
THE JOURNAL OF CHEMICAL PHYSICS 142, 044101 (2015)

Hybrid molecular-continuum simulations using smoothed dissipative
particle dynamics

Nikolai D. Petsev, L. Gary Leal, and M. Scott Shell
Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara,
California 93106-5080, USA

(Received 23 September 2014; accepted 26 December 2014; published online 22 January 2015)

We present a new multiscale simulation methodology for coupling a region with atomistic detail
simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes
equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical
potential gradients emerge due to differences in resolution within the total system and are reduced by
introducing a pairwise thermodynamic force inside the buffer region between the two domains where
particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach,
such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it
possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled
as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces
thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid.
Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by
applying it to simulations of the start up of shear flow. The robustness of the method is illustrated
with two different flow scenarios in which shear forces act in directions parallel and perpendicular to
the interface separating the continuum and atomistic domains. In both cases, we obtain the correct
transient velocity profile. We also perform a triple-scale shear flow simulation where we include two
SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a
three-scale coupling. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905720]

I. INTRODUCTION

Numerous problems in molecular physics are character-
ized by multiple time and length scales, a feature that poses
significant challenges in applying traditional simulation tech-
niques. For instance, a problem involving localized nano-scale
processes or phenomena at a solid surface in contact with a
liquid may require molecular-scale resolution (e.g., molecular
dynamics) for the solid-liquid boundary, whereas the bulk fluid
region away from the surface may not necessitate this kind of
detail, and an atomistic treatment of the full system may be
prohibitively expensive from a computational standpoint. In
fact, the problem of multiple characteristic length scales is
one that frequently arises in fluid flow problems involving
interfaces, such as the contact line of a three-phase flow,1 slip
along hydrophobic substrates,2 and the dynamics of thin films.3

Similarly, a broad range of problems involving biological
molecules in explicit solvent (e.g., proteins) may not require
the same level of detail for the solvent in the bulk far away
from the molecule as in the region immediately surrounding it.
In these cases, it is desirable to preserve a detailed description
for the system in localized regions where necessary and use a
simpler coarse-grained model, such as a continuum or mean-
field approximation, for parts of the problem domain where
less resolution is required.4–8

In light of this, there have been numerous efforts1,9–15

to directly couple continuum-based (i.e., Navier-Stokes)
solutions with molecular dynamics (MD). These studies have

generally employed finite-difference/element/volume methods
for the continuum region and transferred information between
the continuum and MD domains via flux exchange within
an overlap region. This is achieved by constraining the MD
particle dynamics inside this region such that the averaged
particle mass and momentum fluxes equal those in the over-
lapping continuum solution.9,11 This approach was extended
by Delgado-Buscalioni and De Fabritiis12 by coupling MD
to a finite-volume fluctuating continuum domain using the
fluctuating hydrodynamic equations of Landau and Lifshitz.16

However, flux exchange has been challenging in certain
situations such as gas-phase calculations where fluctuations
in the atomistic region can induce error and instability in the
continuum solution.17

Alternatively, molecularly resolved and continuum do-
mains may be coupled through the Schwarz alternating
method, where state-exchange is achieved by matching
boundary conditions and the individual regions are iterated
until they converge to a steady-state solution.1,10,18 Due to
noise in the MD part of the system, fitting of the local velocity
is necessary to smooth the boundary condition from the MD
fluid that is applied to the continuum region in a given iteration.
The Schwarz alternating method has already been used for
multiscale simulations bridging the nano- and meso-scales in
coupling MD and lattice Boltzmann domains.19 Fedosov and
Karniadakis18 also adapted it to interface MD to a mesoscale
region simulated using dissipative particle dynamics (DPD),
which in turn was coupled to a numerical Navier-Stokes
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solution. While this strategy decouples both time and length
scales, it is less suitable for dynamic problems since each
time-step is treated as quasi-steady-state and requires iteration,
although often a single iteration per time-step may be sufficient
for non-equilibrium systems.1

A different multiscale approach involves molecular to
coarse-grained molecular coupling rather than molecular-
continuum coupling, and one such strategy for interfacing
atomistic models to a coarse-grained particle-based descrip-
tion has been proposed by Praprotnik et al.20 The coarse-
grained representation in their work is obtained from the
molecular one by structure matching. Their “adaptive reso-
lution scheme” (AdResS) then smoothly interpolates from
the molecular to the coarse-grained particles as they pass
between an atomistic region and a coarse-grained one.20–26 Of
course, a molecule’s degrees of freedom are not conserved
and continuously change as it traverses the intermediate
region between the atomistic and coarse domains.20 This
method has been used to develop simulations of liquids
with tetrahedral structure, including water, which are coupled
to coarse-grained molecules with isotropic pair potentials
obtained through Boltzmann inversion.20,21,23,25,26 While it was
originally described in the constant temperature case, recently
this technique has been adapted for constant energy simula-
tions, although the latter formulation results in a drift force
such that momentum is only weakly conserved.27 Importantly,
this method has also been used in triple-scale simulations
of water in which atomistic and coarse-grained mesoscale
regions are coupled to a finite-volume continuum solution by
exchange of fluxes between the different domains.24 One issue
of concern in such approaches is the lack of transferability
in the coarse-grained model. Typically, the structure-matched
coarse-grained potential is a function of the system thermo-
dynamic state and thus simulating systems with temperature
or density gradients, or across a variety of conditions, can
be difficult to implement in a thermodynamically consistent
manner.

Smoothed particle methods offer an alternative and partic-
ularly convenient approach to incorporating coarse-grained
mesoscale and continuum regions in multiscale simulations,
and this is the main strategy that we consider here. Particle-
based continuum solvers include smoothed particle hydrody-
namics (SPH)28–30 and smoothed dissipative particle dynamics
(SDPD).31 In SPH, the problem domain is discretized into a
set of Lagrangian particles or nodes. At each time step, the
strain or strain-rate at a selected particle is computed from the
particle velocities/positions in the system at that time. With the
strain/strain-rate known, the stress at each particle is calculated
from which the corresponding particle acceleration can be
determined. Particle positions and velocities are integrated in
time as in traditional MD,30 although the equations of motion
are distinct and formulated from a top-down, continuum
assumption. Thus, SPH is essentially a method for numerically
solving the hydrodynamic equations with a formalism that is
reminiscent of MD.30 SDPD is an extension of SPH to the
mesoscale proposed by Español and Revenga that introduces
thermal fluctuations in the field variables of the continuum
solution.31 In SDPD, the size of the fluid particles is determined
by the choice of a parameter called the “smoothing length.”

