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Abstract
Hepatocellular carcinoma (HCC) represents the second cause of cancer-related mortality worldwide and is associated
with poor prognosis, especially in patients not amenable for curative treatments. The multi-kinase inhibitor sorafenib
represents the first-line treatment option for advanced HCC; nevertheless, its effectiveness is limited due to tumor
heterogeneity as well as innate or acquired drug resistance, raising the need for new therapeutic strategies. MicroRNAs
(miRNAs) involvement in treatment response as well as their safety and efficacy in preclinical models and clinical trials
have been widely documented in the oncologic field, including HCC. Here, we identified miR-494 upregulation in a
subgroup of human and rat HCCs with stem cell-like characteristics, as well as multiple epigenetic mechanisms
involved in its aberrant expression in HCC cell lines and patients. Moreover, we identified p27, puma and pten among
miR-494 targets, contributing to speed up cell cycle progression, enhance survival potential in stressful conditions and
increase invasive and clonogenic capabilities. MiR-494 overexpression increased sorafenib resistance via mTOR
pathway activation in HCC cell lines and, in line, high miR-494 levels associated with decreased sorafenib response in
two HCC animal models. A sorafenib-combined anti-miR-494-based strategy revealed an enhanced anti-tumor
potential with respect to sorafenib-only treatment in our HCC rat model. In conclusion, our findings suggested miR-
494 as a possible therapeutic target as well as a candidate biomarker for patient stratification in advanced HCC.

Introduction
Hepatocellular carcinoma (HCC) is the second leading

cause of cancer-related mortality worldwide accounting
for 90% of primary liver cancers. HCC prognosis is very
poor in patients not amenable of curative treatments, with
a median survival of less than one year1 and an overall

ratio of mortality to incidence of 0.95 (http://globocan.
iarc.fr/). The lethality of advanced liver cancer is to
ascribe to the suboptimal effectiveness of systemic treat-
ments as well as the lack of treatment response bio-
markers. At present, the only approved first-line drug for
advanced HCC is the multi-kinase inhibitor sorafenib,
which improves overall survival of three months2 in the
presence of relevant adverse events. The high molecular
heterogeneity of HCC contributes to compromise the
effectiveness of targeted therapies3,4. Thus, the identifi-
cation of innovative therapeutic strategies remains an
unmet clinical need in HCC.
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Several studies reported the involvement of microRNA
deregulation in HCC pathogenesis and drug resistance5–9

and, since the liver is easily accessible to systemic gene
therapy, miRNA-based strategies have been proposed as
potential therapeutic approaches in HCC models and
clinical trials10–15. MiR-494 belongs to the widest miRNA
cluster located in DLK1-DIO3 imprinted locus, which
upregulation is found in a stem-like HCC subgroup with
poor prognosis and is responsible, itself, for liver cancer
development in mice16–18. MiR-494 overexpression
increased cell cycle progression and promoted cell inva-
sion and migration by targeting MCC and PTEN, whereas
its inhibition decreased nodule size of MYC-driven mice
liver tumors18,19. In xenografts, miR-494-mediated pten
inhibition activated the PI3K/Akt oncogenic pathway
favoring the accumulation of tumor-expanded myeloid-
derived suppressor cells in tumor microenvironment and
facilitating metastatic tumor spreading20. Moreover,
ERK1/2−-dependent activation of miR-494 in non-small
cell lung cancer induced tumor resistance to TRAIL
treatment through BIM targeting21.
Here, we investigated the association between miR-494

expression and stem cell characteristics in preclinical
models and HCC patients. We also analyzed the multi-
target activity of miR-494 as well as its complex epigenetic
regulation and demonstrated miR-494-associated mTOR
pathway activation as a sorafenib resistance mechanism in
HCC.

Results
MiR-494 is overexpressed in a HCC subgroup and
correlates with tumor size and stemness markers in
preclinical models
Our previous data reported an aberrant expression of

circulating miR-494 in cirrhotic patients with HCC and
a positive correlation between serum and tissue levels22;
therefore, we wondered if miR-494 deregulation might
represent a key event in hepatocarcinogenesis (Supple-
mentary Fig. S1). We investigated miR-494 expression
in tumors and surrounding livers from 75 surgically
resected HCC patients, showing a 2.4-fold upregulation
of miR-494 in 25% of tumors compared to matched
cirrhosis. Since miR-494 and miR-495 were shown to be
the most potent cluster members influencing tumor cell
proliferation18, we also analyzed miR-495 expression in
HCCs. A positive correlation between miR-494 and
miR-495 was found in tumors (Pearson’s correlation;
p= 0.002) but not in surrounding livers (Fig. 1a, Sup-
plementary Fig. S2A), suggesting their possible invol-
vement in hepatocytes malignant transformation.
MiR-494 expression correlated with stem cell markers
PROM1/CD133 and EPCAM in HCCs (Pearson’s cor-
relation; p= 0.004; p= 0.006, respectively) (Fig. 1b, c),
but not in cirrhosis, confirming miR-494 aberrant

expression and its correlation with stemness markers
as cancer-specific events16. A positive correlation
between PROM1 and EPCAM mRNAs was found in
tumor and non-tumor tissues (Pearson’s correlation;
p < 0.0001) (Supplementary Fig. S2B, C), whereas no
correlation between miR-494 and other stem-associated
genes (AFP, NESTIN, CD90, and ABCG2) was found
in HCCs.
To study miR-494 role in vivo, we assayed miR-494

