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Abstract

The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has 

also been shown to regulate many non-fibrinolytic functions in the central nervous system (CNS). 

In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in 

the CNS, regulating events such as neuronal plasticity, excitotoxicity and cerebrovascular barrier 

integrity, whereas urokinase-type plasminogen activator (uPA) is mainly associated with tissue 

remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier 

integrity may provide a unifying mechanism for the reported diverse, and often opposing, 

functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic 

effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence 

of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently 

parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate 

regarding the neurotoxic versus neuroprotective roles of tPA.
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INTRODUCTION

In the vascular lumen the main function of the serine protease tissue-type plasminogen 

activator (tPA) is activation of the zymogen plasminogen to plasmin, and subsequent 

degradation of fibrin clots1. Because of its role in fibrinolysis, tPA is used as a thrombolytic 

agent for treatment of ischemic stroke, although its use is greatly limited due to concerns for 
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hemorrhagic complications and the requirement that it is administered within a few hours of 

onset of symptoms2. The mechanism by which thrombolytic tPA might lead to hemorrhagic 

transformation of ischemic stroke is not completely understood, but it appears to be due to 

unique activities of tPA in the central nervous system (CNS), beyond its well established 

role in fibrinolysis. These unique CNS activities of tPA have over the past two decades been 

reported to include many diverse processes such as neuronal development3, neuronal 

plasticity4, axonal regeneration5,6, neurovascular coupling7, excitotoxicity8–10, 

neuroprotection11, microglial activation/inflammation12,13, and blood-brain barrier (BBB) 

control14–16. In addition, these pleiotropic effects of tPA in the CNS have also been 

proposed to be mediated via multiple potential substrates and receptors17,18. How tPA 

mediates such diverse functions in the CNS is still a matter of debate but several hypotheses 

have been suggested, including tPA concentration and tPA conformation (single chain tPA 

versus two chain tPA) (reviewed in19). Recently we proposed an alternative explanation, 

suggesting that the neurovascular events regulated by tPA might provide a unifying pathway 

for many of the pleiotropic effects of tPA20. We reasoned that, instead of tPA directly 

performing all these diverse functions in the CNS, it might be that tPA’s role in regulating 

cerebrovascular integrity, and thereby parenchymal homeostasis, could indirectly affect 

events such as neuronal signaling pathways and excitotoxicity through loss of precise 

control of the extracellular environment. In this review we will summarize what is known 

about the role of tPA in the CNS during physiology and disease in light of this 

cerebrovascular regulatory theory.

THE NEUROVASCULAR UNIT AND THE BBB

The cerebrovascular bed is unique in that normal CNS function requires a highly regulated 

extracellular environment to keep the concentrations of most molecules within a very narrow 

range21. Cerebrovascular homeostasis is maintained by the BBB, which forms a mechanical 

and functional barrier between the systemic circulation and the CNS that tightly controls 

trafficking of substances between the blood and the CNS22. The barrier properties are 

established by the brain endothelial cells, but it is widely recognized that the other cells in 

the neurovascular unit (NVU), including perivascular astrocytes in particular, as well as 

vascular mural cells (vascular smooth muscle cells and pericytes) and neurons, all work 

together in a coordinated way to regulate the extracellular environment of the brain 

parenchyma (Figure 1)20,21,23,24. Thus, the interaction between neurons, astrocytes and 

endothelial cells plays a central role coupling energy supply and changes in the CNS 

extracellular environment with neuronal activity25–28.

IS tPA-MEDIATED REGULATION OF NEUROVASCULAR RESPONSES THE 

INITIAL EVENT DIRECTING LATER RESPONSES IN THE CNS?

It is well established that cerebrovascular responses to neuronal activity are critical for 

maintaining parenchymal homeostasis through three closely linked and related effects: 1) 

neurovascular coupling, which refers to increases in cerebral blood flow in response to 

neuronal activity; 2) neurobarrier coupling, which refers to changes in transport or the 

movement of molecules across the BBB; and 3) neurometabolic coupling, which refers to 
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changes in local metabolic factors, such as glucose and lactate, in response to neuronal 

activity (reviewed in28). The reports showing that tPA promotes neurovascular7, 

neurobarrier14, and possibly neurometabolic coupling29 thus suggest that under physiologic 

conditions tPA is released into the NVU in response to neuronal activity where it exerts 

these neurovascular effects to accommodate the increased energy demand incurred by the 

increased firing rates occurring during routine processing in the neocortex. However, during 

pathologic conditions this is exaggerated leading to disproportionate opening of the BBB, 

which results in extravasation of harmful blood-borne substances into the CNS and the 

subsequent loss of the tight regulation of the CNS extracellular environment. Based on this 

we hypothesize that the neurovascular events regulated by tPA could provide a unifying 

pathway for many of the pleiotropic effects of tPA in the CNS. For example, studies have 

suggested that a primary role of tPA in the CNS is direct regulation of neuronal activity 

through its action on the N-methyl-D-aspartate (NMDA)-receptor and neuronal calcium 

signaling10,30,31. However, since the concentration of glutamate is 25–200-fold higher in 

plasma than in the CNS extracellular fluids32, then it is conceivable that tPA-induced 

changes in BBB permeability could overwhelm the astrocyte-mediated glutamate shuttle 

resulting in the buildup of extracellular glutamate33 which in turn, could promote 

dysregulation of the NMDA signaling pathways and lead to excitotoxicity9. Thus, we 

suggest a possible common pathway for tPA permitting modulation of CNS function through 

the regulation of the neurovascular unit.

