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The inositol trisphosphate receptor �IPR� plays an important role in controlling the dynamics of
intracellular Ca2+. Single-channel patch-clamp recordings are a typical way to study these receptors
as well as other ion channels. Methods for analyzing and using this type of data have been devel-
oped to fit Markov models of the receptor. The usual method of parameter fitting is based on
maximum-likelihood techniques. However, Bayesian inference and Markov chain Monte Carlo
techniques are becoming more popular. We describe the application of the Bayesian methods to real
experimental single-channel data in three ion channels: the ryanodine receptor, the K+ channel, and
the IPR. One of the main aims of all three studies was that of model selection with different
approaches taken. We also discuss the modeling implications for single-channel data that display
different levels of channel activity within one recording. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3184540�

In this review we focus on an intracellular Ca2+ channel,
the inositol trisphosphate receptor (IPR), and describe
the use of single-channel data in constructing a Markov
model of the receptor. We discuss parameter fitting from
the point of view of Bayesian inference and Markov chain
Monte Carlo (MCMC) techniques and discuss a simple
Markov model for the IPR fitted using these techniques.
We also discuss models of two other ion channels: the
ryanodine receptor (RyR) and a K+ channel. Model selec-
tion is an important issue and the three ion channels dis-
cussed take different approaches to addressing this prob-
lem. We also look at the modeling aspects for modal
gating behavior.

I. INTRODUCTION

The modulation of free Ca2+ concentration is a regulator
of numerous physiological processes, including muscle con-
traction and cell division. However, prolonged periods of
elevated Ca2+ levels are toxic to cells, and so �Ca2+� oscilla-
tions are used to maintain an average elevated �Ca2+�. The
modulation of the Ca2+ concentration involves interaction
between the mechanisms controlling Ca2+ flux across the
plasma membrane and across internal cell compartment
membranes such as the endoplasmic reticulum �ER�.

In many cell types Ca2+ release from the ER is via the
IPR, which is regulated by Ca2+ and IP3 and other ligands.1

The release of Ca2+ from the ER can further modulate the
open probability of the channel with the result that complex
Ca2+ oscillations and waves are formed. It is clear that an

understanding of the IPR dynamics is central to a detailed
understanding of Ca2+ oscillations and waves.

Early binding models took into account the bell-shaped
open probability of the receptor as well as adaptive re-
sponses. Studies of channel gating have been done under
steady-state concentrations of IP3 and Ca2+,2–4 and a major
finding is that the steady-state open probability of the IPR is
a bell-shaped function of the Ca2+ concentration. Further-
more, in response to a step increase in Ca2+, the IPR re-
sponds in an adaptive manner, first activating and inactivat-
ing. This can be interpreted by assuming that Ca2+ activates
the IPR quickly and inactivates it slowly. The first models to
use the ideas of different time scales were those of De Young
and Keizer,5 Atri et al.,6 and Bezprozvanny.7 De Young and
Keizer5 assumed that the IPR consisted of three identical
subunits, of which all must be in a conducting state before
Ca2+ flux could occur. Each subunit had an IP3 binding site,
an activating Ca2+ binding site, and an inactivating Ca2+

binding site. Simplifying assumptions were made that re-
duced the number of rate constants from 24 to 10 and then
these parameters were chosen to give agreement with the
steady-state data of Bezprozvanny et al.2 This bell-shaped
property of the open probability has been a central feature in
many models of the IPR.5,7–11

Steady-state functions can also be used to model the
open probability of the channel. From their steady-state mea-
surements in type-I and type-III receptors, Mak and Foskett8

and Mak et al.9–11 used a model-independent biphasic Hill
equation to quantify the open probability Po as a function of
�Ca2+�.

The open probability of the channels is both increased
and decreased by Ca2+. Atri et al.6 also modeled the steady-
state open probability as a biphasic function made up of
three terms where two of the terms give the activation of the
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receptor by IP3 and Ca2+, and the third term describes the
inactivation of the receptor.

Time courses of Ca2+ release from the channel can also
be measured to study the kinetic properties of the receptor.
Labeled flux experiments on hepatocytes have shown that
after a step increase in Ca2+ concentration, the IPR flux first
increases and then decreases.12–15 These methods allow the
rates of unidirectional Ca2+ flux to be measured during rapid
superfusion. Their experiments suggested ideas of sequential
binding of IP3 and activating Ca2+ �Ref. 16� and Ca2+ modu-
lation of the receptor. Another method that can be used to
measure the kinetic response is by photoreleasing IP3. Flash
photolysis of caged IP3 was used by Parker et al.17 to gain
information about the Ca2+ release. Time-dependent data ob-
tained from labeled flux experiments were fitted by Sneyd
and Dufour.18 Their model incorporated the ideas suggested
by experiments, those of sequential binding of IP3 and acti-
vating Ca2+,16 modulation of IP3 binding by Ca2+, time-
dependent inactivation on IP3 binding, and saturating binding
rates of Ca2+.

However, as found recently by Mak et al.,19 there is no
requirement for sequential IP3 and Ca2+ binding for channel
activation or deactivation, invalidating many models.20 They
investigated the response of the channel to step increases in
Ca2+ and IP3 concentrations and simultaneous jumps in the
ligands �these experiments are discussed further below�.
Their data have yet to be utilized in modeling work, but
when used will allow for the construction of more realistic
models and thus facilitate a better understanding of Ca2+ sig-
naling.

More details on different IPR models can be found in the
review by Sneyd and Falcke.20 The models proposed for the
IPR have generally included ligand-binding steps that cause
the channel to open directly. Many IPR models have been
based on the model of Ref. 5, which had the requirement that
Ca2+ binding was needed for the channel to open. However,
such a simple approach ignores the concepts of affinity and
efficacy. In 1957, del Castillo and Katz21 proposed a model
which explicitly separated the agonist-binding step from the
gating step. In their model, the binding of an agonist places
the receptor in a state that is not open but allows transition to
an open state. The agonist-binding step is controlled by the
affinity of the receptor to the agonist and the gating is deter-
mined by the efficacy of the agonist. Reviews of these con-
cepts, in which the rate of opening saturates, can be found in
Colquhoun.22,23

Experimentally, single-channel patch-clamp recordings
are a typical way to study ion channels.24 An example of a
single-channel recording from the IPR is shown in Fig. 1
�experimental details of this record are given in Sec III C�.