expression in DEN-HCC rats mirroring human disease
complexity23,24. Higher miR-494 levels were detected in
83% of HCCs with respect to non-tumor samples with a
4.6-folds increase (t-test; p= 0.002) (Fig. 1d). MiR-494
correlated with tumor size (Pearson’s correlation; p=
0.007) as well as with AFP, PROM1, and ABCG2 expres-
sion (Pearson’s correlation; p= 0.015, p= 0.034, and p=
0.023, respectively) (Fig. 1e–g, Supplementary Fig. S2D);
on the contrary, no correlation with EPCAM mRNA was
found. MiR-494 association with stemness features was
confirmed also at a protein level in human and rat HCCs
(Supplementart Fig. S2E, F).
A xenograft model was considered to investigate

miR-494 involvement in tumor growth. QPCR analysis
verified miR-494 overexpression in pMXs-miR-494
Huh-7 cells (Supplementary Fig. S2G) and in tumors
derived from this cell clone in comparison with control
cells (t-test; p= 0.006) (Fig. 1h). Strikingly, the fold-
change between miR-494-overexpressing and control cells
was higher in vivo than in vitro (22.5 vs. 6.7-folds,
respectively) (Fig. 1h, Supplementary Fig. S2G), letting us
to speculate that a possible crosstalk between tumor and
stroma cells might contribute to miR-494 expression. Any
difference in tumor size, doubling time, and Ki67 staining
was observed when comparing miR-494 with control
Huh-7-derived masses, suggesting that higher miR-494
levels do not influence tumor attachment and prolifera-
tion in our xenograft model. Nevertheless, as observed in
human and rat HCCs, higher PROM1 levels were dis-
played in miR-494-derived tumors (t-test; p= 0.045)
(Fig. 1i, Supplementary Fig. S2H). MiR-494 in vivo silen-
cing decreased PROM1 expression in miRNA-
overexpressing xenografts (t-test; p= 0.002) (Fig. 1j),
suggesting miR-494 influence on PROM1-specific reg-
ulation. These data showed the involvement of miR-494
in HCC pathogenesis as well as in stem cell phenotype of
liver tumors.

MiR-494 is epigenetically regulated in HCC
To have an insight on miR-494 regulation, a

methylation-specific PCR (MSP) analysis of selected CpG
islands (Supplementary Fig. S2I) was conducted in HCC
patients. A hypomethylation pattern was observed in 60%
of tumors with respect to surrounding livers (Fig. 2a) in
the absence of any association with primary and mature
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miR-494 levels (Fig. 2b), letting us to hypothesize DNA
demethylation as a not a sufficient condition for miR-494
overexpression. CpG48 demethylation was detected only
in tumors, suggesting its occurrence as a peculiar cancer-
associated event.
To investigate if multiple epigenetic events might be

involved in miR-494 regulation, HepG2 cells were treated
with 5-Aza-2’-deoxycitidine (5-Aza), Trichostatin (TRC)

and 3-Deazaneplanocin A (DZNep), inhibiting DNA
methyl-transferases, histone deacetylases, and methyl-
transferases. An upregulation of pri-miR-494 was dis-
played in presence of epigenetic agents, with a stronger
effect of DZNep-combined treatments (Fig. 2c). Mature
miR-494 levels only partially mirrored pri-miRNA levels,
letting us to speculate that other mechanisms might be
responsible for its maturation process. In line, a positive

Fig. 1 MiR-494 is overexpressed in HCC and correlates with stem cell markers. a Correlation graph between miR-494 and miR-495 expression
levels in tumor tissue from 28 randomly selected HCC patients. Axes report 2−ΔΔCt values corresponding to miRNA levels (log2 form). b Correlation
graph between miR-494 and PROM1 or c EPCAM mRNA levels in tumor samples from 38 HCC patients. Axes report 2−ΔΔCt values corresponding to
miRNA and mRNA levels (log2 form). d Box plot graph of miR-494 expression in tumor (HCC) and non-tumor (NT) samples from the HCC rat model. y-
axis reports 2−ΔΔCt values corresponding to miR-494 expression. e Correlation graph between tumor size and miR-494 levels in HCC animals. x-axis
reports 2−ΔΔCt values corresponding to miR-494 levels transformed in a log2 form; y-axis represents tumor size (cm). f Correlation graph between miR-
494 and AFP or g PROM1 mRNA levels in tumor samples from HCC rats. Axes report 2−ΔΔCt values corresponding to miRNA and mRNA levels (log2
form). h Box plot graph of miR-494 or i PROM1 levels in control (pMXs) and miR-494 overexpressing tumor masses from xenograft mice. y-axes report
2−ΔΔCt values corresponding to miR-494 or PROM1 expression (log2 form). j QPCR analysis of miR-494 expression in xenograft mice following
antagomiR-494 treatment. CTR: vehicle control mice, AM-494: anti-miR-494 injected mice. y-axis reports 2−ΔΔCt values corresponding to miR-494
levels. a–j U6RNA and β-actin were used as housekeeping genes
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but not strong correlation between primary and mature
miR-494 was observed in HCC patients and cells
(Supplementary Fig. S2J, K).
At the light of our findings and because of incomplete

data regarding epigenetic regulation of DLK1-DIO3 miR-
NAs in HCC17, we investigated epigenetic auto-regulatory
loops contributing to miR-494 expression. To this aim, a
qPCR analysis of chromatin regulating genes was per-
formed in HCC patients. A negative correlation between

miR-494 and DNMT3B or HDAC1 mRNAs was observed
in tumors (Pearson’s correlations; p= 0.006 and p= 0.018)
(Fig. 2d, e), whereas a trend toward a negative correlation
was detected with DNMT3A (Pearson’s correlation; p=
0.075) (Fig. 2f); on the contrary, no correlation was found
with HDAC2, HDAC3, or HDAC4. Combination of low
HDAC1 and DNMT3B levels strongly associated with
higher miR-494 levels (t-test; p= 0.003) (Fig. 2g) and,
consistently, a decrease of HDAC1 and DNMT3B mRNAs