PHYSIOLOGIC ROLES OF tPA IN THE CNS

Our understanding about the physiologic role of tPA in the CNS is still very limited and 

most of our knowledge is based on studies utilizing genetically modified mice in various 

experimental models of disease as well as in vitro systems. However, in recent years 

significant efforts and advancements have been made to delineate the function and 

mechanism of action of tPA in the CNS (summarized in table 1).

Expression, regulation and downstream mediators

Expression: tPA is widely expressed in the CNS, but until recently little has been reported 

on its cellular and subcellular distribution in vivo in healthy brain. Among the highest 

expression of tPA in the murine CNS is seen within the vascular endothelial cells34, however 

it is believed that this source of tPA is nearly exclusively released into the blood stream upon 

stimuli and not into the parenchyma of the CNS35. High expression of tPA in the murine 

brain has also been reported in the cortex, amygdala and the mossy fibers of the 

hippocampus36,37, in a variety of different cells including astrocytes38, microglia12, and 

neurons39. This expression pattern was confirmed by studies in transgenic mice expressing a 

LacZ reporter gene under the human tPA promoter showing remarkable tPA promoter 

directed expression to the hippocampus, dentate gyrus and to various layers within the 

cortex40. Whilst the expression in astrocytes and microglia cells in the healthy murine brain 

has been questioned by some researchers41, the neuronal expression has been confirmed by 

many studies in mice12,20,37,41 and in humans42. A recent study claims that the neuronal 

expression of tPA is restricted to a subset of excitatory neurons in mice and rats (after 

blockage of axo-dendritic transport)41, however this is not supported by our own findings 
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indicating that tPA is also expressed in a subset of perivascular interneurons in the naïve 

murine CNS20. Nevertheless, the neuronal expression of tPA and the fact that it has been 

shown to be released in an activity-dependent manner via exocytosis43,44, in combination 

with the reports that tPA can be found in close proximity to arterioles on the brain 

parenchymal side of the cerebral vessels (Figure 2A)15,20,37, has led to the suggestion that 

tPA is involved in regulation of cerebrovascular responses in physiologic settings (discussed 

in further detail below)7. This is supported by our recent findings that the perivascular 

neurons expressing tPA are VIP (vasoactive intestinal peptide)-positive interneurons, which 

are known to regulate vascular responses such as vascular tone22,45,46.

Regulation: The main inhibitor of tPA activity in the blood is plasminogen activator 

inhibitor 1 (PAI-1)1, however, this serine protease inhibitor (serpin) is only weakly expressed 

in the healthy murine20,47 and human48,49 brain. It was therefore considered unlikely that 

PAI-1 is a major regulator of tPA activity in the CNS, at least in regulation of physiologic 

events. Nevertheless, in pathologic conditions, such as cerebral ischemia and traumatic brain 

injury (TBI), PAI-1 has been shown to play a role in regulation of tPA activity, which is 

further supported by the increased levels of PAI-1 found in the CNS during pathologic 

conditions50,51. The identification of another member of the serpin family, neuroserpin, that 

is largely specific for the CNS48,49,52–54 led to the hypothesis that this is the physiologic 

relevant inhibitor regulating tPA activity in the brain55. This notion was supported by 

expression analysis and biochemical evidence showing strong inhibition of tPA by 

neuroserpin and considerably less efficient inhibition of other serine proteases52,54. 

However, it was not until recently that we were able to demonstrate that neuroserpin was not 

only blocking tPA activity in vitro, it was also a relevant regulator of tPA activity in the 

murine CNS20. Interestingly, confocal microscopy studies revealed that perivascular 

neuroserpin is expressed in specific somatostatin-positive interneurons, which, like tPA-

expressing VIP-positive interneurons, are known to regulate cerebrovascular 

responses22,45,46. It has been postulated that neuroserpin may also have other protease 

targets56 and non-inhibitory functions57 in vivo although this requires further exploration 

(reviewed in58).

Downstream mediators: The mechanism by which tPA exerts its actions in the CNS is 

controversial. Both plasminogen-dependent and plasminogen-independent pathways have 

been postulated to act through several potential downstream mediators in the CNS including 

matrix metalloprotease 9 (MMP-9)59, activated protein C (APC)60,61, neurotrophic factors 

(pro-NGF and pro-BDNF)62,63 and platelet-derived growth factor CC (PDGF-CC)15,64. tPA 

is also known to bind and/or activate a set of receptors such as low density lipoprotein 

receptor-related protein (LRP)65,66, NMDA-receptor10, annexin-II67, and epidermal growth 

factor receptors (EGFRs)68. These downstream mediators and co-receptors of tPA have been 

shown to control a wide array of biological functions in the CNS during normal physiology 

and in disease models, including neurotoxic and neuroprotective roles as well as regulation 

of cerebrovascular permeability (discussed in further detail below).
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Function in the CNS

To investigate the role of tPA in the CNS many studies have utilized mice where the gene for 

tPA, Plat, has been deleted69. These mice have been said to express the non-proteolytic 

domains of tPA with the potential to influence experimental outcomes70, however there is no 

experimental evidence in the literature supporting this claim. It has also been reported that 

the existing strain of tPA deficient mice (tPA−/−) do retain significant segments of 129 DNA 

associated with the Plat allele, even after extensive backcrossing onto C57BL/6J 

background71. This study also showed that this region of chromosome 8 carries a significant 

number of mutations unique to the 129 strain that co-segregate with the Plat allele, including 

several potential null mutations. This may confound the interpretation of experiments 

performed utilizing the original tPA−/− mice69, and is why a novel “passenger mutation”-free 

tPA deficient mouse strain (tPA−/− NIH) was generated as a useful community resource for 

further exploration of tPA function in physiology and disease71.