Because of the intracellular location of the IPR, tradi-
tional patch-clamp techniques cannot be used and early
single-channel measurements were performed in lipid
bilayers.2,25 This approach suffers from the disadvantage that
the IPR is not in its natural environment and raises uncer-
tainty about whether the observed channel properties accu-
rately reflect the channel when in its native membrane envi-
ronment. However, two recent approaches have been
developed that allow the receptor to be studied in its native
environment. One approach exploits the fact that the ER is
continuous with the outer membrane of the nuclear
membrane.26,27 This approach has been used successfully to
record the activity in a variety of cells such as Xenopus oo-
cytes, CHO, DT40, and rat parotid acinar cells.1 In another
approach, it has recently been reported that the receptors
have been found in the plasma membrane of DT40 cells.28

The advantage of this is that the receptor is orientated such
that a normal orientation in the cytoplasm is retained and
thus the receptor might expect to be regulated in a normal
manner. The plasma membrane lipid environment is also
likely to be similar to the ER lipid membrane, although there
are reports that phospholipids and cholesterol may be higher
in the plasma membrane by Lange et al.29 The IPR is un-
usual because the same protein is expressed in the ER and
plasma membrane and functions in both as an IP3-gated
channel. The low occurrence of receptors in the plasma
membrane means that a whole-cell configuration can be used
to study the properties of the IPR.

Methods such as labeled flux experiments cannot give
kinetic information about single channels. To study the re-
sponse of only a single channel, Mak et al.19 utilized the fact
that the ER is continuous with the outer membrane of the
nuclear membrane26,27 to investigate the kinetic responses of
the IPR to rapid ligand concentration changes. Single-
channel patch-clamp studies of the channel were done in its
native environment using isolated nuclei from cultured insect
Ispodoptera frugiperda �Sf9� cells. They collected data on
the activation and deactivation latency times. The latency
time is defined to be the duration from the solution switch to
the first observed opening. The kinetic responses of the chan-
nel were measured during rapid changes in �IP3� during con-
stant �Ca2+� and deactivation latencies were also measured
during �IP3� drops. They also investigated responses to
changes in �Ca2+� for constant �IP3� and simultaneous
changes in �Ca2+� and �IP3�. Among their findings, they dis-
covered that IP3-bound channels respond rapidly to changes
in �Ca2+�, a property suited for Ca2+-induced Ca2+-release,
which is important for integrating the IPR with whole-cell
Ca2+ signaling.30 They also found that there is no require-
ment for sequential IP3 and Ca2+ binding for channel activa-
tion or deactivation. As many models use the assumption that
Ca2+ can only bind to IP3-bound channels, this suggests an
overhaul of the models. This wealth of information has yet to
be fully used in modeling.

Many models for the IPR have been constructed and this
raises the question, which model best describes the gating
characteristics of the IPR? Comparison of models has been
done by Mak et al.31 to determine which fit their steady-state
data best. In their experiments, they observed spontaneous

FIG. 1. Whole-cell patch-clamp recordings of the IPR single-channel activ-
ity for various �Ca2+� obtained at a saturating �IP3� of 100 �M. Experimen-
tal techniques used to obtain these data are given in Sec. III C.
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IP3-independent activity of the IPR. However, many models
assume that only the IP3-bound state of the receptor is
active.5,14,32 Therefore, Mak et al.31 examined a series of
allosteric models with increasing complexity in order to
identify the simplest model that could account for their find-
ings. They found that the simplest model that could describe
the observed regulation by Ca2+ and IP3 was a Monod–
Wyman–Changeux-based “four-plus-two” conformation
model �this model is described in more details in Sec. III C�.
Sneyd et al.33 did a similar comparison of three models using
the data set of Dufour et al.34 Their goal was to determine
which model described the time-dependent responses of the
IPR rather than the steady-state properties. The models they
chose to fit were the De Young–Keizer model,5 the Sneyd–
Dufour model,18 and the Dawson–Lea–Irvine model.35 Each
of these three models was constructed with different aims.
The De Young–Keizer model parameters were chosen to fit
steady-state data, the Dawson–Lea–Irvine model to study ad-
aptation. Only the Sneyd–Dufour model was constructed to
fit the dynamic responses. To do this, they used Bayesian
inference and MCMC techniques to determine the set of rate
constants for each of the models and then compared the
maximum likelihoods. They also examined the convergence
of the rate constants and the ability of the model to reproduce
the data. The Sneyd–Dufour model was found to have the
highest likelihood, an unsurprising result given it was con-
structed to model nonsteady-state data. However, it must be
kept in mind that the models all have different aims. We will
review other approaches to determine the “best” model fitted
from steady-state single-channel data and also discuss how
kinetic responses can be used to distinguish between differ-
ent IPR models.

We briefly describe the fitting algorithms that can be
used to fit the data. However, the aim of this review is not to
present these algorithms in detail, as many excellent exposi-
tions already exist, but to discuss the models fitted with these
methods using real data. Much theory has been developed
for fitting single-channel data and we will review three ap-
plications of these methods to experimental data. We first
discuss the work of Rosales et al.,36 who apply Bayesian
inference and MCMC techniques to single-channel data from
the RyR, and de Gunst and Schouten,37 who investigate the
gating mechanism of the potassium channel in barley leaf.
Gin et al.38 apply this method to experimental IPR single-
channel data after first doing an extensive study using simu-
lated data.39

II. CONSTRUCTING A SINGLE-CHANNEL MODEL

A. Fitting techniques

Because of the stochastic nature of the channel, the use
of Markov models is a natural modeling approach. Channel
transitions between the states of the Markov model can be
described by a Markov process. Single-channel recordings
allow the observation of the times at which the channel is
open or closed, but not the open or closed state in which it
resides. The experimental recording is an aggregation of the
states into open and closed sets and thus the configuration of
the Markov model cannot be observed from the experimental

record. This raises issues of model identifiability and the
degree to which the structure of the model can be deter-
mined, including the number of closed and open states, the
transitions between these states, and whether all transitions
can be estimated. In addition, the recording is corrupted by
noise and subject to the limitations of the experimental res-
olution making the inverse problem difficult. In model fit-
ting, there are two main steps to consider. In the first step, the
data should be used to postulate a Markov model along with
considerations such as ligand binding. �However, as de-
scribed later, the model can also be part of the parameter
search.� The second step is then to use the data to determine
the parameters, for example, the rate constants governing the
transitions between states of the Markov model by some
means.