Fig. 2 (See legend on next page.)
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was detected in miR-494-overexpressing cells (Fig. 2h).
DNMT3B and DNMT3A are miR-494 hypothetical targets
(Supplementary Fig. S2L), whereas HDAC1 does not
display complementar-binding sites. Since DNMT3B
showed three binding sites and the highest inverse corre-
lation with miR-494, we verified miR-494/DNMT3B
mRNA interaction by performing a reporter assay. The
luciferase activity of wild-type DNMT3B-3'UTR-vector
decreased in miR-494 co-transfected cells in comparison to
control cells (t-test; p= 0.015) (Fig. 2i). To ascertain miR/
mRNA interaction, we mutated two miR-494 seed
sequences exhibiting the highest likelihood of mRNA
downregulation (Supplementary Fig. S2L). Any decrease of
luciferase signal was detected for both mutated vectors in
miR-494-overexpressing cells (Fig. 2i). Western blot ana-
lysis showed a downregulation of dnmt3b in miR-494-
overexpressing Huh-7 cells and an upregulation in anti-
miR-494-transfected SNU182 cells (Fig. 2j), chosen based
on miR-494 basal levels (Supplementary Fig. S3A),
demonstrating DNMT3B as a miR-494 direct target in
HCC. To verify if DNMT3B regulation by miR-494 itself
might be responsible for CpG island hypomethylation, a
MSP analysis was performed in transfected HepG2 cells. A
demethylation pattern was observed in miR-494-
overexpressing cells, whereas a hypermethylation status
was detected in miR-494-silenced cells, with CpG48 dis-
playing the most significant variation (Fig. 2k). These
findings demonstrated that an intricate network of epige-
netic events regulate miR-494 transcription and that, in
turn, it establishes complex feedback loops, by inhibiting
DNMT3B and HDAC1 expression in HCC.

MiR-494 targets p27, pten, and puma in HCC
Aiming to identify key pathways linked to miR-494

aberrant expression, we performed a computational

analysis and focused our attention on CDKN1B/P27,
PTEN, and BBC3/PUMA (Supplementary Fig. S3B) due to
their known roles in cell cycle progression, proliferation
and apoptosis. MiR-494 expression was investigated in
HCC-derived cells in order to identify the most appro-
priate model for functional analysis (Supplementary
Fig. S3A). MiR-494 overexpression decreased p27, pten
and puma proteins in HepG2 and Huh-7 cells (Fig. 3a, b),
whereas its silencing increased their levels in SNU449 and
SNU182 cells (Fig. 3c, d). MRNA levels were regulated as
well, but at a lower extent and depending on cell context
(Fig. 3a–d), letting us to speculate that co-regulatory
mechanisms might be responsible for their fine-tuning
following miR-494 modulation. A decrease of p27, pten,
and puma levels was displayed in miR-494-stably over-
expressing cells, suggesting a long lasting inhibition in
presence of a small miR-494 increase (Supplementary
Fig. S3C). The reporter assay showed a decreased
luciferase activity of wild type, but not mutant (Supple-
mentary Fig. S3B, D), 3'UTR-vectors in miR-494 co-
transfected with respect to control HepG2 cells (t-test; p
< 0.05) (Fig. 3e), demonstrating PTEN, P27 and PUMA as
miR-494 direct targets in HCC. Lower levels of these
target genes were observed in tumors from miR-494-
overexpressing cells with respect to empty vector-derived
tumors (t-test; p= 0.0004, p= 0.007, and p= 0.02,
respectively) (Fig. 3f), further confirming our in vitro data.

MiR-494 regulates invasion capability, cell cycle
progression, and stem cell phenotype in HCC
Since PTEN plays a pivotal role in cell motility and

migration, we assessed invasion and migration capabilities
of miR-494-overexpressing Huh-7 cells by using a real-
time cell analysis system as well as a wound healing assay.
A 2.3-fold increase of invasive potential together with a