Decreasing the smoothing length results in finer resolution
and less massive particles that are subject to larger thermal
fluctuations, whereas in the limit of large smoothing lengths,
fluctuations disappear and continuum hydrodynamics in the
form of SPH is recovered.

Particle-based solvers of the continuum equations offer
a natural method of coupling with inherently particle-based
descriptions of the molecular world. The use of discrete
particle methods for all length scales in a multiscale simulation
seems to have been first suggested by Dzwinel et al.32 This
perspective was subsequently adopted by Liu and Liu, who
demonstrated that SPH can be stably coupled to MD.30 These
authors provide two possible schemes: (i) in the first approach,
particles within an overlap region interact through both MD
and SPH forces. (ii) In the second, force-bridging eliminates
the need for an intermediate domain; MD particles interact
through an atomic potential (e.g., Lennard-Jones), SPH parti-
cles interact through SPH forces, and at the interface between
the two regions, MD and SPH particles interact symmetrically
through some arbitrarily chosen interaction (SPH or MD).
A similar approach was suggested by Ganzenmüller et al.,33

who instead used an algebraic mean of MD and SPH forces
for cross interactions. These techniques require a thermostat
for the MD region since the (non-fluctuating) SPH particles
otherwise dissipate all heat in the MD portion of the system
through viscous interactions.

However, such coupling methods are not ideal if the
smoothed particles are subject to fluctuations. For very small
particles, the presence of thermal noise can lead a softly
repulsive SPH particle to jump across an interface and instan-
taneously change type to a MD atom; since MD potentials
frequently feature a steeply repulsive core, catastrophic forces
result when such a particle enters the overlap region [approach
(i)] or the MD region [approach (ii)] and lands close to
another MD atom. Alternatively, if fluid particles are much
larger than MD atoms such that fluctuations no longer yield
large particle displacements per time-step, mass conservation
requires performing particle insertions and deletions when
particles cross the fixed boundaries. This is difficult to realize
in an efficient manner that does not artificially disrupt either
domain’s equations of motion.

The tunability of the characteristic length scale (the
smoothing length) makes SDPD an ideal candidate for
multiscale simulation. Kulkarni et al.34 demonstrated that
it is possible to couple two SDPD regions with different
resolutions (i.e., smoothing lengths) and reproduce correct
thermodynamic equilibrium properties across an entire simu-
lation box containing both domains. This opens the possibility
for multiscale simulations spanning length scales from the
mesoscopic to the continuum. Moreover, these authors showed
that there is a smoothing length at the atomistic scale at which
a collection of SDPD particles can successfully reproduce
both dynamic and thermodynamic properties associated with
a Lennard-Jones fluid. Therefore, coupling MD to a reduced-
scale SDPD fluid seems to be the major missing link in using
such methods to cover the spectrum of length scales from
macroscopic to atomistic.

In this paper, we develop a technique for coupling an atom-
istic MD region to a fluctuating continuum solution obtained
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using SDPD, which in turn can be coupled to increasingly
coarse SDPD regions via the strategy of Kulkarni et al.34

Instantaneously changing particle types at a sharp interface
can incur catastrophic forces; hence, we follow the adaptive
resolution approach and introduce a switching function such
that particles change type gradually across an “overlap” region.
For the atomistic region, we choose a Lennard-Jones fluid
and demonstrate that with the method described here, correct
thermodynamic properties are reproduced within the entire
system. In order to reduce chemical potential gradients present
due to differences in resolution, we introduce a pairwise
thermodynamic force that performs work on the particles in
the buffer region between the atomistic and continuum fluids.
A derivation and discussion of this force is provided in Sec.
IV. Finally, in Secs. VI and VII, we show that our method for
coupling MD and SDPD correctly captures hydrodynamics by
performing dual- and triple-scale simulations of shear flow. In
order to illustrate the robustness of this approach, we consider
two different cases: one in which shear forces act in a direction
parallel to the interface between the continuum and atomistic
region and one in which they are perpendicular.

II. SMOOTHED DISSIPATIVE PARTICLE DYNAMICS

Because it is the key element of the multiscale approach
described in this paper, we first provide a brief summary of
smoothed dissipative particle dynamics. To date, SDPD has
been used to simulate a variety of mesoscale hydrodynamic
phenomena including simple polymers,35,36 pinned DNA
subjected to shear flow,37 colloidal particles,35 the flow
of blood,38 suspensions,39 and viscoelastic flows.40 In this
method, the domain is composed of a collection of particles
or fluid volumes that evolve in time according to equations
of motion obtained from a discretization of the fluctuating
Navier-Stokes equations based on interpolation theory. The
Navier-Stokes equation in Lagrangian form is41

ρ
dv
dt
=−∇p+η∇2v+

(
ζ +

η

3

)
∇∇·v. (1)

In applying the aforementioned particle discretization to
this expression, it is possible to obtain an equation of motion
for all the particles in the system, i.e., Eq. (1) can be solved
numerically by deriving an appropriate interaction between
particle pairs and integrating particle positions in time. The
reversible contribution to the dynamics of particle i in the
resulting equation is31,35
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where N is the number of particles in the system, pi is the
pressure at particle i, ρi is the density at particle i, mi is the
mass of the ith particle, Wi j is the smoothing kernel (discussed
below), and ei j is a unit vector joining the centers of particles i
and j, ei j ≡ ri j/

�
ri j

�
with ri j ≡ ri−r j. Equation (2) determines

the force on particle i due to the local pressure distribution
and corresponds to the discretization of the pressure gradient
term in Eq. (1). The irreversible, viscous contribution to the

Navier-Stokes dynamics is represented in SDPD by
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Here, η is the fluid shear viscosity, ζ is the bulk viscosity, and
vi j ≡ vi−v j is the relative velocity between particles i and j.
The contribution of Eq. (3) to the SDPD equations of motion
accounts for dissipative interactions between neighboring
SDPD particles [i.e., the second and third terms on the right-
hand side of Eq. (1)].

The last component of SDPD is the presence of thermal
noise in the velocity field. Fluctuations are introduced in a ther-
modynamically consistent manner through the GENERIC42–44

formalism and are described by31,45

midṽi =

N
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dWi j is a tensorial generalization of the stochastic Wiener
process,68 and dŴi j is the traceless, symmetric part of dWi j,
i.e., dŴαβ

i j =
1
2


dWαβ

i j +dW βα
i j


− δαβ

3 tr
�
dWi j

�
. The form of

this random contribution to the dynamics is postulated such
that it is consistent with the tensorial structure of the friction
forces in the hydrodynamic equations.45 This final contribution
to the equations of motion is the force on particle i due to
random stresses induced by thermal fluctuations in the fluid.
Fluctuation-dissipation is satisfied by the following choice for
the magnitudes of the noises Ai j and Bi j:
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Equations (2)–(4), together with the noise magnitudes
given in Eq. (5), collectively yield a set of stochastic differential
equations governing the velocity field for a SDPD fluid at
constant temperature. All these terms, including the viscous
and random forces, act symmetrically on pairs of particles so
that momentum is conserved; in other words, particle forces
are pairwise and depend only on the position and velocity
difference vectors.