Traditionally, the data extracted and analyzed from
single-channel recordings are the durations and sequence of
the channel open times and closed times. To extract the se-
quence of open times and closed times �dwell times� from
the single-channel record a threshold algorithm is used. A
threshold is set at 50% of the mean open current and every-
thing below the threshold is considered closed, while every-
thing above the threshold is considered open. This is shown
in Fig. 2. The closed-time and open-time durations can then
be plotted in a histogram to give a distribution of the times.
Examples are shown in Figs. 3�a� and 3�b�; given the wide
range of time scales, it is usually more convenient to look at
the logarithm of the time.40 However, detection of events
also relies on the time resolution of the recording. Very short
events, depending on the resolution of the recording, will not
have time to cross the threshold and will not be detected.
One way to circumvent this is to set the filter to produce an
acceptable false event rate given a 50% threshold.41 Let the
threshold be denoted by � and the standard deviation of the
baseline noise �n �the noise around the closed-current level�.
The false event rate is the number of false event rates per
second � f given approximately by

� f = fc exp�− �2/2�n
2� ,

where fc is the frequency of the recording system.42 The
false event rate depends on the filter setting and on the ratio
of � /�n. For example, filtering at 1 kHz, a ratio � /�n of 3
will give 11 false events per second on average. For
� /�n=4, 0.33 false events per second are detected, and for
� /�n=5 one false event is detected every 270 s. In
Colquhoun,41 the 50% threshold for their single-channel data
� was 1.9 pA. The data were then filtered at 1, 1.5, 2, 3, and
4 kHz and then the standard deviations ��n� of the baseline
noise were calculated �0.10, 0.14, 0.19, 0.27, and 0.33 pA,
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FIG. 2. �Color online� An experimental IPR single-channel record is shown.
The dashed line indicates the 50% threshold and the square-wave form is an
idealization of the noisy record obtained using the threshold algorithm.

037104-3 Ion channels fitting single-channel data Chaos 19, 037104 �2009�



respectively�. For the least filtered record �4 kHz�, � /�n

=1.9 /0.33=5.8. For a filter setting fc of 4000 Hz, � f is
0.000 25 s−1, which is approximately one false event every
66 min. Therefore, this would be a suitable filter setting.
However, as can be seen, this filter setting is imposed after
threshold analysis.

The theoretical distributions of the open and closed
times can then be approximated by sums of decaying expo-
nentials, which are not model specific, but given a particular
Markov model, it is a relatively simple matter to calculate
the theoretical distributions of the open and closed times43,44

from its transition matrix. The parameters of the Markov
model are determined by fitting to these experimentally de-
termined open time and closed time probability distribution
functions �PDFs�.

We briefly describe why the distributions can be de-
scribed by exponentials. The question we want to ask is how
long a channel stays in a particular state before switching
�the waiting time problem�. Consider the following two-state
model with one closed state C1 and one open state O2:

C1�
q21

q12

O2.

Let Ti be the random time that the channel switches from
state C1 to state O2 for the ith time. Let P1�t�= P�T1� t�,
where P1�t� is the probability that the channel has switched
state by time t. Therefore, the probability that the switch has
occurred by time t+dt is the probability that the change has
occurred by time t plus the probability that it has not oc-
curred by time t but does occur in the time interval between
t and t+dt. This gives

P1�t + dt� = P1�t� + �1 − P1�t��q12dt .

Taking the limit dt→0 gives the differential equation for the
waiting time probability

dP1�t�
dt

= q12�1 − P1�t�� ,

and solving gives P1�t�=1−exp�−q12t�. This is the cumula-
tive PDF and the probability density function �in which we
are interested� is found by differentiating the cumulative
PDF P1�t� to give q12 exp�−q12t�. More details can be found
in Colquhoun and Hawkes.43,44

The number of open states and closed states can be es-
timated from the distribution histograms. Each peak corre-
sponds to an exponential component, and thus to a state,
giving a starting point for the model that should be consid-
ered first. However, this is provided that there are no states

with similar transition rates. This though, could not be iden-
tified by the fitting process, making an extra state redundant.
The transitions between the states also need to be considered.
This could include cycles in the model.

The next step is to use the data to determine the rate
constants of the transitions between the states. The most
common and straightforward approach to the parameter esti-
mation problem is the maximum likelihood approach.45–47 In
this approach, a likelihood function is constructed, which is
the probability of observing the data given the rate constants
p�x �q�, where p�· � ·� denotes a conditional probability, x is
the data, and q is the parameter to be determined. This like-
lihood is then maximized by methods such as the simplex
algorithm or steepest descent to obtain the parameter values
that give the maximum probability.

More recently though, Bayesian inference and MCMC
�Ref. 48� methods have gained popularity. In the Bayesian
approach, the parameters are assumed to be random variables
that follow a particular distribution. Inferences are made
based on the posterior distribution of the parameters given
the data. Prior information about the parameters is also taken
into account. The MCMC method provides a means of gen-
erating a sample from the posterior distributions of the pa-
rameters given the data. A new realization from the posterior
distributions is obtained by sampling a candidate value of the
parameter from the proposal distribution. This candidate
value is accepted or rejected by comparison of the current
parameter value with the candidate value by calculating the
ratio of the density at the current and candidate points. One
such algorithm is the Metropolis–Hastings algorithm,49,50

which generates a Markov chain with equilibrium distribu-
tion from the posterior. Full details on constructing the pos-
terior distribution from the data as well as the Bayesian
and MCMC algorithm can be found in Gin et al.39 and
Ball et al.51

To completely determine a Markov model, it is required
that all parameters converge. In order to test the convergence
of the parameters, one should examine the plot of the random
variable versus the number of iterations; an example is
shown in Fig. 4. The iterations represent the sequence of the
Markov chain. After an initial burn-in period, the parameter
should settle to a steady-state value. The MCMC approach
yields statistical information such as the mean value of the
parameter and its variance, and thus can indicate how much
the parameter may vary without compromising the fit. The
parameter distributions also contain more information than
can be obtained just from the mean and variance. For ex-
ample, the distributions can be biased to one side or another
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FIG. 3. �a� Closed-time distribution. �b� Open-time distribution. Theoretical probability density functions are overlaid.
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or have multiple peaks. Therefore, in order to determine how
well the parameter is determined from the data it is important
always to examine the parameter distributions and not only
the mean and variance.