(see figure on previous page)
Fig. 2 Epigenetic regulation of miR-494 expression in HCC. a MSP analysis of four CpG islands in tumor (HCC) and liver cirrhotic (LC) samples
from 30 HCC patients. Primers for both methylated (M) and unmethylated (U) DNA regions have been used for each CpG island. MiR-494 levels are
represented as the ratio between HCC and LC tissue. b Box plot graph of methylation status in HCC patients with high or low primary or mature miR-
494 expression levels in tumor tissues with respect to matched non-tumor samples. A 1.3-fold-change has been considered as a cutoff to
discriminate between high or low primary and mature miR-494 expression levels in HCC vs. matched LC tissues. A qualitative score was assigned to
each CpG island based on its methylation status in the tumor vs. non-tumor sample. A mean value of the four CpG regions was considered for each
patient. y-axis reports the methylation pattern, where negative and positive values are representative of a hypomethylated and hypermethylated
status, respectively. c QPCR of primary (pri-miR-494) or mature miR-494 levels in HepG2 cells following epigenetic treatments. y-axis reports relative
miR-494 or pri-miR-494 expression values with respect to vehicle (DMSO)-treated samples. d Correlation graphs between miR-494 and DNMT3B or e
HDAC1 or f DNMT3AmRNAs in HCCs (N = 30). Axes report 2-ΔΔCt values corresponding to miRNA or mRNA levels (log2 form). g Box plot graph of miR-
494 expression in HCC tumors divided on the basis of high or low HDAC1 and DNMT3B expression with respect to their median values. In particular,
‘‘low expression’’ includes samples with contemporaneous low HDAC1 and DNMT3B levels, whereas ‘‘high expression’’ groups all the other samples. y-
axis reports 2-ΔΔCt values corresponding to miR-494 levels (log2 form). h QPCR analysis of HDAC1 or DNMT3B expression in transfected or infected
Huh-7 cells. y-axis reports relative miR-494 values with respect to negative controls (NC or pMXs). i Luciferase reporter assay in Huh-7 cells co-
transfected with pGL3-DNMT3B wild-type or mutated (mu1 and mut2) vectors and miR-494 or negative control (NC). j WB analysis of dnmt3b in miR-
494 overexpressing or silenced HCC cells. β-actin was used to normalize QPCR and WB data. NC: pre-miR negative control, NCi: anti-miR negative
control, AM-494: anti-miR-494. k MSP analysis of the four tested CpG islands in miR-494 overexpressing and silenced (AM-494) HepG2 cells. NC: pre-
miR negative control, NCi: anti-miR negative control
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1.6-fold enhancement of migration capabilities were
observed in miR-494-overexpressing cells (t-test; p=
0.015 and p< 0.0001, respectively) (Fig. 4a, b). Due to the
well-established role of p27 as a G1/S checkpoint con-
troller, we tested miR-494 involvement in cell cycle reg-
ulation. MiR-494 overexpression in HepG2 and Huh-7
cells displayed a 27% and 23% increase of the S-phase cell
population, respectively (t-test; p= 0.011, and p= 0.025)
(Fig. 4c and Supplementary Fig. S2E), demonstrating that
miR-494 is able to potentiate cell invasiveness and speed
up cell cycle progression of HCC cells.
We next assessed miR-494 influence on stemness

properties of HCC cells and observed that miR-494
overexpression increased PROM1, OCT4, and SOX2 core
stemness genes, as well as ABCG2 transporter levels (Fig.
4d, e). FACS analysis showed a 1.6-fold increase of

PROM1 positivity in miR-494-overexpressing with respect
to control cells (t-test; p< 0.0001) (Fig. 4f). Accordingly,
miR-494-overexpressing Huh-7 cells showed a higher
clonogenic potential as demonstrated by colony-forming
unit assay (t-test; p< 0.0001) (Fig. 4g and Supplementary
Fig. S2F), further supporting miR-494 key role in mod-
ulating stem cell phenotype.

MiR-494 regulates AKT/mTOR pathway and increases cell
survival during stress conditions
The most evident phenotypic effect following miR-494

modulation was observed in Huh-7 and SNU182 cells
(Fig. 5a, b); therefore, these cell lines were chosen for
investigating further miR-494 biological functions. Since
pten is the principal negative modulator of Akt/mTOR
pathway, we analyzed miR-494 influence on the activation

Fig. 3 MiR-494 targets CDKN2B, BBC3 and PTEN in HCC. a QPCR and WB analyses of miR-494 and target genes in miR-494 overexpressing HepG2
and b Huh-7 cells. y-axes report 2-ΔΔCt values corresponding to miR-494 levels (top graphs) or relative gene expression levels (bottom graphs). c QPCR
and WB analyses of miR-494 and target genes in miR-494 silenced SNU449, and d SNU182 cells. y-axes report 2-ΔΔCt values corresponding to miR-494
levels (top graphs) or relative gene expression levels (bottom graphs). e Luciferase reporter assay in HepG2 cells co-transfected with pGL3-3UTR
vectors and miR-494 or negative control (NC). f QPCR analysis of miR-494 targets in the xenograft model. y-axis reports relative gene expression
values. pGL3: empty reporter vector, NC: pre-miR negative control, NCi: anti-miR negative control, AM-494: anti-miR-494. β-actin was used to
normalize qPCR and WB data

Pollutri et al. Cell Death and Disease  (2018) 9:4 Page 6 of 16

Official journal of the Cell Death Differentiation Association



of its downstream signaling cascade. Western blot analysis
showed an increase of akt, mtor, and ribosomal S6
phosphorylation levels in miR-494-overexpressing Huh-7
cells (Fig. 5c), whereas miR-494 silencing determined a
decrease of their phosphorylation in SNU182 cells

(Fig. 5d). No modulation of protein total amount was
observed (Fig. 5c, d), suggesting a miR-494-mediated
post-transcriptional activation of this pathway.
Due to the well-known role of puma on apoptotic cell

death, we performed viability and caspase activity assays

Fig. 4 (See legend on next page.)
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in the same settings. An increase of cell viability together
with a decrease of caspase activity and cleavage were
detected in Huh-7 cells following miR-494 enforced
expression (Fig. 5c), whereas an opposite behavior
was observed in anti-miR-494-transfected SNU182 cells
(Fig. 5d). No variations in cell death were observed in
untreated Huh-7 cells in the presence of miR-494 over-
expression (Fig. 5e), letting us to speculate that increased
viability might be due to a higher proliferation rather than
an effective inactivation of apoptosis. Comparable data
were obtained in miR-494 stably overexpressing cells
(Supplementary Fig. S4A). These findings let us to
hypothesize that enhanced miR-494 levels, promoting
oncogenic pathway activation and apoptotic signaling
inhibition, might protect HCC cells against stressing
events commonly observed in the tumor bulk, such as
nutrient deprivation and hypoxia. In starvation, an
increase of cell viability and akt/mtor phosphorylation,
together with decreased apoptotic markers were displayed
in miR-494-overexpressing Huh-7 cells (Fig. 5f). In line,
miR-494 silencing in serum-deprived SNU182 cells
reduced cell viability and increased apoptotic markers
(Fig. 5g). A 2.0-fold decrease of early apoptosis was
observed in miR-494-overexpressing cells (Fig. 5h), sug-
gesting that miR-494 might strengthen cell resistance to
nutrient deprivation by turning off the caspase pathway.
In a hypoxia, miR-494 overexpression determined the
activation of mTOR pathway, together with an increase of
cell viability and a decrease of caspase-3/7 activity in Huh-
7 cells. Consistently, higher HIF1A levels were observed in
miR-494-overexpressing cells in basal and hypoxic con-
ditions (Supplementary Fig. S4B, C), demonstrating the
central role for miR-494 in cell survival following stressful
events.