The smoothing kernel Wi j is an even, monotonically
decreasing function of the particle separation ri j with
compact support, normalized to unity. Here, we use the cubic
spline,30,34,46,47

Wi j(q)= 1
πh3




1− 3
2

q2+
3
4

q3, 0 ≤ q < 1,
1
4
(2−q)3, 1 ≤ q < 2,

0, q > 2,

(6)

where q = ri j/h. The support domain of a point is determined
by the smoothing kernel and equals κh, where κ = 2 for the
cubic spline. While the sums in Eqs. (2)–(4) extend over all
the particles in the system, the compact support condition
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for the weighting function implies that only nearby particles
contribute to the sums.

In the SPH and SDPD approximations, field variables
and their spatial derivatives are calculated from a weighted
average using properties associated with nearby particles,
where the weight is determined by the kernel Wi j or its
derivative, respectively, at the neighboring particle’s location.
For instance, the density at particle i is simply a weighted
average over neighboring particle masses,

ρ(ri)=
N
j=1

m jW
�
ri−r j, h

�
. (7)

The density field is updated at each time-step by perform-
ing this sum; an alternative approach is to use a discretized
form of the continuity equation.30 Note that a different density
is obtained from Eq. (7) depending on whether particle i
itself contributes to the sum. Generally, the particle’s own
contribution should be included since the particle distribution
for a SPH fluid has order,48 although for small smoothing
lengths where the distribution of particles is more disordered
due to thermal noise, this can lead to an overestimated
density.34,48,49 In the present work, we include the self-
contribution to density. This is an important subtlety that is
revisited in Secs. IV and V.

Solid boundaries in a SDPD region are treated as a
collection of SDPD particles frozen on a lattice; for a wall-fluid
particle pair interaction, a velocity is calculated and assigned to
the wall particle such that no-slip is enforced at the boundary.
The details of this approach are described in Ref. 50, as well as
in the supplementary material.51 Due to the high diffusivity of
SDPD particles with a very small smoothing length, additional
measures such as specular reflection, a higher wall particle
number density, additional interparticle forces,30 or velocity
averaging30,31,52 may be necessary to fully prevent boundary
penetration.

III. ADAPTIVE RESOLUTION SCHEME FOR COUPLING
MD TO SDPD

We couple MD to SDPD using the adaptive resolution
scheme (AdResS) proposed by Praprotnik et al.20 This makes
it possible to define a fixed overlap domain between the
two regions where particles continuously change type from
MD to SDPD and vice versa. In this scheme, reversible
particle pair interactions are turned on/off via a weighting
function that depends on their positions within the transition
domain. Particles within the MD region interact through
an atomistic potential and in the SDPD domain, particles
interact through SDPD forces [Eqs. (2)–(4)]. Within the
overlap region, particles interact through a linear combination
of both interactions, as described below. AdResS has been
considered in the context of coupled MD/finite-volume
continuum solutions previously,24 but has not been used with
particle-based continuum solvers (e.g., SDPD), even though
they present a natural option since one only has to consider
particle-particle interactions. Importantly, through this kind
of pairwise MD-SDPD coupling, thermal noise in the MD
region will not lead to error in the continuum solution since

fluctuations are already present in SDPD. Moreover, one can
avoid particle insertions and deletions by scaling down the
smoothing length of the SDPD fluid such that the SDPD
particles are identically massive to the MD particles. This
SDPD domain with atomistic resolution can then be coupled
to more coarse SDPD regions using the method of Kulkarni
et al.34 An attractive feature of the AdResS approach is that it
can be used for coupling to atomistic fluids with complicated
molecular geometries.20–23,25,26

To implement AdResS, we define a switching function
s(z) that is zero in the SDPD domain, unity in the MD domain,
and smoothly and monotonically transitions between these two
values in the buffer region. An example of such a function is
shown in Fig. 1. With this switching function, it is possible to
define the quantity λ = s(zi)s�z j�, which can be used (as shown
below) to interpolate between pairwise particle forces and
continuously change particle types within the buffer region.
Hence, reversible interactions between particle pairs can be
written as a linear combination between the atomistic MD
forces and reversible SDPD forces [Eq. (2)],20

Fi j

�
rev= λFMD

i j + (1−λ)FSDPD
i j

�
rev. (8)

The form for the MD force depends on the interatomic
potential. More generally, Eq. (8) describes the reversible
dynamics across the entire simulation domain; for example,
for particle pairs in the MD region, s(z) for both particles
is equal to unity, and thus the second term vanishes, leaving
only MD interactions, as we would expect. Similarly, if both
particles are within the SDPD region, λ is zero for the pair and
the first term involving MD forces vanishes, and the reversible
dynamics are described by Eq. (2). Note that for the buffer
region (0 < λ < 1), the weighting by λ is only applied to the
reversible part of the dynamics, and the viscous and random
forces [Eqs. (3) and (4)] are applied to all buffer particles
without weighting. This is done in order to thermostat the
buffer to the correct temperature and is discussed in more
detail below. Because Eq. (8) interpolates between pairwise
forces, momentum is conserved.

For a simple two-scale AdResS system with periodic
boundary conditions in all directions and a vector normal
to the two overlap or “buffer” regions between the MD and
SDPD regions in the z-direction (Fig. 1), an example for
the aforementioned weighting function used for interpolating
forces inside a buffer bounded by z = zmin and z = zmax is20

FIG. 1. Adaptive resolution weighting function versus position in the prob-
lem domain (dark black curve). A snapshot of the system is superimposed
for clarity. The part of the domain where s(z) = 1 is the MD region, the
part where it is zero is the SDPD region, and particles within the remaining
“buffer” domains interact through a linear combination of both MD and
SDPD forces.
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s(z)= sin2

π

2

(
z−zmin

zmax−zmin

)
, zmin ≤ z ≤ zmax. (9)

This function smoothly transitions from a value of zero in
the SDPD domain to unity in the MD region. A similar function
may be defined for the second buffer, which is necessary due
to the simulation domain periodicity. The form for the global
switching function is shown in Fig. 1, together with a super-
imposed example snapshot of the simulation box for a simple
system with periodic boundary conditions in all directions.