B. Fitting the noisy single-channel record,
not the open times and closed times

It is clear that the accuracy of the fits relies heavily on
the accuracy of the reconstructed sequence of open and
closed times. However the single-channel record is always
corrupted by noise. To avoid this problem, approaches have
been developed that are based on fitting directly to the noisy
single-channel record and not the open times and closed
times. By fitting directly to the raw record, not only are the
rate constants determined, but the sequence of open and
closed times can also be restored, reconstructing the single-
channel record. Therefore, the open times and closed times
are not fixed for the entire fitting procedure, eliminating any
inherent error in first obtaining the times. These such meth-
ods have been developed by Fredkin and Rice,52 Ball et al.,51

Hodgson,53 and Rosales et al.54 Fredkin and Rice52 do this in
a maximum likelihood framework while Ball et al.,51

Hodgson,53 and Rosales et al.54 use Bayesian inference and
MCMC techniques.

C. Correcting for missed events

Due to the limitations of the experimental sampling res-
olution, very fast openings and closings are undetected.
There are a number of ways in which to correct for missed
events.55–57 Hawkes et al.57 derive the exact distributions for
the approximate open-time and closed-time distributions.
However, approximations can also be made.

The method of Blatz and Magleby55 assumes that any
event that is missed does not contain transitions within states
in a certain class, e.g., within the set of closed states or
within the set of open states. Missed events only occur for
transitions from open to closed and closed to open. A correc-
tion is applied to the fitted rate constants and is accurate as
long as the rate constants of the Markov model are not too
large. Gin et al.39 investigated correcting for missed events
using simulated data. They applied the Blatz and Magleby55

method and found the corrected rates to be closer to the real
values and the distribution calculated from the corrected
rates to be also much closer to the true distribution than the
one using the fitted rate constants.

The method of Crouzy and Sigworth56 introduces “vir-
tual” states into their scheme. The transitions into and out of
these states correspond to transitions which are not observed
experimentally. This idea was suggested by Blatz and

Magleby.55 Crouzy and Sigworth56 first considered a model
consisting of one closed and one open state. Missed closing
events will cause the open times to be overestimated and
missed opening events will extend the closed times. Taking,
for example, the problem of computing the extended closed
time distribution �e-closed time distribution�, they introduced
an additional open state. They compute the exponential prob-
ability distributions for the missed times and from there they
assign the rate constants for the virtual scheme.

Baran58 also dealt with the problem of missed events in
their fitting of single-channel data from the IPR. They calcu-
lated the error introduced by missed events by estimating the
changes in the open probability and the open and closed
times caused by successions of up to four undetected events.
They imposed a time detection limit and any event with du-
ration lower than this limit was assumed to have equal prob-
ability of occurring over the recording. They then approxi-
mated the new mean open time and closed time using the
uncorrected time constants and the original number of de-
tected events and the reduced number of detected events.
From these, the corrected open probability was then calcu-
lated. The reliability of this approach was tested using sto-
chastic simulations and they found that averaged values from
ten different simulations were in agreement with the theoret-
ical ones for the quantities of interest.

Fitting the noisy single-channel record and estimating
the open times and closed times during the parameter search
also provide a way to correct for missed events.39 When
fitting the noisy record, the duration of the open times and
closed times is not fixed but allowed to change, as the tran-
sition times are determined by the fitting procedure. There-
fore, every time the rate constants are updated, the resulting
distribution will be changed slightly. The fitting procedure
thus attempts to force the open-time and closed-time distri-
butions to take the inherent shape of an exponential function,
which, when plotted on a logarithmic scale, is skewed to the
left. In this way, the open and closed times are changed such
that they “fill out” the histogram, and it will be short events
�the missed events in the experimental record� which will be
added in order to fill the histogram, giving a partial correc-
tion for the events missed due to limited time resolution.

Another method that can be used in certain cases de-
scribed by Gin et al.39 fits not to the open and closed times,
but the probability of observing an open or closed event at
specified times. The specified times are the sampling times of
the experimental recording. The fitting of events does not
make the assumption that the channel is open the entire time
between two sampling points but can move between open
and closed states. However, it must be in the open state at the
specified times, for example. A comparison between the
Blatz and Magleby55 method and fitting events was done by
Gin et al.39 using simulated data. The rates found were in
fact much closer to the real rates than those found from ap-
plying the Blatz and Magleby55 correction. In fact, the
method of fitting to the events gave much more accurate rate
constant values than from fitting to the raw single-channel
record. However, the method of fitting events was developed
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for a model with only one open state, so is not yet generally
applicable to other models. Full details are given in Gin
et al.39

In Sec. III, we review the applications of Bayesian infer-
ence and MCMC methods to experimental data from the
RyR, K+ channel, and IPR.

III. MODEL FITTING AND MODEL SELECTION

A. Fitting the RyR

The RyR is an intracellular Ca2+ channel. Rosales et al.36

do an extensive model comparison for the type-II RyR. They
obtained data from canine ventricular cardiac muscle RyR,
reconstituted in planar lipid bilayers. They compared 16 gat-
ing models by analyzing three data sets of steady-state activ-
ity at three Ca2+ concentrations: 1, 10, and 100 �M. Their
models included cycles as well as linear models. They in-
clude one open state to three open states and two closed
states to seven closed states. The aim was to infer the prop-
erties of a single RyR directly from the data by imposing
only a minimum number of constraints on the Markov
model. They addressed three aspects: idealization of the sig-
nal, parameter estimation and model selection. The first two
aspects were done using Bayesian methods and MCMC. De-
termining which Markov model more accurately describes
the data is commonly done by applying penalized ratio tests
such as the Bayes information criterion �BIC� �Ref. 59� or
the Akaike information criterion �AIC�.60 Both criteria are
independent of the prior and the BIC penalizes the free pa-
rameters more strongly than the AIC. Rosales et al.36 used
the BIC to rank the 16 models. From their analysis, they
were able to infer six properties of the gating model. They
found that models with three open states were favored over
those with two open states, which were preferred over one
open state and which was consistent with experimental data.
They also found that gating schemes with two communicat-
ing open states were preferred and those with a hexagonal
cycle of states had higher BIC values. Schemes with more
than two consecutive closed states not connected to an open
state were penalized. Their best-ranked model M3 is repro-
duced in Fig. 5.