CNS development—Very little is known about the role of tPA in CNS development, 

although genetic deletion studies indicate that tPA does not play an essential role during 

embryonic development69,71. Expression studies in the developing mouse CNS have shown 

that tPA is synthesized by a variety of neuronal cells, with the highest expression reported in 

areas of extensive neuronal migration and tissue remodeling72. Based on these findings it 

has been hypothesized that tPA facilitates neuronal migration or neurite outgrowth through 

degradation of cell-cell or cell-matrix adhesions. Since then a number of studies, mainly in 
vitro cell culture experiments but also some in vivo studies, have been performed supporting 

a role for tPA in neuronal remodeling and migration during CNS development. For example, 

tPA was found to be released at the neuronal growth cone73, and to mediate neurite 

outgrowth and remodeling74. Further it was shown that migration of cerebellar granule 

neurons is perturbed in tPA−/− mice75. With regard to the BBB hypothesis it is tempting to 

speculate that increased metabolic demand during neuronal migration might lead to tPA-

mediated changes in neurovascular, and/or neurometabolic, coupling responses.

The tPA−/− mice were recently reported to display congenital brain defects including 

abnormal cerebrovascularization indicating a previously unrecognized role of tPA in 

cerebrovascular development76. Interestingly, the tPA−/− mice were also found to display 

mild cerebral ventricular malformations, a feature previously associated with ablation of 

PDGF-C77, thereby providing a potential in vivo link between tPA and PDGF signaling in 

CNS development. However, considering the novel report of the “passenger-mutations” in 

these tPA−/− mice it will be interesting to determine whether these congenital 

cerebrovascular and ventricular abnormalities are a true effect of tPA ablation also in the 

novel tPA−/− NIH strain71. If so, it will be interesting to determine whether this is a 

plasminogen-dependent or plasminogen-independent process through studies in 

plasminogen deficient mice. It is interesting in this regard that obstructive hydrocephalus, 

associated with cerebroventricular enlargement, has been reported to be associated with 

plasminogen deficiency in humans78. It should be noted that these congenital defects might 

have unforeseen effects on the experimental outcome and thus needs to be taken into account 

when interpreting data achieved utilizing genetically modified mice.
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Adult CNS physiology

Learning and memory: The idea that tPA is involved in the process of learning and 

memory came from the findings that tPA was highly expressed in the mossy fibers of the 

hippocampus and that neuronal activity induced mRNA expression of tPA in hippocampal 

pyramidal neurons during late phase long-term potentiation (L-LTP)36. L-LTP is a well-

studied model system of learning79 and has been shown to be significantly decreased in tPA
−/− mice80,81. In addition, tPA has been implicated in other models of increased neuronal 

activity including models of learning4,82,83, visual cortex plasticity84 and memory85. Studies 

using transgenic mice over-expressing tPA86 or intrahippocampal infusion of tPA82 confirms 

that tPA facilitates L-LTP and learning.

The underlying mechanism by which tPA might facilitate L-LTP has been shown to be 

mediated by LRP87, potentially via plasmin-mediated cleavage of proBDNF to the mature 

form of BDNF63. Interestingly though, L-LTP has been shown to be associated with 

increased BBB permeability88 and the large pyramidal neurons within the hippocampus are 

known to have particularly high metabolic demand, thus making them especially sensitive to 

damage from a variety of environmental and biological insults89. Thus, in line with our 

hypothesis, it might be that tPA-induced changes in the NVU and the subsequent increase in 

cerebrovascular permeability during learning, through an LRP-dependent process, leads to 

altered parenchymal homeostasis which in turn promotes cleavage of proBDNF.

Neurovascular and neurometabolic coupling: Local cerebral blood flow increases rapidly 

in response to neuronal activity, a phenomenon termed functional hyperemia or 

neurovascular coupling. This is believed to be critical for the maintenance of substrate and 

energy supply to the activated neurons as well as for clearance of metabolic by-products22. 

Although the process of neurovascular coupling is still not completely understood, 

perivascular astrocytes and various vasoactive mediators, including tPA7, have been 

proposed to be of importance22,90. The prospect that tPA has a role in normal neurovascular 

coupling, as suggested by Park et al. utilizing tPA−/− mice in a model of whisker evoked 

neuronal activation7, is supported by several lines of evidence. First, coupling of local 

neuronal activity to local blood flow has been shown to be controlled to a large extent by 

penetrating arterioles and tPA has been shown to primarily be associated with arterioles in 

the CNS (Figure 2A)15,20,91. Second, our recent data illustrate perivascular tPA to be 

expressed by VIP-positive interneurons, whereas its inhibitor neuroserpin was found in 

somatostatin-positive interneurons20. This is interesting since VIP-expressing ‘vasomotor’ 

interneurons have been reported to induce dilation of local microvessels, while somatostatin-

expressing neurons induce contraction22,45,46, suggesting that neuroserpin/tPA may form a 

regulatory circuit that regulates cerebrovascular responses. Third, tPA has been reported to 

reduce vessel reactivity to increased luminal pressure and vasoactive mediators, suggesting 

that tPA may be involved in regulating vascular tone92,93, and finally, systemic delivery of 

tPA at low concentrations can directly reduce cerebral vascular resistance and systemic 

blood pressure93. However, given the recent observations that tPA−/− mice display a 

decreased number of large diameter ASMA-positive vessels76, and that neurovascular 

coupling was found to take place exclusively at ASMA-positive, SMC-covered, arterioles94, 

it might be that the cerebrovascular rearrangements associated with tPA deficiency may 
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explain the attenuated neurovascular coupling response in these mice7. This warrants further 

investigation.

