parameter so that S0(t) = 0.1, ⋯, 0.9. The detailed results on ARE are summarized 

in Table 1. Under the PH assumption, the HR-based test is slightly more powerful as 

anticipated. Furthermore, when the cumulative event rate is relatively high, for example, 

pr(T0 < t) ≥ 0.5, as for studies of serious diseases with high event rates, the efficiency loss of 

t-MST based test relative to the HR based optimal test is almost negligible.

To confirm these theoretical AREs, we have also performed numerical simulations to obtain 

the ERE by estimating ED and ER based on results from 5000 simulated data sets. The true 

HR for two treatment groups (treatment group 1 vs. 0) is 0.70. The resulting EREs are all 

very close to their asymptotical counterparts (Table 1). For example, when λc = 0.06% and 

S0(t) = 0.60, the ARE and ERE are 0.98 and 0.96, respectively.

Next, we consider three non-PH settings:
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1. HR is monotone increasing from < 1 at time 0 to > 1 at time t;

2. HR is monotone increasing from < 1 at time 0 to 1 at time t;

3. HR is monotone decreasing from 1 at time 0 to < 1 at time t.

The first setting corresponds to the worst violation of the PH assumption: crossing hazards. 

In this case, we let α(u) = log(0.46) + (u/tM)s, i.e., the HR is 0.46 at time zero, crosses 1 and 

eventually increases to 1.25 at time tM. Here tM is the longest follow-up time, which is 

greater than both t in t-MST and tH in estimating the HR. In this case, the parameter s 
dictates how fast the HR increases with time and ARE. Although HR crosses one, two 

survival functions here don’t cross within the interval [0, tM]. The second setting 

corresponds to the case where the treatment benefit is large at time 0 but gradually 

diminishes. To characterize this pattern, we let α(u) = −c(tM − u)s, where the constant c is 

chosen such that the average HR, tM
−1∫ 0

tMexp{α(u)}du, is approximately 0.7. The last setting 

corresponds to the case, where the treatment benefit is small at the beginning but grows 

gradually during the follow-up. Specifically, we let α(u) = −cus, where c is a constant such 

that the average HR is approximately 0.7. For all three settings, both the analytic ARE and 

ERE based on 5000 simulations are evaluated for all combinations of s ∈ {0.5, 1, 2}, λc ∈ 
{0.06%, 2.5%} and survival rates S0(t) ∈ {0.30, 0.50, 0.70} and reported in Table 2. In the 

simulation, we let (t, tH, tM) = (40, 42.5, 43) to reflect the fact that HR often can be 

estimated over a larger time interval than t-MST.

When HR is monotone increasing and crosses one during the follow-up (Case 1), the t-MST 

based test can be substantially more efficient than the HR-based test; when the HR is less 

than one at time 0 and increases to 1 at the end the study (Case 2), the t-MST based test is 

also more efficient than the HR-based test but the difference is modest; and when the HR is 

1 at time 0 and decreases over time (Case 3), the t-MST based test can be less efficient than 

the HR-based test. Similar to the case where the PH assumption holds, the EREs are in 

general consistent with their asymptotical counterparts in all settings, supporting the use of 

EREs for evaluating the finite sample performances of two tests.

5. Conclusions

In this paper, we compared the inference procedures based on HR and the t-MST difference 

under a hypothesis testing paradigm. Through an extensive numerical study with various 

treatment difference profiles, the AREs for the t-MST and HR tests are similar under the 

PH-models. For the non-PH models, unless the true difference of two survival functions is 

quite large near the end of the study and the censoring is light during the study follow-up, 

the t-MST test generally outperforms the HR test. The employed technique is analogous to 

those used for comparing the nonparametric tests for shift in location with the t-test when 

the normality assumption is violated (Ruberg, 1986). In summary, the t-MST based test is 

preferred if we are expecting an early benefit, for example, caused by less invasive treatment 

such as a low dose option. On the other hand, HR-based test is more powerful for detecting 

the delayed treatment effect encountered in recent oncology trials testing the efficacy of 

immunotherapy.
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Perhaps a line of future research is to construct more powerful tests adaptive to the deviation 

from PH assumption. There are quite a few novel statistical tests for non-proportional 

hazards alternatives proposed and discussed in the literature (Fleming et al., 1987; Pepe and 

Fleming, 1989; Kosorok and Lin, 1999; Feng and Wahed, 2008; Yang and Prentice, 2010; 

Uno et al., 2015; Garès et al., 2015). However, there are no coherent corresponding 

estimation procedures to quantify the treatment difference. A more powerful test than the 

HR test for a non-PH case without a companion estimation procedure would have limited 

value clinically. To make coherent evaluation on the group difference, we suggest to first 

define a clinically meaningful measure summarizing the treatment benefit and employ the 

corresponding estimation and hypothesis testing procedure to conduct the statistical analysis. 

There are very few two-sample model-free estimating procedures for treatment effect, which 

can also be used for testing the equivalence of two survival functions in survival analysis. 

For example, one may use the difference or ratio of two t-year event rates, median survival 

times, and t-MSTs. Often the median event time is not estimable due to a short study 

followup time. Using the t-year event rate difference as the primary parameter of interest 

would ignore the temporal profile of the treatment effect before and after the time point t. 
The estimate for the t-MST difference or ratio appears to be a useful tool for analyzing event 

time observations for both its interpretability and the power of the associated hypothesis 

testing procedure.
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Figure 1. 
The weight functions for t-MST and HR based tests; solid: weight function for t-MST based 

test; dotted: weight function for HR based test; (a) light drop-out rate with λc = 0.06% and 

(b) high drop-out rate with λc = 2.5%
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Figure 2. 
(a) The KM curves in two arms of the ECOG-ACRIN study; (b) The survival curves based 

on the Weibull model in two arms of the ECOG-ACRIN study without assuming the PH 

assumption; (c) The survival curves based on the Weibull model in the high dose arm of the 

ECOG-ACRIN study assuming the PH assumption with a HR of 0.7; solid: high dose arm; 

dotted: low dose arm.
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Table 1

Asymptotical relative efficiency ARE) and empirical relative efficiency (ERE) under PH alternatives with a 

HR of 0.7; EREs are estimated based on 5000 sets simulated data.

ARE(ERE)

Censoring light heavy

S0(t) = 0.90 0.95(0.94) 1.05(1.03)

S0(t) = 0.80 0.96(0.96) 1.05(1.03)

S0(t) = 0.70 0.97(0.93) 1.05(1.01)

S0(t) = 0.60 0.98(0.96) 1.06(1.03)

S0(t) = 0.50 0.99(0.96) 1.06(1.02)

S0(t) = 0.40 1.01(0.97) 1.06(1.02)

S0(t) = 0.30 1.02(0.97) 1.06(1.02)

S0(t) = 0.20 1.04(0.99) 1.05(1.02)

S0(t) = 0.10 1.05(1.01) 1.04(1.01)
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