In terms of rate constant convergence, they found that
rates leaving short-lived states with only a small occupancy
had more variance than rates leaving long-lived states with

higher occupancies. Multiple maxima were found for the
rates leaving states with low occupancies. Therefore, unique
parameter values could not be found.

In order to test the model reliability, they simulated data
from the M3 model at 1 �M �Ca2+� and data from model
M10 at 10 �M �Ca2+�, including noise that mimicked the
experimental data. They then fitted their synthetic data to the
other models that they had previously trialled, as well as
models M3 and M10. The rate constants were estimated and
then the models were ranked. They found that at both Ca2+

concentrations, the model from which the data were simu-
lated was chosen as the best ranked and the estimated rate
constants were similar to the original rate constants.

They also compared the rate constants for three Markov
models using two data sets at 100 �M �Ca2+�. Comparing
the rates determined for each of the data sets, they found
variation due to natural variability between channels. How-
ever, they found the relative magnitudes to be consistent be-
tween the channels.

While Rosales et al.36 do not correct for missed events,
they do illustrate how filtering and thresholding can result in
different dwell-time distributions. The data they fitted were
filtered down to 10 kHz with a Gaussian filter; for their in-
vestigation, it was filtered to 2 kHz. A half-amplitude thresh-
old was used to obtain the open and closed times. Significant
differences were found at 1 �M �Ca2+� with the fast events
in both the open and closed times disappearing almost com-
pletely at 2 kHz, with the consequence that both distributions
were shifted to the right.

B. Fitting the K+ channel

Bayesian inference and MCMC techniques have been
used by de Gunst and Schouten37 to fit the experimental data
from the K+ outward rectifier in barley leaf. Eight recordings
from inside-out patch configurations were used. They apply
the methods they developed in earlier papers61,62 and tested
on simulated data on the experimental data. Filtering, col-
ored, state-independent noise and white, state-dependent
noise were incorporated in their hidden Markov models; they
found that omission of any one of these three features results
in unreliable results for their data.61

The main aim of their paper was model selection. They
take a different approach to model selection than Rosales et
al.36 Instead of using penalized ratio tests, the model is in-
cluded as an additional parameter to be determined in the
Bayesian search. The methods for including the model in the
search have been developed by Hodgson and Green63 and de
Gunst and Schouten.62 In this setup, the model indicator is
included as an additional parameter. A set of candidate mod-
els is introduced and the MCMC sampler then requires the
use of reversible jump sampling techniques.64 They set non-
informative priors for their model indicator; in other words,
each model had an equal prior probability. Three sets A, B,
and C of models were considered. Sets A and B were used to
analyze the number of closed states required to model the
closures. Each set contained two models, all with only one
open state. In set A, they compared a two-state model �one
closed state, one open state� to a three-state model �two

C3 O2

O1 C6

O3

C1 C2 C4 C5

FIG. 5. Model M3 of Rosales et al. �Ref. 36�. Closed states: C1-C6, open
states: O1-O3.
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closed states, one open state�. In set B, the three-state model
in set A was compared to a four-state model �three closed
states, one open state�. For model set A, they found that the
three-state model was preferred to the two-state model and in
fact, none of the proposals from the three-state model to the
two-state model was ever accepted. In set B, the four-state
model was preferred to the three-state model. However, they
found that the estimated values for two of the rate constants
q5 and q6 in the four-state model were large and physically
unrealistic. As well as this, when the sampling was stopped,
the generated values had not yet converged and were still
increasing. This outcome was found for the other data sets.
From these results, they concluded that there are two differ-
ent types of closed states, one accounting for the long closed
times and the other to short closed times. De Gunst and
Schouten37 concluded from these results that if the number
of states in the model was too large, extra freedom in the
model is introduced so that some of the rates determined
were physically implausible and had not reached conver-
gence when the sampling was stopped. This was also found
to be the case by Gin et al.38,39 for the IPR model fitting
�discussed in Sec. III C�.

Set C contained models to determine the number of
identical, independent states L that could account for the ob-
served long closed times. Their preliminary analyses indi-
cated that L could range from one to five or six closed states.
Analyses also showed that it was sufficient to consider only
one closed state accounting for the short closed times. They
did not find clear evidence that more than four closed states
were needed to describe the long closed times so they se-
lected a model with four slow closed states.

One of their future directions includes identification of
the Ca2+-dependency of the rate constants. In Sec. III C, we
show how this has been done for the IPR by Gin et al.38 In
particular, their results show that the rate constants are not
simple functions of �Ca2+�.

C. Fitting the IPR

Using Bayesian inference and MCMC methods, Gin et
al.38 constructed a model based on single-channel IPR data.
They first did an extensive investigation using simulated data
on the fitting techniques that can be used to correct for
missed events.39 As described earlier, they compared the
Blatz and Magleby55 method and fitting to the probability of
observing an open or closed event at specified times using
simulated data. Fitting the probability of events at specified
times gave rate constants much closer to the original values
used to simulate the data. However, as the method of fitting
events was developed for a model with only one open state,
Gin et al.38 fitted to the open and closed times and then
applied the missing event correction of Blatz and Magleby.55

Fitting the noisy record and reconstructing the open times
and closed times were not done by Gin et al.38 because the
long single-channel records and the number of records meant
the computation time required would be prohibitive.

The data used were from experiments performed in
chicken DT40-3KO cells engineered to stably express rat
S1- /S2+IPR-1. These refer to the major splice variants of

the type 1 receptor. The S1-splice site is in the N terminus of
the receptor and the S2+ variant is the form found predomi-
nately in the brain. Because endogenous IPRs have been ge-
netically deleted in the DT4-3KO cell type, a stable expres-
sion of the expressed mammalian IPR allows its study in
unambiguous isolation. All experiments were performed us-
ing the whole-cell configuration of the patch-clamp tech-
nique which allows the measurement of single channel activ-
ity from IPR present in the plasma membrane as previously
described.28,65 Data were obtained at ten Ca2+ concentra-
tions; some examples are shown in Fig. 1. At Ca2+ concen-
trations of 10, 30, and 100 �M, no activity was evident
during the recordings. For each concentration, single-channel
data were obtained for five or six cells in each condition,
representing between 8 and 29 min of experimental record-
ings for each case. Using these data, the aim of Gin et al.38