In addition, tPA has been implicated in neurometabolic coupling29,95, which refers to 

changes in local metabolic factors, such as glucose and lactate, in response to neuronal 

activity28,96. Using in vitro neuronal cultures under conditions of oxygen-glucose 

deprivation it was shown that tPA, via a plasminogen-independent mechanism, increase 

neuronal uptake of glucose through induction of the glucose transporter GLUT3. Although 

intriguing, and in line with the idea that tPA facilitates neuronal function through coupling 

energy supply to demand, this needs to be confirmed in vivo, in non-pathologic conditions.

Vascular permeability: The first indications that tPA plays a role in the regulation of 

vascular permeability came from animal studies of embolic stroke, where thrombolytic 

treatment with tPA was associated with evidence of increased vascular permeability97,98. 

Since then the association of tPA with the NVU and its correlation with BBB regulation has 

been well established, although the mechanism underlying this capacity of tPA remains 

controversial18. Some reports have suggested a plasmin-independent role for tPA14,15 

whereas others have reported tPA-mediated plasmin generation as crucial for tPA activity on 

the BBB16,99. Nevertheless, tPA’s action on the BBB has been shown to require interaction 

with the CNS side of the NVU, as tPA administered intravenously in unchallenged wild type 

mice does not elicit opening of the BBB whereas tPA administered on the CNS side of the 

NVU does15.

Our previous data show that platelet-derived growth factor CC (PDGF-CC) is acting directly 

downstream of tPA in the CNS where it regulates BBB integrity through PDGF receptor α 
(PDGFRα) signaling on perivascular astrocytes (Figure 2B)15. PDGF-CC is expressed as a 

latent factor that is cleaved by tPA in a plasmin-independent manner to generate active 

PDGF-CC capable of binding PDGFRα64. Injection of active PDGF-CC protein into the 

CSF of mice was reported, like tPA, to rapidly increase BBB permeability and neutralizing 

antibodies against PDGF-CC inhibited tPA-induced opening of the BBB15. No gross 

changes of vascular structures were reported within this time frame, even though the extent 

of Evans Blue extravasation into the brain parenchyma was significant, suggesting that the 

activation of PDGF-CC/PDGFRα may represent a regulated physiological process that 

controls the BBB. The activation of PDGF-CC by tPA depends on interactions between the 

kringle-2 domain of the protease with the two domains in the PDGF-C polypeptide chain100 

as well as on binding to the co-receptor LRP15.

This presumably ensures correct positioning of tPA and PDGF-CC enabling activation in 

close proximity to the PDGFRα receptor in the NVU and stimulation of increased 

cerebrovascular permeability. This is supported by the findings that desmoteplase, vampire 

bat-derived plasminogen activator, which lacks the kringle-2 domain101, and thus 

presumably interaction with PDGF-CC, has been shown to have no effect on inducing BBB 

permeability16. Taken together we propose that in physiologic conditions tPA is released in 

response to neuronal activity into the perivascular space where it activates PDGF-CC, and 

subsequently PDGFRα signaling on perivascular astrocytes, through interaction with LRP, 

which leads to cerebrovascular changes associated with neuronal activity (Figure 3A)18.
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It should be noted that the action of tPA on BBB regulation has also been reported to be 

mediated by plasmin and downstream mediators other than PDGF-CC, including plasmin-

induced truncation of MCP116,99. In the case with MCP1 it was found that BBB integrity 

was compromised much later than that induced by PDGF-CC. Prolonged opening of the 

barrier will lead to changes in parenchymal homeostasis where blood-borne substances such 

as plasmin can enter the CSF and in turn cleave MCP1. In support of this hypothesis are our 

findings that early after barrier breach induced by PDGF-CC, no gross changes of vascular 

structures were noted15, whereas MCP1-induced opening was associated with disruption of 

tight junction proteins (occludin and ZO-1) and reorganization of the actin cytoskeleton99.

Further, it has been postulated that the controversy regarding mechanisms mediating the role 

of tPA in BBB regulation may, at least in part, be due to the concentration of tPA70. Through 

a number of elaborate calculations and assumptions the overall concentration of tPA in the 

brain three hours after an ischemic event has been proposed to be ~1 nM, and even lower 

during physiologic conditions70. Therefore, since the amounts of tPA often used in 

experimental settings could potentially result in tPA concentrations that are higher than this, 

it has been suggested that these potentially supraphysiologic concentrations might lead to 

non-physiologic observations70. However, the actual endogenous concentration of tPA in the 

NVU is not known, and may in fact be significantly higher than the 1nM suggested above. 

Indeed, the release of tPA from activated neurons and subsequent binding to co-factors such 

as LRP, could generate very high local concentrations of tPA in the NVU which could be 

underestimated when evaluating gross brain tissue extracts.

PATHOPHYSIOLOGIC ROLES OF tPA IN THE CNS

It was quickly recognized that the physiologic roles of tPA in the CNS may also be involved 

in pathophysiological events observed in several neurological diseases including cerebral 

ischemia, head trauma and seizures58. This led to a large number of in vitro and in vivo 
studies, but the role of tPA in pathology is still intensely debated and the literature is 

conflicted. The main controversy concerns the potential neuroprotective or neurotoxic 

functions of tPA in the CNS and what downstream mediators facilitates the response. Here 

we discuss how these controversies might be explained by the early effect of tPA on 

cerebrovascular permeability. Interestingly, the role of tPA in BBB regulation highlights a 

commonality in neurovascular signaling events between diverse neurologic disorders and 

may potentially represent a previously overlooked therapeutic target for seemingly unrelated 

brain diseases.