Additional care is necessary to address the manner in
which the MD potential is switched on/off within the buffer

since it typically contains a steeply repulsive core. In this work,
we choose a Lennard-Jones (LJ) potential for the MD region,
which diverges at zero particle separation. The sudden onset
of LJ interparticle forces at the MD/buffer interface when λ
becomes nonzero can be catastrophic if the SDPD particle
enters the buffer region close to another particle. Praprotnik
et al. remedy this issue by capping the atomistic interactions.20

Instead of this approach, we use the weight parameter λ to
gradually switch on the atomistic repulsive forces. Specifically,
within the buffer region we use core-softened LJ interactions53

that continuously approach the normal LJ interactions with
decreasing distance from the LJ/buffer interface,

FMD
i j

�
ri j,zi,z j

�
=




24εi jr5
i j

*..
,

2σ12
i j

(1−λ)σ6
i j+r6

i j

3 −
σ6

i j
(1−λ)σ6

i j+r6
i j

2

+//
-

ei j , ri j ≤ rc,

0 , ri j > rc.

(10)

Here, σi j and εi j set the length scale and energy for the
interaction, respectively, and rc is the cut-off radius. For the
case of λ = 1, this expression reduces to the familiar LJ force.
Even with these measures, an insufficiently small time-step
may still lead to instability, although we find that this scheme
is stable for typical MD simulation time-steps. It is worthwhile
to note that the core-softened LJ potential is frequently used in
alchemical free energy calculations that introduce and remove
atoms and their interactions for related numerical reasons.54

Finally, it is necessary to apply a thermostat either to
the full system or to the buffer region when using the AdResS
approach.20,21 The two domains in such a dual-scale simulation
can be considered as different phases in equilibrium,20,21,26

with a corresponding latent heat for particles traveling between
the atomistic and coarse regions. Without a thermostat, the
loss of heat that occurs within the buffer region results in a
MD domain at a lower temperature than the SDPD region
that is by construction thermalized to the correct temperature.
This undesirable temperature imbalance leads to a pressure
differential that is relaxed by a transfer of mass into the
MD region, resulting in a non-uniform density distribution.
This issue is resolved by applying a thermostat to the entire
buffer region. In this study, we use the SDPD thermostat,
i.e., the irreversible and stochastic SDPD forces [Eqs. (3)
and (4)] act on all buffer particles without any weighting
by the parameter λ, and the switching function is only
used to interpolate between the MD and SDPD reversible
dynamics. Hence, at one end of the buffer, the particles are
simply a SDPD fluid, while at the other end they are a
MD fluid coupled to a SDPD thermostat. This thermostat
is similar to the DPD thermostat55,56 that is frequently used
in molecular dynamics simulations, which also introduces
pairwise viscous and random forces between particles. The
pure MD region itself is not thermostatted but is still held
at fixed temperature due to its interface with the buffer, and

thus the correct deterministic dynamics in the MD region
are preserved. We note that in addition to AdResS, hybrid
explicit/implicit solvent approaches also typically require a
similar stochastic buffer region,4,5 as do multiscale simulations
using flux exchange9 and the Schwarz alternating method.10

IV. PAIRWISE THERMODYNAMIC FORCE

The unphysical mixture of interparticle forces within
the buffer region [Eq. (8) and Fig. 2] can lead to devia-
tions from the target density at equilibrium. For example,

FIG. 2. Effective time-averaged force-versus-separation between particle
pairs as a function of position within the buffer. Curves were obtained from
simulations where all the particles in the system interact through either
pure MD or SDPD forces, or some linear combination of the two that is
constant throughout the simulation domain. The red (solid triangle) and blue
(solid circle) curves denote the force between pure MD and SDPD particles,
respectively. The green (hollow circle) and orange (hollow triangle) curves
indicate the hybrid force at two different points within the buffer region. The
results show that hybrid particles with λ between 0 and 1 can experience
effective repulsions corresponding to a modified particle size.
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Lennard-Jones particles experience both attractions and stiff
repulsions, whereas SDPD particles are subject to an effec-
tively soft-repulsive many-body force. A mixture of these
two fundamentally different forces can result in particles
with very different properties (e.g., effective size, attraction,
and repulsion) than either of the two original interactions
alone—for instance, mixed particles may have a repulsive core
at a smaller radius, which leads to a local density increase
at equilibrium. Similarly, the mixture of these forces could
lead to a larger effective particle size and yield a region of
depleted density. The specific implementation of λ in the
selected MD potential [e.g., Eq. (10)] also affects how the
effective particle diameter changes with position within the
buffer. The emergence of a non-uniform equilibrium density
distribution in the transition region can be viewed in terms of
chemical potential gradients due to mixed particles. Indeed,
simulations using the hybrid methodology described above
show significant deviations from the target density in the buffer
if no means are taken to correct this [red curve, square markers,
Fig. 3(b)].

To compensate for these unphysical deviations from the
target density, we can introduce a “thermodynamic” force that
performs work on the particles within the transition region
such that the density remains approximately flat. A loose
physical interpretation of this work is that it gives the necessary
effort required to remove or add degrees of freedom to a
particle as it transitions from one type to the other. A similar
approach has already been rationalized and tested in work
using AdResS;25,26 specifically, Fritsch et al. introduced a
thermodynamic force of the form26

Fth=
m
ρ0
∇p(r). (11)

To a linear approximation, the force acting on particle i can be
rewritten as

Fth
i =−

mi

ρ2
0κT
∇ρ(ri), (12)

where κT and ρ0 denote the isothermal compressibility and
density, respectively, of the fluid at the desired thermodynamic
state. Here, the pre-factor 1/ρ2

0κT is interpreted as the variation

of the local chemical potential due to changes in density,26

since (∂µ/∂ρ)T = 1/ρ2κT . It is clear that Eq. (12) applies a
force to particles only in the presence of density gradients
and that the force promotes particles to move from regions of
higher to lower densities, i.e., opposite the gradient.

In order to determine the form for the thermodynamic
force, it is necessary to perform a reference simulation and
obtain the density profile within the buffer through a binning
procedure. With the density profile known, Eq. (12) can be
used to numerically determine an optimal force as a function
of position. Then, a new simulation can be performed using
this force and the new density distribution will appear “flatter.”
Subsequent modifications to the force may need to be applied
through iterations of Eq. (12) and additional test simulations
until the density distribution is deemed sufficiently flat. A
potential drawback of this type of force is that it is single-
body and position-dependent, resulting in loss of momentum
conservation within the simulation domain.