MiR-494 regulates response to treatments in HCC cells
To evaluate the role of miR-494 in response to genotoxic

damage we employed doxorubicin, a drug used during
HCC locoregional treatments. MiR-494-overexpressing

Huh-7 cells showed an enhanced resistance to doxor-
ubicin challenge as determined by cell viability and cas-
pase-3/7 assays (Fig. 6a), whereas its downregulation in
SNU182 cells increased doxorubicin sensitivity (Fig. 6b),
with only a marginal modulation of Akt/mTOR pathway.
These data were confirmed by Annexin-V analysis dis-
playing decreased early and late apoptotic events (1.4 and
1.3-folds, respectively) in miR-494-overexpressing cells
(t-test; p< 0.05) (Fig. 6c).
Subsequently, we tested miR-494 biologic effect fol-

lowing sorafenib treatment. MiR-494 overexpression
enhanced cell resistance to sorafenib in Huh-7 cells,
increasing cell viability, and decreasing caspase activity
(Fig. 6d), whereas opposite results were displayed in anti-
miR-494-treated SNU182 cells (Fig. 6e). Annexin-V ana-
lysis strengthened these data showing a 2.0-fold decrease
of early and late apoptosis in miR-494-overexpressing
cells after sorafenib administration (t-test; p< 0.05) (Fig.
6f). A further confirm was obtained in stable miR-494
Huh-7 cells displaying an increased resistance to sorafenib
challenge with respect to control cells (Supplementary
Fig. S5A). MiR-494-mediated caspase inhibition reflected
cell viability and apoptosis variations, suggesting a central
role for the caspase cascade in drug resistance of miR-
494-overexpressing cells.
High mTOR phosphorylation levels in miR-494-

overexpressing cells let us to hypothesize a considerable
involvement of this pathway in sorafenib sensitization
(Fig. 6d and Supplementary Fig. S2A). To demonstrate
this hypothesis, mTOR activity was turned off by using
rapamycin5. Co-treatment with rapamycin sensitized
miR-494-overexpressing cells to sorafenib challenge when
compared to sorafenib-only treated cells (Fig. 6g, h),
demonstrating a strong participation of the mtor
pathway in miR-494-mediated sorafenib resistance, as
confirmed by caspase inactivation and decreased
PARP levels.
Aiming to rule out off-target effects, miR-494-

overexpressing cells were transfected with anti-miR-494

(see figure on previous page)
Fig. 4 MiR-494 influences cell cycle progression, invasion, and clonogenic capabilities as well as stem cell properties of HCC cells. a Real-
time invasion assay in control (pMXs) and miR-494 infected Huh-7 cells. Mean and SD values of four replicates are reported in the column graph. b A
wound was made in the monolayer (T0) and the migratory potential of Huh-7 cells was measured following 24 h (T24). Representative images at T0
and T24 and quantification of the wound closure are shown. Columns and bars represent average ± SD values of 10 fields (10X magnification) from
two independent experiments. y-axis reports arbitrary units (U). c Representative cell cycle images of miR-494-transfected HepG2 cells. Cell
population percentages are reported on the right top corner of each graph. d QPCR and western blot analyses of PROM1 expression in miR-494 or
anti-miR-494-transfected cells. y-axis reports relative expression values. NC: pre-miR negative control, NCi: anti-miR negative control, AM-494: anti-miR-
494. e QPCR and western blot analyses of stem cell markers in infected Huh-7 cells. y-axis reports relative expression values. d, e Experiments were
repeated twice in triplicate. f FACS analysis of PROM1 immunophenotype in miR-494 overexpressing and negative control (NC) Huh-7 cells. In the
right top corner of each histogram is reported the mean value of PROM1 median positivity (P) derived from three independent experiments. g Six-
well plate image of clonogenic assay and quantification of colony number are shown. All colonies were counted independently from their
dimension. Initial number of seeded cells: 250/well. Columns and bars represent average ± SD values of three wells from two independent
experiments. a, b, e, g PMXs: empty vector infected Huh-7 cells; miR-494: pMXs-miR-494 infected Huh-7 cells
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Fig. 5 (See legend on next page.)
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or controls before sorafenib administration (Supplemen-
tary Fig. S5B). An increase of caspase activity was detected
in anti-miRNA-treated miR-494 Huh-7 cells, resembling
the value of empty vector cells (Supplementary Fig. S5C).