was to fit the most complex model for which the rate con-
stants could be determined and then to determine the
Ca2+-dependencies of the rate constants. By examining the
open-time and closed-time distributions, they identified three
closed-time time constants and one open-time time con-
stants. From preliminary work on simulated data,39 for which
only three closed states and one open state could be identi-
fied, the maximum number of transitions that could be deter-
mined from the steady-state data was six. An upper bound on
the maximum number of reactions that can be identified is
NcNo, where Nc is the number of closed states and No is the
number of open states.66 For the four-state model, the upper
bound on the number of reactions is three �giving six transi-
tions�. Cycles were included, but the rate constants for these
extra connections could not be determined from the available
data. Only ratios of rate constants could be identified rather
than the individual rates themselves. The data in Gin et al.38

showed three closed states and one open state and using the
results of Gin et al.,39 it was decided not to include cycles. It
should be noted that longer steady-state recordings or more
recordings would not necessarily increase the complexity of
the models. More data would only result in smoother histo-
grams for the open and closed distributions giving less am-
biguity in the fitting of the rate constants. Gin et al.39 also
tested the models with additional states and transitions, but
this resulted in nonconvergence of the rate constants. Al-
though ratios of rate constants converged, individual rate
constants could not be determined. Therefore, adding addi-
tional states when the data cannot support them leads to am-
biguity in the rate constants.

They studied two different configurations of three closed
states and one open state, as shown in Fig. 6. An important
feature of their four-state models is that they are much sim-
pler than most other current models of the IPR. The con-
struction of the model did not take into account any consid-
erations, such as ligand binding or multiple subunits, as the
aim was to fit the most complex model that could be deter-
mined by the available data. Previous work using simulated
data39 showed that for more complex models, only ratios of
rate constants could be determined and not the individual
rate constants themselves. Therefore, no constraints were im-
posed on the model structure and they fitted only the most
complex model that could be determined from the available
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data. As the transitions between the states of the models were
found to have complex dependencies on the agonist concen-
tration, they implicitly assume that each of the “states” does
not correspond to a physically identifiable single state of the
IPR, and that the transitions between states do not corre-
spond to simple binding events. Instead, each of the model
states is assumed to be a conglomeration of multiple physical
states. Condensing models can be done theoretically by using
techniques such as quasisteady-state approximations. In this
case, the rate constants are rational functions of the relevant
concentrations. The theory and many examples can be found
in Refs. 67 and 68. The reduction in a complex Markov
model to a simpler model in which the transitions are com-
plex functions of the original rate constants is possible. How-
ever, it is not possible to work backward, i.e., given a simple
model, the exact complex model from which the simple
model was obtained cannot be determined.

Gin et al.39 found that when trying to fit a more complex
model, the rate constants could not be determined by the
steady-state data alone. They simulated the data from a five-
state model with four closed states and one open state. If
such a model is to be fully determined, then the closed-time
distribution should display four distinct peaks. However,
when inspecting the closed-time distribution, there were only
three peaks. Fitting the five-state model using the simulated
data, they found that the rate constants could not all be de-
termined. They then simulated nonsteady-state data, and fit-
ting this data, along with the steady-state data, the five-state
model was able to be determined with all rate constants con-
verging.

Additionally, Gin et al.38 were able to determine the
�Ca2+�-dependency of the rate constants. Biphasic
�Ca2+�-dependencies were found in some of the rate con-
stants, and these were fitted by Hill functions. The prediction
from both models is that the main effect of �Ca2+� is to
modulate the probability that the receptor is in a state that is
able to open, rather than to modulate the transition rate to the
open state. For model 1, the only rate constants found to be
Ca2+-dependent are q23 and q32. These rate constants were
fitted by biphasic functions. The main contributing factor to
an increased open probability was the decrease in the number
of long closed-time events �events in state C3�, rather than
any great increase in the rate q24. The mean open time given
by 1 /q42 also does not change significantly over the �Ca2+�
range, and therefore is not an important factor in affecting
the open probability.

For model 2, two pairs of rate constants were found to
have Ca2+ dependencies. As for model 1, the transitions into
and out of the long closed state �C1 in model 2, C3 in model
1� are �Ca2+�-dependent. The rate constants between C2 and
O4, q24 and q42 were also found to be �Ca2+�-dependent. This
suggests that Ca2+ is directly affecting the transition to open-
ing, whereas for model 1, this was not the case. However,
further investigation showed that Ca2+ affects the pathway to
the main route between closing and opening. In model 1, this
is the C3-C2 �-O4�, and in model 2, the pathway C1-C2-O4.
Once the receptor is in the closed state with the shortest
mean time �C2 for the first model and C3 for the second
model� and the state from which the receptor can open, there
is no Ca2+-dependency. From fitting the two models, differ-
ent conclusions about the Ca2+-dependency were obtained
for the different models, but closer inspection showed that
essentially the same mechanism is in effect. Note that we
have followed the labeling of Gin et al.,38 but that given the
symmetry of model 1, states C1 and C2 can be interchanged.

Heuristic increasing or decreasing functions were used
to model the rate constants for both models; clearly values at
more concentrations are required to fully characterize the
dependencies. No biophysical derivation of these rates is
given, but, as mentioned, the construction of the specific
complex model from which the current simple model is de-
rived is not possible. The heuristic rate functions fitted were
all rational functions of the �Ca2+� concentrations, and these
are consistent with either a pseudosteady-state derivation or
an equilibrium approximation. The choice of polynomial
function used had no effect on the data, and so, using differ-
ent functions will have no effect on the conclusions about the
effects of the �Ca2+� concentration changes.