The ideas above can be reformulated in a particularly
convenient way that also leads to improved behavior for the
present scenario involving SDPD particles. For our problem,
we have access to the instantaneous density distribution
at every time-step since we calculate SDPD interactions
within the buffer; therefore, we seek to write an equivalent
thermodynamic force that acts in real-time and does not require
iterative simulations. Moreover, we would like to symmetrize
this correction force such that it is pairwise and momentum is
conserved. First, we write the thermodynamic force as

Fth
i =−

mi

ρ2
0κT

1
ρ(ri) [ρ(ri)∇ρ(ri)]. (13)

Since ρ(ri)∇ρ(ri) = (1/2)∇ρ2(ri), this expression may be
rewritten as

Fth
i =−

mi

2ρ2
0κT

1
ρ(ri)∇ρ

2(ri)=− mi

2ρ2
0κT

1
ρ(ri)∇

�
ρ2(ri)− ρ2

0

�
.

(14)

FIG. 3. (a) Temperature profile for a
LJ system coupled to a SDPD domain
at equilibrium with a pairwise correc-
tion force. The profile is approximately
flat, with deviations less than 2.0% from
the target temperature. (b) Density pro-
files for the system. The red curve
(squares) is the density without correc-
tions, while the blue curve (triangles) is
with a pairwise correction. The densi-
ties within the MD/SDPD domains are
within 3.2% of the target value with this
correction. The black curve (circles) is
the density profile when the strength
of the pairwise thermodynamic force is
increased by a factor of 10. For the MD
and buffer regions, densities are com-
puted by binning the system and count-
ing particles, while for the SDPD part
of the system, we use the SPH calcu-
lation for density [Eq. (7)] at randomly
sampled points.
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Let g(ri)≡ ρ2(ri)− ρ2
0 and note that we can write

Fth
i =−

mi

2ρ2
0κT


∇

(
gi
ρi

)
+
gi

ρ2
i

∇ρi

. (15)

Here, we have used the shorthand gi ≡ g(ri). In the SPH
approximation, the gradient operator can be expressed as a
sum over particles such that

Fth
i ≈ −

mi

2ρ2
0κT



N
j=1

m j

ρ j

gj

ρ j
∇iWi j+

gi

ρ2
i

N
j=1

m j

ρ j
ρ j∇iWi j



= − mi

2ρ2
0κT

N
j=1

m j
*
,

gi

ρ2
i

+
gj

ρ2
j

+
-
∇iWi j . (16)

Therefore, we arrive at a pairwise thermodynamic force

Fth
i

mi
=− 1

2ρ2
0kT

N
j=1

m j



�
ρ2
i − ρ2

0

�

ρ2
i

+

(
ρ2
j− ρ2

0

)
ρ2
j



∂Wi j

∂ri j
ei j . (17)

In the SPH approximation, the subtracted constant ρ0 should
vanish due to the antisymmetry of the weighting function
derivative for a completely uniform particle distribution. If the
particles are not distributed uniformly, the subtracted constant
will lead to a non-zero contribution to the pairwise correction
force and hence penalize deviations from a flat distribution.
Note that Eq. (17) is equivalent to the reversible SDPD force
[Eq. (2)] if we choose the following equation of state:

pi =
1

2ρ2
0κT

�
ρ2
i − ρ2

0

�
. (18)

The equation of state for a system that is a linear
combination of two systems with identical equations of state
may not necessarily be the same as that in the two individual
regions21 and hence we can also think of this thermodynamic
force as a modification to the SDPD equation of state within
the buffer that minimizes density gradients. Note that both the
iterative and SDPD thermodynamic forces are independent
of the specific choice for the MD interaction potential and
are thus quite general. Here, the density ρ0 includes the
particle self-contribution (discussed in Sec. II) since the force
depends on the density defined at each particle, which will
be overestimated for small smoothing lengths. Importantly,
the force described by Eq. (17) is pairwise in form and thus
conserves momentum. This pair force is zero if the density at
both particles is precisely equal to the target density, as we
would expect. If both particles occupy a high-density region
and their densities are higher than the target value, the net force
will be repulsive and drive them apart. If both particles are in
a low-density region, the net force will be attractive and thus
impede the particles from separating.

One final modification to the thermodynamic force
ensures that it only applies to mixed particles in the buffer
region and continuously vanishes as both particles approach
either the pure MD or SDPD domains. This is achieved by
using the switching function s(zi) ≡ si [Eq. (9)] to define a
weighting parameter ξ = 2[si(1− s j)+ s j(1− si)] for the ther-
modynamic force, ensuring that it contributes maximally in the
buffer center and vanishes at the boundaries. Hence, Eq. (8)
is modified to include the pairwise thermodynamic force so

that the reversible dynamics in the buffer are given by

Fbuffer
i j

���rev
= λFMD

i j + (1−λ)FSDPD
i j

���rev
+ ξFth

i j . (19)

V. TEST OF MD-SDPD COUPLING AT EQUILIBRIUM

In order to test this methodology, we first ensure that
the coupling scheme yields proper thermodynamic equilib-
rium, that is, thermodynamic properties like the density and
temperature remain uniform across the simulation domain
containing both SDPD and MD regions. As a case study, we
consider a simple Lennard-Jones fluid with periodic boundary
conditions in all directions, as illustrated in Fig. 1. Values are
reported in reduced Lennard-Jones units and all atoms have
a mass of unity. The extent to which MD particles interact
with their local environment is determined by the potential
cut-off radius rc, whereas the extent for the SDPD interaction
depends on the particles’ influence domain κh. Hence, we can
ensure symmetric interactions and momentum conservation
for the hybrid particles by equating the cut-off radius for the
MD potential to the influence domain of the SDPD particles.
The latter is chosen so that the SDPD particles are identically
massive to the MD atoms (h = 1.3). Since κ = 2 for the cubic
spline, it follows that κh= rc = 2.6. MD atoms are held at fixed
temperature due to interactions with the buffer particles, which
are thermalized using the SDPD thermostat as described in
Sec. III. The simulation box features a SDPD domain adjacent
to a MD domain with identical dimensions, where the two
are separated by buffer regions using the AdResS approach
described in Sec. III. Periodic boundary conditions are used in
the x-, y-, and z-directions, and the z-direction is normal to
the interface separating the MD and SDPD regions.