MiR-494 overexpression correlates with sorafenib
resistance in HCC animal models
To investigate the role of miR-494 in sorafenib response

in vivo, miR-494 expression was analyzed in HCCs from
DEN-treated rats receiving sorafenib intragastrically.
Isolated tumors were considered as ‘‘responder’’ and
‘‘non-responder’’ based on US-monitoring and histo-
pathological examination25. QPCR analysis displayed an
association between high miR-494 levels and sorafenib
resistance in rat HCCs (t-test; p= 0.045) (Fig. 7a). Con-
sistently, the xenograft model showed a lower doubling
time (t-test; p= 0.044) (Fig. 7b) and a trend toward a
higher tumor size (t-test; p= 0.124) (Fig. 7c) in miR-494-
overexpressing tumors, suggesting that miR-494 might
influence tumor cell proliferation during sorafenib
treatment. To verify this hypothesis, Ki67 staining was
evaluated displaying an increased positivity (1.5-folds) in
miR-494-derived tumors (t-test; p= 0.008) (Fig. 7d). Cell
viability assay displayed an association between high miR-
494 basal levels and sorafenib resistance in HCC-derived
cells (Fig. 7e), confirming a close relationship linking miR-
494 expression to sorafenib response in preclinical
models.
The efficacy of a combined miRNA-based strategy was

assessed in the rat model following anti-miR-494 and
sorafenib co-administration (Fig. 7f). A stabilization of
tumor progression was observed in 61% vs. 31% of
nodules isolated from anti-miR-494-sorafenib with
respect to sorafenib-only treated animals (χ2 test; p<
0.05). A negative correlation between miR-494 and
PUMA or PTEN mRNAs (Pearson’s correlations; p=
0.012 and p= 0.020, respectively) was found in the
combined-treated group but not in the sorafenib-only one
(Fig. 7f), suggesting these molecular pathways mediating
miR-494 therapeutic effects.

Discussion
Despite the huge heterogeneity of hepatocellular carci-

noma, several profiling studies well-documented the asso-
ciation between deregulated microRNAs and HCC

subgroups characterized by defined clinical features as well
as molecular and genetic alterations26–28. In line
with previous findings describing an increase of miR-494 in
34% of tumor tissues and an upregulation of this miRNA
cluster in a subclass of HCCs17,18, here we detected high
miR-494 levels in 25% of tumors and an association with
stemness-specific genes. As frequently observed for cancer-
associated miRNAs, miR-494 may behave as an oncogene
or a tumor-suppressor gene in a tissue-dependent manner.
MiR-494 upregulation and involvement in cancer pro-
gression was reported in lung, colorectal, and glioblastoma
cancers, as well as in HCC18,19,29,30. On the contrary, its
decreased expression was detected in cholangiocarcinoma,
breast, and gastrointestinal stromal tumors31–33, letting us
to speculate that miR-494 might change its preferential
target core depending on tissue context. Here, we showed
that miR-494 regulates p27, pten, and puma in HCC cells
and xenograft tumors, increasing cell cycle progression, cell
survival in stressful conditions and enhancing invasive and
clonogenic capabilities. Recently, Lim and coworkers vali-
dated MCC gene among miR-494 targets in HCC showing
its implication in cell cycle transition, as demonstrated by
functional analysis and silencing-specific experiments18.
The involvement of cancer-related miRNAs in the

regulation of treatment response has been extensively
documented in HCC5–7,9,25,34–36. We observed that miR-
494 associated with sorafenib resistance in HCC pre-
clinical models and demonstrated that miR-494-mediated
mTOR pathway activation was responsible for decreased
targeted therapy sensitization. Consistently, Chen and
coworkers demonstrated that PI3K/Akt signaling inhibi-
tion is able to restore sorafenib sensitivity in HCC37. In
agreement, a recent study showed that miR-494-mediated
pten regulation is involved in sorafenib resistance through
the activation of PI3K/Akt pathway in HepG2 cells38. We
reported that a combined anti-miR-494-based therapeutic
strategy is more efficient in terms of tumor stabilization in
comparison to sorafenib-only treatment in DEN-HCC
rats. Several studies reported that tumor-promoting
miRNAs targeting PTEN are involved in drug resis-
tance9,38–40 and that their multiple inhibition by a long
non-coding RNA-mediated strategy induced sorafenib
sensitization in HCC41.
Akt/mTOR signaling activation associated with stem

cell marker positivity and contributed to the selection of

(see figure on previous page)
Fig. 5 MiR-494 activates the mTOR pathway and increases resistance to stress conditions. a Cell images of miR-494 overexpressing Huh-7 cells
or b miR-494 silenced SNU182 cells (10X magnification). c Cell viability assay, caspase-3/7 activity assay and WB analysis in untreated miR-494
overexpressing Huh-7 or dmiR-494 silenced SNU182 cells. e FACS Annexin-V plots of miR-494 overexpressing and control untreated Huh-7 (following
48 h of transfection). f Cell viability assay, caspase-3/7 activity assay, and WB analysis in miR-494 overexpressing Huh-7 or g miR-494 silenced SNU182
cells in starvation condition. h FACS Annexin-V plots of miR-494 overexpressing and control Huh-7 following 24 h of starvation. NC: pre-miR negative
control. NCi: anti-miR negative control, AM-494: anti-miR-494. β-actin was used to normalize WB data
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Epcam-positive tumor-initiating cells responsible for
sorafenib resistance in HCC42,43. Accordingly, we
showed the steady association between miR-494 and
core stemness genes in preclinical models, as well as in
human HCCs, suggesting a key role for miR-494 in
PROM1 transcriptional regulation. A recent paper
reported a p53-mediated hdac1 recruitment to PROM1
promoter causing a decrease of its transcription44; since
we showed an inverse correlation between miR-494 and
HDAC1 in HCCs, we can speculate that HDAC1 might
participate to PROM1 regulation in miR-494-
overexpressing cells.
Methylation-based profiling of HCC demonstrates the