Both models were found to fit the steady-state data
equally well. It turns out that with only one open state, all
topologies are equivalent and will fit steady-state data
equally well.69 In order to distinguish between the models,
additional data would need to be used in the fitting process.
Gin et al.38 fitted their model using only steady-state data,
but by simulating non-steady-state data from the fitted
model, they were able to make a comparison with experi-
mental data. Experimental non-steady-state data had been
obtained by Mak et al.,19 who investigated the kinetic re-
sponses of the IPR to rapid ligand concentration changes.
Single-channel patch-clamp studies of the channel were done
in its native environment using isolated nuclei from cultured
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FIG. 6. Four-state Markov models fitted by Gin et al. �Ref. 38�. Closed states are C1, C2, and C3. Open state is O4. Left: model 1, right: model 2. Rate
constants given by qij denoting the transition from state i to state j.
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insect Ispodoptera frugiperda �Sf9� cells. They collected
data on the activation and deactivation latency times. The
latency time is defined to be the duration from the solution
switch to the first observed opening. For example, the kinetic
responses of the channel were measured during rapid
changes in �Ca2+� from �10 nM to 10 �M and 2 �M dur-
ing constant �IP3� of 10 �M and deactivation latencies were
measured during �Ca2+� drops from 300 to 2 �M. Gin et
al.38 simulated this type of data from their two four-state
models using the corresponding mean fitted rate constants
and then compared to the experimental data of Mak et al.19

Gin et al.38 simulated the activation latency data from step
changes in �Ca2+� from 50 to 200 nM at constant �IP3� of
100 �M. The simulated activation times for models 1 and 2
are shown in Fig. 7. Mak et al.19 found an activation time of
40 ms after a jump from �10 nM to 2 �M �Ca2+� at a
constant �IP3� of 10 �M. Gin et al.38 found that model 2
gives a much closer activation time of 55 ms to their experi-
mental result than model 1, which had a latency time of
�12 ms, suggesting that model 2 more accurately describes
the data. However, they did not take into account the time
duration between the solution switches. Mak et al.19 found
that typical solution switches have durations of between 4
and 15 ms by monitoring the change in the closed-channel
baseline current level during solution changes. In this way,
they were able to control the possible differences in the time
courses of various solution switches. In the simulations of
Gin et al.,38 the switch time is instantaneous. Therefore, tak-
ing into account the experimental time lapse �4–15 ms� be-
tween solution switches, it may be that model 1 is a more
accurate description of the data.

Gin et al.38 also compared their models to the allosteric
model of Mak et al.31 Their model consisted of two open
states, A� and C�, and four closed states, A�, C�, B, and D.
�Ca2+� and �IP3� do not regulate the transitions between rapid
closings and openings, A�-A� and C�-C� �our C3-O4 transi-
tion in model 2�. The brief closing and opening events are
ligand independent, just as Gin et al.38 found. However,
�Ca2+� affects the transition between A�-B and C�-D, thus
modulating the propensity of the receptor to be in a state
capable of opening. In model 2, this corresponds to the
C2-O4 transition. Model 1 has only one pathway to the open
state and therefore this transition cannot be both ligand inde-
pendent and ligand dependent. Therefore, model 2 is essen-
tially a simplification of the Mak et al.31 model. From the
latency times simulated and the comparison with the model

proposed in Mak et al.,31 it can be seen that different types of
data are required to resolve the issue of which model more
accurately describes the channel.

D. Modeling mode switching

Examination of long records of single-channel activity
has revealed that the gating behavior may not be uniform
over the entire record. Instead, the channel can display dif-
ferent modes or different levels of channel activity. These
modal gating kinetics have been observed in many different
ion channels such as the Cl− channel55 and the K+ channel.70

It has also been found in the two major intracellular Ca2+

release channels, the RyR �Ref. 36� and the IPR.38,71 Modal
gating in the RyR has been proposed to contribute to the
adaptation behavior of the channel in response to jumps in
the Ca2+ concentration.36,72 However, as shown by Mak
et al.,19 the IPR does not display adaptation after jumps in
both Ca2+ and IP3 concentration. Ionescu et al.71 demon-
strated that modal gating plays an important role in ligand
regulation of the channel. They found that longer time scales
in the IPR channel gating kinetics are likely to be relevant
for the kinetics of the IP3-mediated intracellular Ca2+

dynamics.
An example is shown in Fig. 8. This is found in the IPR

data fitted by Gin et al.38 Two records at 1 �M �Ca2+�
clearly showed different levels of activity within the single
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FIG. 7. Simulated distributions of times to first opening after a step up from 50 �Ca2+� to 200 nM �Ca2+� for the IPR model fitted by Gin et al. �Ref. 38�. �a�
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FIG. 8. Single-channel activity at 1000 nM �Ca2+� and 100 �M �IP3�. Pan-
els �a� and �c� show expanded portions from panel �b�. Panel �a� shows
much higher activity than panel �c�.
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recording. Parts of the single-channel record in panel �a�
have been enlarged and are shown in panels �b� and �c�. In
order to model such data, two different Markov models, each
with a different set of rate constants, are needed for the two
sections. The two models would then be connected by a pair
of rate constants that govern switching between the two
models. However, in order to fully characterize the statistics
of the switching process, a large number of observations of a
switch are required. No such data are available, as a switch
was observed only a small number of times. In addition, to
account for two levels of activity, two open states are
required,71 but on plotting the open time histograms, Gin
et al.38 only found evidence for one open state. The majority
of the IPR data used by Ref. 38 showed only one mode
throughout the recording and therefore they were not able to
make any inference as to which mode the channel is in at
each �Ca2+�.

Ionescu et al.71 developed an algorithm to identify dif-
ferent modes. Using their algorithm, they found three modes
in their IPR data. They developed an algorithm that uses the
durations of channel bursts and burst-terminating gaps and in
this way, they can determine the gating mode with high ac-
curacy and high temporal resolution. Conventional tech-
niques examined either the open probability of the open
times and closed times to determine the modes by averaging
over either short segments of the record or by averaging long
segments.55,70 In the former, the value of the averaged pa-
rameter could vary widely due to the abrupt changes in
modes. In the latter, using long segments failed to capture the
abrupt transitions between modes.

A simple model, as fitted by Gin et al.,38 can reproduce
the averaged statistics of the different modes but cannot re-
produce abrupt changes between different activity levels. In
order to model the modes, one can fit a Markov model for
each of the modes, determining the rate constants within the
modes, and then fit the transition rates between the modes.
While this is feasible in theory, in practice it will be more
difficult. The main difficulty is obtaining enough data exhib-
iting multiple modes so that the transitions between modes
can be unambiguously determined. Also, if one part of the
record shows a very little activity, and thus very few open
times and closed times to fit, then the rate constants will not
be well determined.

A simple model has been proposed as a starting point by
Ionescu et al.71 who identified three modes within their data:
high, intermediate, and low open probabilities. Each mode is
described by a two-state model �closed-open� and the three
models are interconnected via the closed states. Ionescu
et al.71 found that the open probability within each mode was
similar over a wide range of �Ca2+� and �IP3� and therefore,
the biphasic �Ca2+� dependency was a result of the �Ca2+�
regulation of the propensity of each mode with the channel
kinetics unaffected by �Ca2+�.