Ischemic stroke

Stroke is a leading cause of adult morbidity and mortality102. The most common form of 

stroke is ischemic stroke, which occurs when there is an abrupt interruption of blood flow to 

the brain. The finding that tPA specifically binds to, and is stimulated by fibrin103,104 led to 

the hypothesis that clot lysis (thrombolysis) using tPA would facilitate a localized activation 

of plasmin at the site of occlusion. This was successfully demonstrated early on105 and 

today tPA is the only approved thrombolytic drug for treatment of acute ischemic stroke2. 

However, early animal studies advised against indiscriminate use of thrombolytic tPA in 
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ischemic stroke as it was reported to mediate neuronal damage or cerebral 

haemorrhage8,106–109. Consistent with these preclinical studies, thrombolysis with tPA in 

ischemic stroke patients carries a significant risk of intracerebral hemorrhage2,110–113, and 

due in part to this increased risk of hemorrhagic conversion it is estimated that only 5–7% of 

ischemic stroke patients receive intravenous tPA, with another 1–2% receiving intra-arterial 

therapy2,114–119. The mechanism by which thrombolytic tPA might lead to increased 

hemorrhagic transformation is not completely understood, but it appears to be due in part to 

unique activities of tPA in the CNS. This is supported by the findings that tPA activity 

rapidly increases in ischemic tissue in experimental models of ischemic stroke14,107,120.

One of the first studies demonstrating that tPA can negatively affect outcome in an 

experimental model of middle cerebral artery occlusion (MCAO) showed that tPA−/− mice 

had significantly smaller cerebral infarcts than wild type mice, and that intravenous 

administration of tPA to tPA−/− mice increased infarct volume to levels comparable to wild 

type controls107. In support of this it has been shown that neuroserpin, the primary inhibitor 

of tPA in the CNS20, provided neuronal protection and reduced infarct volume during 

MCAO120,121. Based on these studies, it was concluded that tPA has neurotoxic effects in 

the ischemic brain. It should however be noted that a number of conflicting studies have 

been published showing that loss of tPA is associated with increased lesion volume122, and 

conversely, that increased levels of tPA, through intravenous administration of tPA to wild 

type mice or transgenic overexpression of tPA in neurons of mice (T4), decreased infarct 

volume following MCAO29. This proposed a neuroprotective role of tPA during MCAO and 

the mechanism of action was ascribed to tPA-induced increase in GLUT3 expression 

followed by increased glucose uptake to meet the increased metabolic demand of cerebral 

cortical neurons. In line with this hypothesis it was reported that the T4 transgenic mice that 

neuronally overexpress tPA displayed significant upregulation of GLUT3 protein expression 

in ischemic brain tissue and higher glucose uptake after MCAO29. However, it is somewhat 

difficult to reconcile these data since GLUT3 expression and glucose uptake was found to be 

decreased in wild type mice after MCAO, despite an increased endogenous release of tPA 

during ischemia14,107,120. Thus, it is possible that, similar to the tPA−/− mice, overexpression 

of tPA in the neurons of T4 mice is associated with some congenital cerebrovascular 

anomaly that has yet to be discovered.

The mechanism by which tPA exerts neurotoxic effects has been postulated to be mediated 

through plasmin-independent cleavage of the NR1 subunit in NMDA-receptor followed by 

enhanced signaling10. However, the direct cleavage of NR1 has later been questioned by 

other research groups who have suggested that the NMDA-receptor is not a direct target of 

tPA proteolysis, although plasmin was found to be able to mediate cleavage of the NMDA-

receptor123,124. Instead, as noted above an alternative mechanism has emerged, suggesting 

that tPA-mediated changes in cerebrovascular permeability might be the underlying cause of 

the neurotoxic effects reported for tPA in the CNS. This was based on the discoveries that 

tPA increases permeability of the BBB both in rodents14,98 and in humans125 following 

ischemic stroke. This is particularly interesting since BBB dysfunction is a hallmark of 

many neurologic diseases, including ischemic stroke126 and it has been proposed that 

pathologic disruption of the barrier will lead to extravasation of blood-borne molecules such 

Fredriksson et al. Page 9

Semin Thromb Hemost. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as fibrin(ogen) into the brain parenchyma where it can trigger different cellular and 

molecular responses including a delayed inflammatory response127.

In one study14 it was demonstrated that tPA−/− mice were protected from early loss of BBB 

integrity after MCAO. This study further showed that the tPA-induced opening of the BBB 

was dependent on the proteolytic activity of tPA, but was independent of plasmin, thus 

indicating the existence of another tPA substrate. Since MMP-9 had been implicated as a 

downstream mediator of tPA in the CNS59 and MMP-9 deletion in mice had been shown to 

reduce BBB permeability and infarct volume 24h after stroke128, this was initially thought to 

be responsible for the effect of tPA on the BBB. However, MMP-9 deficient mice were 

found to display BBB dysfunction similar to wild type mice early (6h) after MCAO14. 

Furthermore, depletion of circulating leukocytes was found to completely block the rise in 

MMP-9 activity within the first 24h after ischemic stroke129, suggesting that the increased 

MMP-9 activity seen after ischemic stroke is likely due to infiltrating leukocytes. This is 

consistent with the findings that MMP-9 is not expressed in either neurons or astrocytes in 

the first 24h after ischemic stroke130. Finally, it was also shown that treatment with 

recombinant tPA after transient middle cerebral artery occlusion exacerbates BBB disruption 

24 hours later in both wild-type and MMP-9 knockout mice131. Collectively these data 

suggest that MMP-9-mediated events occur on the luminal side of the NVU and are not 

involved in the early effects on BBB permeability mediated by tPA after ischemic stroke.