A snapshot of the simulation domain is provided for clarity
in Fig. 1 together with the switching function appropriate to
this problem geometry. The pure MD and SDPD regions of the
simulation domain have dimensions Lx = Ly = 13 and Lz = 21
with a reduced density of ρ= 0.79. Particles are initialized on
a square 12×12×48 lattice inside of a box with dimensions
13×13×52, with those between z = 0 and z = 5 (and z = 26
and z = 31) designated as buffer particles. Hence, there are a
total of 6912 particles. The region between z = 5 and 26 is the
MD domain and between z = 31 and 52 is the SDPD one. The
MD and SDPD regions are separated by buffers of width 5.
The target temperature is T = 1.0, and the fluid bulk and shear
viscosities are ζ = 0.957 and η = 1.9,58,59 respectively. For time-
integration, we use a modified velocity-Verlet algorithm where
SDPD viscous forces are determined from an extrapolated
velocity computed at the previous time-step,55 and we choose
a time-step of∆t = 0.002. The system is equilibrated for 2×105

time-steps, and data are averaged over 1×105 time-steps.
In pure SDPD simulations, the fluid thermodynamic

properties are specified by the equation of state, which is
used to obtain the pressure distribution that determines the
reversible dynamics given by Eq. (2). For simulations of
incompressible fluids, a common choice for the equation of
state is pi = c2

sρi,
30 where cs is the speed of sound. The

parameter cs is often selected based on convenience such
that small density variations yield large pressure gradients, yet
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not so large that an impractically small time-step is required
(i.e., such that the fluid is actually quasi-incompressible).
However, the above equation of state cannot be used directly
for MD/SDPD multiscale simulations since the speed of
sound of a Lennard-Jones fluid in reduced units at this
thermodynamic state is cs = 5,34 which would result in an
excessively high pressure in the SDPD domain and drive a
flux of mass into the MD region. Furthermore, for a SDPD
fluid characterized by a small smoothing length, the density
and hence pressure at a given particle is overestimated due to
self-contribution effects (discussed in Sec. II). Therefore, we
modify the aforementioned linear equation-of-state to ensure
that the absolute pressure is not altered by changing the speed
of sound,

pi = c2
s (ρi− ρ0)+ p0. (20)

Here, p0 is the target pressure, and ρ0 is the target density
including the overestimation due to self-contribution to
density. This expression is simply a local, linear approximation
to the full equation of state where the absolute pressure and
compressibility can be adjusted independently, hence making
it possible to use the appropriate value for the speed of sound
and thus match both compressibility and absolute pressure to
the target fluid. For the temperature and density investigated
here, the target pressure for the LJ fluid with a cut-off rc = 2.6
is p0 ≈ 1.4. For SDPD particles with a smoothing length of
h = 1.3, the overestimated averaged density at each particle
from Eq. (7) is found to be ρ0≈ 0.804, which is slightly larger
than the actual value of 0.787 due to self-contribution effects.
This discrepancy is important to note: this overestimated
SDPD density should be used as the target density in the above
equation of state and the pairwise thermodynamic force since
both of those quantities depend on the density defined at each
particle. This quantity can be obtained by running an inex-
pensive pure SDPD simulation at the desired thermodynamic
state and averaging particle densities. From equilibrium MD
simulations, we find that the compressibility of a LJ fluid at
the selected thermodynamic state is κT ≈ 0.08, and hence the
pre-factor for the thermodynamic force is 1/2ρ2

0κT ∼ 10.
The overall approach just described is tested in the absence

of flow fields. We find that thermal equilibrium is readily
achieved and the pure MD and SDPD fluids converge within
2.0% accuracy to the correct temperature as estimated from
the particle kinetic energies. Namely, there are no significant
temperature gradients in the direction normal to the interface
between the two domains [Fig. 3(a)]. This accuracy can be
further improved by coupling the buffer more strongly to
a thermostat or applying a thermostat to the full system.
Moreover, the density profile in the system is approximately
flat. Fig. 3(b) shows the density profile in the z-direction
with and without the pairwise thermodynamic correction
force. While the former exhibits some unphysical deviations
in the buffer region from the target value, it is improved
relative to the case without the thermodynamic force. The
uncorrected density profile is within 2.8% and 3.6% of the
target value within the MD and SDPD regions, respectively,
with more substantial deviations in the buffer. With this force,
the average densities inside the MD and SDPD regions are
both within 2.9% and 3.2%, respectively, and the deviations

inside the buffer are noticeably reduced. The flatness of the
density distribution can also be further improved by increasing
the prefactor in the pairwise corrective force. Increasing the
strength of this force by a factor of 10 reduces deviations in the
buffer further and lowers the error in the pure MD and SDPD
region to less than 2.9%. Finite-size effects appear to have a
measurable, albeit weak, influence on this approach. We have
performed equilibrium tests in the absence of a thermodynamic
force with bulk MD/SDPD regions twice as large as the case
discussed above, as well as twice as small. Increasing the
volume of the bulk MD and SDPD regions by a factor of four,
while keeping the buffer domains identical in size, leads to a
change in the density in the SDPD region from 0.756 to 0.760
and from 0.805 to 0.810 in the MD region.

We have also investigated fluctuations in key quantities for
the equilibrium case. By construction, the multiscale method
correctly captures fluctuations in velocity and reproduces
the appropriate Maxwell-Boltzmann statistics throughout the
entire simulation domain. The standard deviation of the
density in the MD, SDPD, and buffer regions is σρ ≈ 0.027,
0.042, and 0.036, respectively. These results suggest that the
compressibility is approximately matched in all three regions;
a more careful choice for the speed of sound in the equation of
state [Eq. (20)] may improve these results. We also note that
the unphysical deviations from the target density will affect the
compressibilities, and hence some non-uniformity between the
compressibility values is expected. Finally, the soft potential
in the coarse-grained SDPD domain leads to a slightly higher
diffusivity than in the MD region, which is a common feature
of coarse-grained systems, and hence mass diffusivity is not
completely uniform across the full simulation domain.

We find that the density profile can be further flattened
through several approaches. One alternative is to use the
iterative non-pairwise thermodynamic force, Eq. (12). In
principle, with a sufficient number of iterations and appropriate
choice for a thermostat, it is possible to obtain a flat density
profile to arbitrary precision using this force. This approach
would be less suited for non-equilibrium problems, however,
since it does not conserve momentum and may require strong
thermostatting. Alternatively, since the Navier-Stokes solution
does not depend on the absolute pressure of the fluid, we can
adjust the p0 parameter in the SDPD equation of state [Eq.
(20)]. Reducing its value to p0 = 0.5, we find that the error
in density in the pure MD and SDPD regions is improved to
0.5% and 1.2%, respectively. It may be possible to reduce the
error even further with a more careful tuning of p0. Finally,
the unphysical density deviations in the buffer region can also
be reduced by implementing a three-part overlap domain. In
this approach, the MD-to-SDPD and SDPD-to-MD transition
regions are separate, with a MD/SDPD coexistence region
between them where particles of different types interact via
SDPD forces. This approach will be the subject of future work.