Rosales et al.36 also found the existence of modes at a
single �Ca2+�. At both 1 and 10 �M �Ca2+�, they found that
both their open and closed time distributions slowed two
clearly defined maxima. At 1 �M �Ca2+�, their single chan-
nel records show at least three gating modes �Fig. 5 in Ros-
ales et al.36�. The first Go consists of long openings inter-

spersed with brief closures; the second Gz consists of brief
openings followed by brief closures. The third mode Go

shows brief openings followed by long closed times. They
summarized these in their model M3, which is reproduced in
Fig. 5. By examining the occupation probabilities in each of
the states, they found that the gating mode frequencies are
Gl, Gz, and Go. They also compared how the gating modes
changed with different Ca2+ concentrations. At 10 and
100 �M �Ca2+�, the gating modes change. At 10 �M, only
two modes are identified: brief openings followed by
intermediate-length closures and intermediate openings fol-
lowed by short closures. Their model showed that the Ca2+

dependence of modal gating is highest at a relatively low
�Ca2+� of �1 �M. This concentration corresponds to the
Ca2+ concentration range over which adaptation is experi-
mentally observed.72

E. Response to step increases in ligand concentration

Adaptation behavior has been observed in the RyR.72

However, Mak et al.19 found that the time course of the open
probability of the IPR increased monotonically after jumps
in �Ca2+� and �IP3�. Gin et al.38 used their IPR model to
simulate the open probability of the channel after step in-
creases in the Ca2+ concentration for their model 1. The
�Ca2+� was held fixed at a low steady-state concentration
��Ca2+�=50 nM� and at this concentration, the IPR is mostly
in state C3 �because of the symmetry of the model, C3 is
equivalent to C1�. Therefore, the initial state probabilities
were set accordingly. The �Ca2+� was then increased to 100,
200, and 500 nM and held fixed at a new concentration. The
open probability of the IPR increased monotonically to its
new value. The responses from model 1 are shown in Fig. 9.
Both topologies gave the same responses to step �Ca2+� in-
creases. Their model predictions agree qualitatively with the
experimental observation of Mak et al.19 However, this
model result appears to be in direct disagreement with data
from labeled flux experiments,12,14 where, in response to a
step increase in �Ca2+�, the IPR flux first increases then de-
creases. Possible reason for the difference is the IP3 concen-
tration used. The simulations of Gin et al.38 were done at a
saturating concentration of IP3 and thus, data at different
concentrations need to be obtained to test whether all give a
monotonic increase. However, another possible explanation
for this discrepancy is the difference in experimental method,
which might cause significant differences in IPR environ-
ment and behavior.
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model 1.
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For the RyR, adaptation has been observed
experimentally.73,74 Rosales et al.36 computed the responses
to step increases in the �Ca2+� from their model. Using their
best-ranked model M3 reproduced in Fig. 5, they investigated
responses to sudden steps in the �Ca2+�. They computed steps
from 0 to 1, 10, and 100 �M �Ca2+�. Their model gave a
rapid rise to a peak in the open probability which then re-
laxed slowly down to an equilibrium, a result that had been
experimentally observed. However, they simulated the re-
sponse using different sets of initial occupancy probabilities
in each of the states. For some of these initial state probabili-
ties, only a monotonic increase to an increased open prob-
ability was observed. Therefore, the kinetic response of the
open probability is strongly dependent on the initial condi-
tions of the state probabilities.

IV. CONCLUSIONS AND FUTURE WORK

While many models of the IPR have been constructed
based on a single type of data, it still remains to utilize the
different types of data, steady-state and nonsteady-state
single-channel data and Ca2+ flux data, together to construct
a model. The use of multiple types of data could be used to
extend the complexity of models for which all the parameters
can be fully determined. The degree to which a Markov
model can be fully determined is also limited by the experi-
mental data available. As shown by Gin et al.,38 only a four-
state model could be fully determined by the steady-state
data. De Gunst and Schouten37 also found that trying to fit
the models with increasing number of states resulted in rate
constants that were not plausible. Therefore, to increase the
complexity of the model, different types of data need to be
fitted simultaneously.

One study which used different types of data was done
by Baran,75 who analyzed the data on the properties of IPR
binding and also single-channel data. Baran75 found that the
data can be described by a gating mechanism consisting of
triple allosteric interactions between Ca2+, IP3, and adenosine
triphosphate �ATP�. The aim was to find model parameters
for each of the different sets of data as close as possible to
each other. The model was an extension of the one proposed
by Baran,58 which was a minimal model to describe the de-
pendence of the open probability, open times, and closed
times on Ca2+ at saturating levels of �IP3� �10 mM�. The
model was extended to include dependence of the open prob-
ability, open times, and closed times on Ca2+, IP3, and ATP
as well as describing more data. The model defined consists
of three four-state modules controlling gates responsible for
activation, inhibition, and inactivation of the channel. Their
finding was that essentially the same gating mechanisms are
present in the stationary activity of the receptor in studies
done in native and artificial environments as well as proper-
ties of IP3 binding. Their study was done using only equilib-
rium data, although they combined binding data and single-
channel data.

Another interesting modeling problem yet to be fully
investigated is that of fitting modes. Fitting single-channel
records that display different modes within a recording and
even abrupt changes between these modes require more com-

plex models with more states and extra transitions. But to
fully determine these models enough data must be obtained
first for the different modes at one ligand concentration and
then also enough switches between the modes. In theory, the
modeling aspect should not be difficult for the methods al-
ready in use, but the data must be obtained.

The theory for fitting single-channel data has been de-
veloped and sophisticated methods such as the Bayesian and
MCMC approach have been developed for practical fitting
applications. This approach can be used to yield statistical
information about the fit of the parameters. Methods to deal
with the limitations of the experimental techniques, such as
the limited sampling resolution, are also available. These
have been used in actual fitting of both simulated and experi-
mental ion-channel data. The challenge for future modeling
work is to apply these methods to different types of experi-
mental data simultaneously. Advances in experimental tech-
niques have provided more insight into the gating of the IPR
and the modeling techniques have been applied successfully
to these data. The growing wealth of experimental data will
ensure more accurate models of the gating dynamics of the
IPR and other ion channels.
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