The findings that tPA regulation of the BBB is mediated through plasmin-independent 

catalysis of PDGF-CC and subsequent activation of PDGFRα on perivascular astrocytes 

(discussed above), and that blocking this pathway, either by neutralizing antibodies against 

PDGF-CC or with the PDGFRα inhibitor imatinib, significantly reduced BBB permeability 

and hemorrhagic complications associated with thrombolytic tPA treatment suggested a 

potential treatment strategy to reduce the complications associated with thrombolytic tPA by 

inhibiting PDGFRα signaling15. Support for the potential role of PDGF-CC in thrombolysis 

associated complications in humans was provided by a study showing that PDGF-CC levels 

are increased in the plasma of ischemic stroke patients after thrombolytic tPA treatment and 

higher levels of PDGF-CC were associated with an increased risk of hemorrhagic 

transformation132. On the basis of these findings a randomized controlled clinical trial has 

been conducted at the Karolinska University Hospital to assess the possibility of using 

imatinib as an adjuvant therapy with thrombolytic tPA and the outcome of this study is 

currently being evaluated (Istrokepilot, EudraCT Number: 2010-019014-25).

It is thus possible that decreased energy and metabolic supply to neurons during ischemia 

leads to increased release of tPA into the NVU, where it, through activation of PDGF-CC/

PDGFRα signaling, leads to increased BBB permeability (Figure 3B). However, excessive 

signaling leads to further opening of the barrier and subsequent extravasation of blood-borne 

substances from the vascular space into the brain parenchyma. Following intravenous 

treatment with thrombolytic tPA it is plausible that exogenous tPA enters the brain through 

the breached BBB thereby exacerbating the PDGF-CC/PDGFRα signaling in the NVU. This 

might eventually cause complete disruption of the BBB consequently resulting in 

hemorrhagic complications. It should be noted that thrombolytic therapy with tPA in patients 

with pulmonary embolism, deep vein thrombosis or myocardial infarction also carries a ~1 
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to 1.5 % risk of symptomatic intracerebral hemorrhage133,134, suggesting that even without 

cerebral ischemia exogenous tPA can induce BBB opening and promote hemorrhage. This is 

also supported by the fact that intravenous administered tPA can cross the intact barrier and 

slightly increase BBB permeability in naïve rats135.

Interestingly, tPA-catalyzed activation of PDGF-CC/PDGFRα signaling can also induce 

BBB permeability and contribute to disease progression in a number of other experimental 

models of neurologic disease including TBI136, seizures20 and amyotrophic lateral sclerosis 

(ALS)137 (discussed below).

Traumatic brain injury (TBI)

The broadening role of tPA in regulation of BBB permeability in ischemic stroke raised the 

question of its role in other CNS pathologies. In the case of TBI BBB disruption is a serious 

consequence which plays a major role in the promotion of cerebral edema and increase in 

intracranial pressure; two devastating clinical manifestations of TBI that contribute to the 

high level of mortality and morbidity post injury, and for which there are scant therapeutic 

options138. Although ischemic stroke and TBI have vastly different initiating stimuli, there 

was a clear rationale to explore the role of tPA in the promotion of BBB permeability 

following TBI.

Endogenous tPA, as well as most other components of the plasminogen activating system 

including plasminogen and PAI-1, are not only expressed in various compartments of the 

brain, they can be induced following various stimuli, including glutamate 

analogues51,139,140. As levels of excitotoxic amino acids are known to increase in the 

damaged brain following TBI141, it stood to reason that this would promote increases in the 

levels of endogenous tPA following TBI and that this in turn would influence outcome and 

recovery. Initial support for a detrimental role for tPA post-TBI was provided in a study in 

2001 where it was shown that tPA deficient mice had less edema and improved recovery in a 

model of TBI109. It was also shown in separate publications that administration of tPA to 

pigs subjected to TBI resulted in an increase in brain water content142. A later publication 

from the same group linked this effect of tPA to increased vasodilatation and activation of 

mitogen activated protein kinase143. Although none of these studies specifically investigated 

tPA mediated changes in BBB permeability following TBI, these results were certainly 

consistent with this possibility.

Direct evidence that levels of tPA activity were indeed upregulated following TBI, and was 

having a major influence on BBB permeability following TBI, was provided in 2011 and 

2012. Sashindranath et al. used a modified amidolytic assay to show that endogenous level 

of tPA activity were transiently increased in the cortex following TBI144. tPA activity 

increased ~25% within 1h of TBI and this increase was maintained at 3h post injury but 

reduced to pre-injury levels by 24h. A subsequent study from the same group compared the 

extent of BBB permeability in wild type and tPA−/− mice following TBI using the Evan’s 

Blue brain extravasation assay145. Wild type mice were shown to have marked increase in 

BBB permeability when assessed 3h post-TBI, however this was not seen in tPA−/− mice, 

thereby implicating endogenous tPA in this process. Importantly, tPA−/− mice also had 

improved neurological outcome following TBI. On the other hand, transgenic mice with 
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neuronal overexpression of tPA (T4 mice, described above) displayed enhanced BBB 

permeability and a more severe neurological phenotype post-TBI. Hence, tPA expression 

was causally linked with BBB permeability following TBI, with the absence of tPA being 

protective, and increased levels being deleterious in TBI, reminiscent of the results seen in 

earlier studies in mouse models of ischemic stroke.