association between epigenetic changes and prognosis, as
well as progenitor cell characteristics45. However, com-
prehensive epigenetic profiles considering more events
are difficult to be applied and proposed for HCC sub-
group characterization. We showed that miR-494 upre-
gulation results from simultaneous epigenetic changes,
which is in agreement with previous studies describing
the involvement of histone demethylation46, but not DNA
hypomethylation alone17, in enhancing miR-494 expres-
sion in cancer cells. Beside epigenetic regulation, our data
suggested that post-transcriptional mechanisms might be
involved in miRNA biogenesis determining final mature
miR-494 levels. Increasing evidences demonstrated the
complexity of miRNA processing machinery and reported
a tight crosstalk with key intracellular molecules47–49,
nevertheless further investigations are necessary to
unravel the complex network of interactions at the basis
of miR-494 deregulation in hepatocarcinogenesis. Reg-
ulatory loops involving epigenetic enzymes, such as
dnmt3b, hdac1 and tet1, were assessed in HCC, high-
lighting the complexity of molecular events underlying
miR-494 deregulation. Specifically, through the modula-
tion of epigenetic targets, miR-494 is able to remove DNA
methylation tags and to trigger gene silencing of invasion-
suppressor miRNAs leading to tumor metastasis50, as well
as to fine-tune its own expression by CpG island deme-
thylation. In this scenario, miR-494 deserves attention as a
putative biomarker for the identification of a subgroup of
epigenetically distinct HCCs. Notably, our previous find-
ings showed that circulating miR-494 levels correlated
with tissue ones in HCC patients22, suggesting this

miRNA as a non-invasive biomarker. In conclusion, this
study illustrates the detrimental effect of miR-494 in
sorafenib resistance via mTOR pathway activation and
highlights its possible role as a therapeutic target and a
candidate biomarker for patient stratification.

Patients and methods
Patients
Tumor and cirrhotic tissues were obtained from 75

consecutive patients undergoing liver resection for HCC.
Tissues were collected after obtaining an informed consent
and were stored as previously described8. St. Orsola-
Malpighi Hospital approved the study protocol. No patient
received anticancer treatment prior to surgery. Patient
characteristics are summarized in Table S1.

HCC animal models
The diethylnitrosamine (DEN)-induced HCC rat model

and the xenograft model were established as previously
described25. The xenograft model was obtained by
inoculating miR-494 stably overexpressing (pMXs-miR-
494) Huh-7 cells. Anti-miR-494 administration in both
models is described in Supplementary Material. At
sacrifice, tumor masses were collected for molecular and
histopathologic analyses.

Cell culture and treatments
HCC-derived cell lines were cultured as previously

described25 and specific treatments are detailed in Sup-
plementary Material. Apoptotic cell death and cell viabi-
lity were evaluated by Caspase-Glo 3/7 and Cell-titer-Glo
assays (Promega, Madison, USA) accordingly to the
manufacturer's protocols. Each experiment was per-
formed in quadruplicate. Oligonucleotide transfection of
pre-miR-494, anti-miR-494, or negative controls (100 nM,
Thermo Fisher Scientific, Whaltam, USA) was obtained
by using TransIT-X2 dynamic delivery system (Mirus Bio,
Madison, USA) according to the manufacturer's instruc-
tions. Cell cycle and Annexin-V analyses were performed
in triplicate as previously reported by our group5,51.
Immunophenotypic analysis of PROM1 expression was
performed by using CD133 (Prominin-1) monoclonal
antibody (13A4)-APC (eBioscience) diluted 1:5 with
respect to the manufacturer's instruction.

(see figure on previous page)
Fig. 6 MiR-494 increases drug resistance in HCC cells. a Cell viability assay, caspase-3/7 activity assay and WB analysis in miR-494 overexpressing
Huh-7 or b miR-494 silenced SNU182 cells following doxorubicin treatment. c FACS Annexin-V plots of miR-494 overexpressing and control Huh-7
cells following doxorubicin treatment (10 µg/ml for 6 h). d Cell viability assay, caspase-3/7 activity assay and WB analysis in miR-494 overexpressing
Huh-7 or e miR-494 silenced SNU182 cells following sorafenib administration. f FACS Annexin-V plots of miR-494 overexpressing and control Huh-7
cells following sorafenib treatment (7.5 µM for 24 h). g WB analysis of apoptotic markers in miR-494 overexpressing Huh-7 cells following sorafenib or
h sorafenib plus rapamycin treatment. NC: pre-miR negative control; NCi: anti-miR negative control; AM-494: anti-miR-494. β-actin was used to
normalize WB data
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Retroviral infection
DNA sequence of precursor miR-494 was inserted

between XhoI cloning sites of pMXs-miR-GFP/Puro
retroviral expression vector according to the manufac-
turer's datasheet (Cell Biolabs, San Diego, USA). Primers
and PCR conditions are reported in Table S2. Viral
infection of Huh-7 cells was performed as previously
described7.

Luciferase activity assay
The 3'UTR regions of human PTEN, BBC3, CDKN1B,

and DNMT3B genes were amplified by PCR using primers
and conditions reported in Table S2. The mutagenesis of
miR-494 seed sequence in BBC3, CDKN1B, and
DNMT3B-3' UTR-containing vectors was performed by
using QuikChange II Site-Directed Mutagenesis Kit
(Agilent Technologies) following the manufacturer's
instruction. Sanger sequencing verified mutated sequen-
ces. Oligonucleotide sequences for mutagenesis assay are
detailed in Table S2. Luciferase reporter assay of 3'UTR-
containing vectors was performed as previously
reported51.