VI. NON-EQUILIBRIUM CASES INVOLVING
THE START UP OF SHEAR FLOW

To levy a more challenging test, we ask how accurately the
hybrid method reproduces the correct dynamical behavior in a
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non-equilibrium scenario, when fluxes of momentum and mass
must be preserved across the buffer region. We again consider
a Lennard-Jones fluid but in a slab geometry confined between
two solid interfaces. After equilibration, we subject it to the
start up of shear flow by moving one of the solid boundaries
with a constant velocity. In order to demonstrate the robustness
of this multiscale technique, we consider two distinct cases:
(1) shear forces act in a direction perpendicular to the interface
separating the atomistic and continuum regions and (2) shear
forces act in a direction parallel to the buffer region. In the
former case, particles are actually convected by the shear
forces through the buffer region and thus in some sense are
forced (by the flow) to change type. In the latter, particles
are not convected across the buffer region but diffuse on their
own through Brownian motion. For all of the non-equilibrium
simulations considered, we apply the pairwise correction force
(Sec. IV) and SDPD thermostat (Sec. III) in the buffer so that
momentum in the fluid is conserved.

In the perpendicular case, fluid is convected across the
buffer region between the MD and SDPD domains due to
the motion of the solid boundary, as illustrated in Fig. 4(a).
Wall particles within the atomistic region are treated as
Lennard-Jones atoms tethered to a fixed position in space
using a harmonic potential with a force constant k = 1000. For
the moving wall, the equilibrium positions of the harmonic
potential for the boundary particles are translated at the

appropriate velocity. When these atoms enter the buffer region,
harmonic forces are turned off and the particles freeze at their
instantaneous positions, at which point they are translated
at the wall velocity. These transitional wall particles interact
with LJ wall particles through pure LJ interactions and with
fluid particles in the buffer through AdResS mixed forces, as
described previously. We use an Andersen thermostat for the
wall particles in the MD region. Cross interactions involving
hybrid boundary particles are treated as described in Secs. III
and IV, with the pairwise thermodynamic force applied only
to fluid particle pairs. In order to prevent boundary penetration
within the SDPD/hybrid domains, wall atoms are initialized on
a lattice with a higher number density than the fluid (ρn = 1.0),
and transition/SDPD fluid particles are specularly reflected at
the solid-liquid interface, i.e., if a particle crosses the wall
boundary, the velocity component of the particle normal to
the wall is reversed such that it re-enters the fluid domain
at the following time-step. The wall is translated in the x-
direction with unit velocity. The thickness of the walls is 5
and the channel width is 13; in the x-direction, the SDPD
and MD domains have a length of 8 and the buffers have a
width of 5. Fluid atoms are initialized at the same number
density and temperature as in the equilibrium study and with
the same equation of state and corrective force magnitude for
the buffer. The total number of particles is 6836. Due to the
large number of hybrid particle interactions, this system setup

FIG. 4. Snapshots of the system for the (a) perpendicular and (b) parallel flow cases. (c) Velocity profiles for the MD, buffer, and SDPD domains for
perpendicular start-up shear flow as compared to the analytical solution. (d) Velocity profiles for the parallel case. The velocities are averaged over 20 independent
trajectories for both scenarios.
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is not particularly efficient and is included to demonstrate the
robustness of the technique with respect to the placement of
the transition regions.

For the parallel case [Fig. 4(b)], the box dimensions are
13×13×36 and the channel width is 26. The fluid atoms are
initialized on a 12×12×24 lattice between z = 5 and 31, while
wall atoms are initialized between z = 0 and 5 and z = 31 and
36 with number density ρn = 1.0. This results in a total of
5146 particles. The buffer region boundaries are at z = 15.5
and 20.5. In this case, one solid interface consists entirely of
MD particles, while the other is always composed of SDPD
particles; no transition between particle types ever occurs
within each wall. Specular reflection is only required at the
SDPD fluid-wall interface where the soft SDPD pressure force
and high particle diffusivity can lead to boundary penetration.
The MD harmonically tethered wall atoms are again held at
a fixed temperature of T = 1 using an Andersen thermostat
and the equilibrium positions of the harmonic potential are
translated with a velocity of 1. For both cases, we select
∆t = 0.001 and equilibrate for 5×104 steps before shearing.

Fig. 4(c) shows the velocity profiles for the perpendicular
case in the MD, SDPD, and buffer regions at various times
in the simulation. Rather than performing a local time
average, results are averaged over 20 trajectories initialized
with different random seeds in order to correctly capture
hydrodynamics.60,61 The MD fluid is thermostatted by both
the harmonic oscillating walls in the atomistic region, as
well as through contact with the fluid in the buffer. We find
that the observed velocity profile in each region is in good
agreement with the exact analytical solution. The absolute
error in the velocity per bin, averaged over the simulation
production trajectory and treating the analytical solution as
exact, is approximately 0.021 in the buffer, 0.025 in the MD
region, and 0.035 in the SDPD region. The average velocity in
the channel approaches the expected linear profile at steady-
state.

The velocity profiles for the parallel case are shown in
Fig. 4(d), and are also in agreement with the exact continuum
solution, with an averaged absolute error in the velocity profile
of 0.025. At steady-state, there is a subtle deviation from the
expected velocity profile in the buffer region between the
MD and SDPD domains for the parallel case. This is due
to the unphysical, spatially varying combination of forces,
combined with the uniformly applied SDPD thermostat, which
results in a fluid with a position-dependent viscosity. If better
accuracy is required, this type of artifact in the dynamics may
potentially be remedied by introducing a position-dependent
thermostat as in Ref. 23. Since tuning the parameter p0 may
be used to improve the density distribution (Sec. V), we have
also performed simulations for the parallel and perpendicular
cases at a reduced absolute pressure of p0 = 0.8 and find no
appreciable difference in the results from the case with the true
pressure.

VII. TRIPLE-SCALE SIMULATION OF SHEAR FLOW

One of the main motivations behind this multiscale
approach is that it provides a natural interface between MD

and continuum models. While the SDPD region considered in
the examples in Secs. V and VI is of comparable molecular
size, it is possible to further couple this domain to a series of
continuum models of increasing length scale, all the way up to
the non-fluctuating hydrodynamic limit. To illustrate how such
a hierarchy of resolutions might work, we consider the parallel
shear case and include one MD and two SDPD domains of
different resolutions [Fig. 5(a)]. The strategy for bridging
SDPD fluids with different smoothing lengths is described
in Ref. 34 and thus we do not elaborate on that approach here.
We choose a smoothing length for the coarse SDPD particles
of h= 1.64, which gives particles twice as massive as the finer
SDPD ones next to the MD part of the system.