An interesting observation arising from this study concerned the mechanism by which tPA 

was promoting BBB permeability following TBI. It was assumed that tPA was promoting 

parenchymal extravasation following TBI via its proteolytic capacity, either via plasmin 

generation or via different substrates (i.e. PDGF-CC). It was anticipated that inhibition of 

endogenous tPA would recapitulate the protective phenotype seen when tPA−/− mice 

subjected to TBI. The approach used by these authors was to inhibit local tPA activity within 

the lesion of the brain immediately following TBI by stereotactic injection of PAI-1. This 

approach indeed inhibited levels of endogenous tPA activity greater than 90% as determined 

using an amidolytic assay145. However, in stark contrast to expectations, the blocking effect 

of PAI-1 against tPA actually resulted in an increase in extravasation 3h post injury. This 

puzzling result was eventually explained when the authors investigated the downstream 

consequences of complexes formed between tPA and PAI-1. It has been known for decades 

that tPA:PAI-1 complexes (and indeed many other serpin:protease inhibitor complexes) are 

cleared from plasma and the extravascular space by LDL receptors146,147. It had also been 

reported that LDL receptors could modulate activity of integrins and receptor tyrosine 

kinases that in turn can initiate intracellular signaling148. Speculation therefore arose that the 

introduction of PAI-1 into the damaged brain following TBI, despite blocking endogenous 

tPA activity, was initiating an unanticipated signal through LDL receptors via the formation 

of tPA:PAI-1 complexes. Support for this notion was provided from a number of lines of 

evidence; first, co-injection of the LDL receptor antagonist, RAP with PAI-1 blocked the 

increase in extravasation; second, stereotactic injection of PAI-1 into tPA−/− mice had no 

effect at promoting extravasation post-TBI; third, co-injection of a PAI-1 mutant that poorly 

reacts with LDL receptors, failed to reproduce the effect, despite it being able to effectively 

inhibit tPA activity. Finally, injection of pre-formed tPA:PAI-1 complexes into the lesioned 

area of tPA−/− mice following TBI caused a significant increase in albumin extravasation.

It is possible that the discrepancy of this study, demonstrating that tPA-mediated opening of 

the BBB in TBI is through proteolytic inactive tPA in form of a tPA:PAI-1 complex145, and 

the previous in vivo and in vitro studies of tPA-mediated BBB regulation discussed above, 

showing that opening of the barrier requires proteolytic active tPA14,16 via activation of 

PDGF-CC signaling15, might be explained by temporally distinct mechanisms regulating 

BBB integrity in TBI. To address this a recent study was conducted where imatinib, an 

inhibitor of PDGF-CC signaling, was evaluated in a mouse model of TBI136. It was shown 

that inhibition of PDGF signaling in TBI significantly attenuated the extent of neuronal 

injury and BBB opening when evaluated 24h post injury136. Of further note in this study was 

the finding of PDGF-CC in the cerebrospinal fluid of patients with TBI, with PDGF-CC 

levels positively correlating with injury severity.

Hence, although at first glance it appears that tPA modulates BBB permeability via two 

different mechanisms in TBI (i.e. active tPA or inactive tPA:PAI-1 complexes) it may as well 
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be that these differences relate to a temporal order of events. We speculate that the initial 

increase in BBB permeability during TBI is mediated by proteolytic active tPA, potentially 

in response to the increased energy and metabolic demand in neurons following insult, and 

that excessive signaling leads to further opening of the barrier and subsequent increase in 

PAI-1 levels (through upregulated expression in response to the injury as well as increased 

extravasation from the vascular space into the brain parenchyma). This in turn leads to 

formation of tPA:PAI-1 complexes that can exacerbate opening of the BBB, eventually 

causing disruption of the BBB and leakage of harmful blood-borne substances into the brain 

after TBI (Figure 3). It remains to be determined whether tPA:PAI-1 complex-mediated 

increase in BBB permeability also occurs in ischemic stroke, but this is worth investigating. 

Nonetheless, whatever the mechanism these findings have provided novel opportunities to 

minimize BBB opening following TBI and in doing so reduce the devastating complications 

of cerebral edema and the rise in intracranial pressure, thus demonstrating clear translational 

possibilities of these findings.

Seizures

The first evidence that tPA is important in the development of seizures came from studies in 

mice showing that tPA expression is increased early after seizures36 and that tPA ablation 

leads to a higher threshold for seizures8,149, whereas neuronal overexpression leads to a 

lower seizure threshold150. The relationship between tPA and seizures in humans is less well 

understood, but a recent study has described a positive correlation between increased serum 

tPA levels and epilepsy severity in children with idiopathic and intractable epilepsies151. The 

mechanism by which tPA affects seizures is not fully established, but tPA has been 

suggested to act directly on neuronal cells by cleavage of the NMDA-receptor10, or 

indirectly by altering cerebrovascular permeability20. The latter is supported by the fact that 

impaired integrity of the BBB is a well-known feature of seizures, although it is debated 

whether impaired BBB function is just a consequence of seizure activity or a contributor to 

seizure progression (reviewed in126). However, since 30% of individuals with seizures fail to 

respond to existing treatments152, recent studies have begun to consider the 

cerebrovasculature as a potential avenue for therapeutic intervention20,153–156.

The seminal observation illustrating that tPA−/− mice are resistant to excitotoxin-induced 

neuronal death and seizures after intrahippocampal injection of excitotoxins, including the 

glutamate analog kanic acid (KA), led to the conclusion that, in pathologic conditions, tPA 

has neurotoxic properties8. Using a different experimental paradigm, where seizures were 

induced by injection of KA into the amygdala, other researchers were later able to confirm 

these results149. The fact that KA was not injected directly into the hippocampus allowed 

these researchers to dissect KA-induced, from seizure-induced, hippocampal neuronal death, 

yet genetic deficiency of tPA was associated with slower progression of KA-induced seizure 

activity throughout the limbic system and a decrease in seizures-induced hippocampal cell 

death.