Quantitative PCR and semi-quantitative RT-PCR
TaqMan MicroRNA assays (Thermo Fisher Scientific)

were used for quantifying miRNA-494 (ID: 002365)
and miR-495 (ID:001108) expression, as previously
described8. RNU6B (ID: 001093) was used as reference
gene. Primers and conditions for SYBR-green QPCR and
RT-PCR are detailed in Table S3. β-actin was used as
housekeeping gene and QPCR experiments were run in
triplicate.

Western blot and immunohistochemistry (IHC)
Thirty micrograms of whole-protein extracts from HCC

cells and tissues were used for western blot analysis.
Antibodies are reported in Table S4. Digital images of
X-ray films were acquired by using ChemiDocTM XRS+
(Image LabTM Software, Bio-Rad, Hercules, USA). Wes-
tern blot analysis was performed in triplicate. The IHC of

Ki67 (1:800; Agilent Technologies, Santa Clara, USA) in
xenograft tumors was assessed on formalin-fixed,
paraffin-embedded sections as detailed in Supplementary
Material.

DNA methylation analysis
We analyzed bisulfite-treated DNA samples from HCC

patients by MSP as previously described6 and as detailed
in Supplementary Material. Briefly, one microgram of
DNA was treated with bisulfite modification kit (EZ DNA
Methylation-Gold kit, Zymo Research) according to the
manufacturer's instructions. Modified DNA was eluted in
20 µl of TE buffer and one microliter of modified DNA
samples was used for MSP analysis. To evaluate the
quality of bisulfite-treated DNA samples, we performed
the MSP analysis using unmethylated primers for the
same tested CpG islands. The calculation of the methy-
lation pattern is detailed in Supplementary Material and
Methods section. Primers and conditions are reported in
Table S5.

Cell invasion and wound healing assay
Real-time analysis of cell invasion was performed on the

xCELLigence DP instrument (ACEA, San Diego, USA).
Briefly, the surface of the upper chamber wells of a two-
chambers device (CIM-plate 16) was coated with a
monolayer of 1X collagen I solution (Sigma-Aldrich).
Medium with 10% serum was placed in the lower cham-
ber, as chemoattractant. A porous membrane separates
the two chambers and cells migrate through a solid matrix
at the membrane where the electrodes reside. PMXs and
pMXs-miR-494 Huh-7 cells were seeded (25,000 cells/
well) in serum free medium in the upper chamber. The
cell index (CI, a quantitative measure of cell number
present in a well) of each well was measured every 15 min
for up to 40 h at 37 °C in 5% CO2 atmosphere using the
RTC software (version 1.2, Roche Diagnostics) to evaluate
the invasion capacity of tested cell lines.
For the wound healing assay, stably overexpressing

Huh-7 cells were seeded in a six-well plate (150,000 cells/

(see figure on previous page)
Fig. 7 MiR-494 increases sorafenib resistance in vivo. a Box plot graph of miR-494 expression in responder (R) and non-responder nodules (NR)
from Sorafenib treated HCC rats. y-axis reports 2-ΔΔCt values corresponding to miR-494 expression (log2 form). b Box plot graph of tumor doubling
time or c size in Huh-7-derived xenografts. y-axes report tumor doubling time (days) or size (mm3), respectively. d Box plot graph of Ki67 positivity in
Huh-7-derived xenografts. y-axis report tumor cell positivity (%). Representative IHC images (20X magnification) of Ki67 staining in control (pMXs) and
miR-494 overexpresing Huh-7-derived xenograft masses. e Cell viability assay in HCC cells following sorafenib treatment (5.0 µM for 48 h). Columns
represent cell viability relative (%) values with respect to vehicle (CTR)-treated cells. The experiment was executed twice in quadruplicate. MiR-494
basal expression levels (2−ΔΔCt) of each cell line are reported in table below the graph. f Panel graph of combined Sorafenib and AM-494 in vivo
treatment in the DEN orthotopic rat model. In the top part of the panel graph is illustrated the experimental protocol. When US-monitoring identified
a 2–3 mm nodule we started with animal treatments, considering as day 1 (D1) the first day of sorafenib administration. Two AM-494 injections were
performed weekly starting from the second day (D2). In the bottom part are illustrated percentage graphs representing treatment efficacy together
with correlation graphs between miR-494 and PUMA or PTEN mRNA levels in tumor samples from sorafenib-only and anti-miR-494-sorafenib treated
animals. Axes report 2−ΔΔCt values corresponding to miRNA and mRNA levels (log2 form). AM-494: anti-miR-494
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well) and were grown until monolayer formation. A
wound was created in the monolayer using a P200
micropipette tip and cells incubated in complete medium
for 24 h. Ten random pictures were taken (10X magnifi-
cation) when the scratch was performed (T0) and after 24
h (T24). The reduction in the wound gap was determined
by using Image-J software (NIH).

Colony-forming unit assay
Cells were seeded at a low concentration in a six-well

plate (250 or 500 cells per well) and incubated in complete
medium until colony formation (11 or 9 days, respec-
tively). Cells were washed with PBS, fixed in paraf-
ormaldehyde (2% in PBS) for 10 min at room temperature
(RT), stained with crystal violet (0.5% in 25% methanol)
for 20 min at RT. Digital images were digitally acquired
and colony number counted by Image-J software.

Statistical analysis
Differences between groups were analyzed using

unpaired Student’s t-test. Pearson’s correlation coefficient
was used to explore relationships between two variables.
In vitro experiments were performed in triplicate and the
mean values were used for the statistical analysis.
Reported p-values were two-sided and considered sig-
nificant when lower than 0.05. Statistical calculations were
executed using SPSS version 20.0 (SPSS inc). *p< 0.05,
**p< 0.01, ***p< 0.001, ****p< 0.0001.
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