The triple-scale simulation is performed as follows. The
global box dimensions are 13×13×57. The MD wall has a
thickness of 5 and atoms are again initialized at a higher density
than the fluid (13× 13× 5 square lattice). Next to the wall,
atomically resolved particles are initialized on a 12×12×24
lattice across a volume with dimensions 13×13×26, where
particles within a distance of 10.5 to the wall are designated as
MD atoms, particles between 10.5 and 15.5 units from the wall
are hybrid particles, and beyond that particles are designated
as a SDPD fluid with h = 1.3. Adjacent to this domain is the
coarse SDPD region, where particles are initialized on a square
9× 10× 19 lattice over a region with volume 13× 13× 26.
Coarse particles within a distance of 6 from the box edge
are designated as SDPD wall particles. The interface region
between the fine and coarse SDPD domains has a width of
6 and is centered at the point initially separating these two
regions. The coarse SDPD number density is half of that in
the finely resolved region; hence, the number of particles in
the simulation box is reduced by ∼1746 as compared to the
all-atom case to a total of 6011 particles. The equilibration
time and time-step magnitude are the same as in Sec. VI.

FIG. 5. (a) Visualization of the system for the parallel flow, triple-scale
simulation. The coarse SDPD particles are twice as massive as the finely
resolved ones, with half the number density. (b) Velocity profiles across the
channel width for different times when the fluid is sheared. The exact solution
is shown in black.



044101-11 Petsev, Leal, and Shell J. Chem. Phys. 142, 044101 (2015)

The system setup and time-dependent velocity profiles
are illustrated in Fig. 5. Once again, we find that the transient
solution, averaged over a set of 20 simulations, is in agreement
with the analytical result throughout the entire problem
domain. Hence, momentum is correctly transferred across the
hierarchy of scales and regions of different resolutions such
that dynamical flows are accurately reproduced.

VIII. CONCLUSION

In this paper, we describe a new hybrid MD-SDPD
coupling strategy for interfacing a hierarchy of regions
spanning a broad range of length scales from the molecular to
the non-fluctuating continuum limit. This multiscale modeling
approach has both advantages and limitations. In terms of
advantages, the method ensures mass conservation in a very
intuitive fashion and does not require iterative simulations
to derive a new coarse-grained particle model if a different
temperature or density becomes of interest, as would be the
case for structure-, force-, or energy-matching approaches.
Furthermore, there is no constraint on the atomistic model,
provided that it is adequately described as a continuum fluid
and the appropriate thermodynamic and transport properties
at the desired temperature are known. However, as discussed
in Secs. IV and V, the method does require knowledge
of the system target density with corrections due to self-
contribution effects, which necessitates running a short, pure
SDPD simulation to calculate the overestimated densities at
each particle as compared to the global system density.

In the multiscale approach, we couple MD to a region of
SDPD particles with the same mass as those in the atomistic
region. Since SDPD particles are interpreted as volumes of
fluid, one obvious question is the validity of a SDPD fluid
where the fluid volumes have the same size as the atoms in the
MD region. The viability of a top-down, continuum approach
at molecular scales is not immediately clear, particularly for
non-homogeneous and complex fluids. In this respect, the
atomically sized SDPD fluid might simply be interpreted
as a convenient ansatz that successfully bridges continuum
and MD worlds and that satisfies an appropriate number of
constraints, including the fluctuation-dissipation theorem and
basic conservation laws. Moreover, the continuum approxi-
mation often turns out to work surprisingly well when applied
to molecular-scale problems (for instance, the accuracy of the
Stokes-Einstein relation in predicting diffusivities), and this
appears to be the case here. For the systems considered in
this paper the approach is sufficient, although it may not be
successful for more complicated fluids. Ultimately, this model
provides a bridge between atomistic models and increasingly
coarse SDPD regions. Through a hierarchy of SDPD domains
with different resolutions, it is possible to coarse-grain to a
scale where the SDPD model is appropriate.

Perhaps the most significant disadvantage of the presented
MD-SDPD approach is that it does not decouple time scales.
The maximum possible time-step is limited by the smallest
characteristic time scale in the system, determined by the
most finely resolved region in the domain. Even if the spatial
domains are described by a range of length scales from

molecular to highly coarse, all regions will be constrained
to evolve over the same time scales. In this respect, the major
computational savings would stem from a reduction in the
number of particles describing the overall simulation, which of
course can be quite significant in a simulation with a hierarchy
of SDPD regions. However, an attractive feature of smoothed
particle methods is that particle positions and velocity can be
integrated in time using algorithms typically used in MD, and
there exists a body of literature describing modified integrators
that allow for multiple time-scales. Hence, it may be possible
to use multiple time-scale integrators, such as ones originally
developed for MD simulations by Tuckerman et al.,62–67 to
decouple time-scales between the coarse SDPD regions and
finely resolved ones. In fact, the problem of decoupling time-
scales in MD simulations containing particles with disparate
masses has already been addressed,62,63 although it is unclear
if these techniques will work for SDPD.

In summary, this work demonstrates that it is possible
to employ an adaptive resolution scheme in coupling a finely
resolved, molecularly detailed part of a simulation domain
treated via molecular dynamics to a fluctuating continuum
domain. In contrast to earlier approaches that interface
particle-based MD simulations with field-based finite-volume
discretizations, the approach taken here involves representing
the continuum solution using a particle-based technique,
namely, smoothed dissipative particle dynamics. The overall
strategy involves defining a buffer region in which particles
smoothly change type when passing from the SDPD to MD
domain and vice versa. Here, we have described how to design
such a buffer in terms of specific interpolations of reversible
interactions and the addition of “thermodynamic” forces that
account for the change in particle types and minimize boundary
artifacts. Such simple, modular, and hierarchical approaches
in multiscale simulation are of growing importance in light
of the wide range of problems that require the inclusion of
multiple length scales. In this work, we consider a simple
Lennard-Jones fluid and show that the MD-SDPD approach
reproduces proper thermodynamic equilibrium globally, as
well as accurate transient solutions to simple time-dependent
hydrodynamic problems independent of the buffer region
placement. Because of the success in previous studies using
AdResS to couple MD fluids with more complicated molecular
structure to spherically symmetric coarse-grained particles,
we expect that this approach can be readily extended to
coupling more complicated MD fluids to multiple SDPD
domains.
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