To study the effect of tPA on excitotoxin-induced neuronal death without the confounding 

effect of seizures, a group of researchers injected NMDA, another glutamate analog, into the 

striatum of mice followed by intravenous treatment with tPA157. The advantage of this 
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model is that the injection of NMDA into the striatum does not induce seizures. Using this 

approach, these investigators found that intravenous administration of tPA increases the 

volume of the necrotic lesion caused by the injection of NMDA157. Interestingly, glutamate 

has been shown to induce BBB permeability158 suggesting that following NMDA injection, 

the BBB may be more permeable thus enabling intravenous tPA to extravasate into the brain 

parenchyma and further disrupt the barrier integrity.

In line with this a recent study illustrated that tPA regulated seizure progression primarily 

through control of the neurovascular unit and BBB integrity, and not through direct effects 

of tPA on neuronal activity20. This was supported by multiple independent experimental 

results, including the observation that increasing BBB permeability in seizure-resistant tPA
−/− mice dramatically enhanced the rate of seizure progression, while interventions that 

maintain BBB integrity delayed seizure propagation. In addition, the comparison of in vivo 
EEG recordings to ex vivo hippocampal electrophysiological recordings demonstrates that 

the phenotypic differences in seizure progression noticed between wild type (intermediate), 

tPA−/− (protected), and neuroserpin deficient mice (enhanced) in vivo, were absent in ex 
vivo studies where BBB regulation is no longer important for maintenance of the 

extracellular environment. As seen in ischemic stroke and TBI, the effect of tPA on BBB 

permeability in seizures was illustrated to be facilitated, at least in part, through PDGF-CC 

induced activation of PDGFRα signaling in perivascular astrocytes, which is of particular 

interest since earlier reports have suggested astrocytes to play a central role in the pathology 

of seizures155,159.

CONCLUDING REMARKS

It is well appreciated that tPA is controlling unique functions within the CNS distinct from 

its role in fibrinolysis, although the downstream targets mediating these functions and the 

suggested outcome ascribed to tPA activity in the CNS are many and intensely debated. Here 

we summarize the existing evidence in support of the hypothesis that the neurovascular 

events regulated by tPA might provide a unifying pathway for many of the pleiotropic effects 

of tPA in the CNS.
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ESSENTIALS

• Tissue-type plasminogen activator (tPA) is highly expressed in the CNS

• The role of tPA in the CNS is very different from its role in fibrinolysis within 

the vascular space

• tPA is reported to have many pleiotropic activities in the CNS, mediated 

through a number of various downstream substrates

• Here we propose that the neurovascular events regulated by tPA might 

provide a unifying pathway for many of the pleiotropic effects of tPA in the 

CNS
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Figure 1. 
The neurovascular unit (NVU). A) Schematic illustration of the structure and cellular 

components of the NVU. B) Confocal microscopy image showing the NVU in the naïve 

adult wild type murine brain. The perivascular astrocytic endfeet (white) completely 

ensheath the vascular smooth muscle cell (SMC) layer (red) and the endothelial tube (green). 

C) High magnification confocal image showing the order of cells in the NVU, with the 

endothelial cells (green) closest to the vessel lumen and the SMCs (red) tightly wrapping 

around the endothelial tube. Immunofluorescent staining of endothelial cells with anti-CD31 

antibodies (CD31), SMC with anti-ASMA antibodies and perivascular astrocytes with anti-

GFAP antibodies. Cell nuclei were visualized with DAPI (blue). The images in B display 

maximum intensity projections generated from confocal Z-stacks (25 μm). Scale bars in B 

and C 10 μm.
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Figure 2. 
Perivascular expression of tPA and PDGFRα in the NVU. A, A′) Confocal microscopy 

image showing expression of tPA (green) in the NVU of the naïve wild type murine brain. 

tPA is expressed as two distinct pools in the NVU; one within the endothelial cells 

(arrowheads) and another on the abluminal side of the vessels (arrows). Vessels were 

visualized by immunofluorescent staining using the endothelial cell marker podocalyxin 

(red, Podo). B, B′) Confocal image showing expression of PDGFRα (green) ensheathing 

(arrows) the vessel (red) in the NVU of the naïve wild type murine brain. Vessels were 

visualized by immunofluorescent staining using the endothelial cell markers in A, A′) 

podocalyxin (Podo) and in B, B′) CD31. Cell nuclei were visualized with DAPI (blue). The 

images display maximum intensity projections generated from confocal Z-stacks (A, A′ = 

17 μm; B = 20 μm; B′ = 4 μm). Scale bars, 10 μm.
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Figure 3. 
tPA-mediated regulation of BBB integrity. A) Under physiologic conditions tPA is released 

by activated neurons into the perivascular space where it activates PDGF-CC, and 

subsequently PDGFRα signaling on perivascular astrocytes, through interaction with LRP, 

which leads to cerebrovascular changes associated with neuronal activity. B) In pathologic 

conditions initial increase in BBB permeability is mediated by proteolytic active tPA, 

potentially in response to the increased energy and metabolic demand in neurons following 

insult. Excessive signaling via either active tPA or via tPA:PAI-1 complex formation and 

LDLR signaling, leads to further opening of the barrier and subsequent extravasation of 

blood-borne substances from the vascular space into the brain parenchyma. Following 

intravenous treatment with thrombolytic tPA it is plausible that exogenous tPA enters the 

brain through the breached BBB thereby exacerbating the PDGF-CC/PDGFRα signaling in 

the NVU.
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