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Abstract

We develop a new genetic prediction method, smooth-threshold multivariate genetic prediction, 

using single nucleotide polymorphisms (SNPs) data in genome-wide association studies (GWASs). 

Our method consists of two stages. At the first stage, unlike the usual discontinuous SNP 

screening as used in the gene score method, our method continuously screens SNPs based on the 

output from standard univariate analysis for marginal association of each SNP. At the second 

stage, the predictive model is built by a generalized ridge regression simultaneously using the 

screened SNPs with SNP weight determined by the strength of marginal association. Continuous 

SNP screening by the smooth-thresholding not only makes prediction stable but also leads to a 

closed form expression of generalized degrees of freedom (GDF). The GDF leads to the Stein’s 

unbiased risk estimation (SURE) which enables data-dependent choice of optimal SNP screening 

cutoff without using cross-validation. Our method is very rapid because computationally expensive 

genome-wide scan is required only once in contrast to the penalized regression methods including 

lasso and elastic net. Simulation studies which mimic real GWAS data with quantitative and binary 

traits demonstrate that the proposed method outperforms the gene score method and genomic best 

linear unbiased prediction (GBLUP), and also shows comparable or sometimes improved 

performance with the lasso and elastic net being known to have good predictive ability but with 

heavy computational cost. Application to whole-genome sequencing (WGS) data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) exhibits that the proposed method shows 

higher predictive power than the gene score and GBLUP methods.
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1 Introduction

Genome-wide association study (GWAS) is a popular tool for discovering disease-

susceptibility genes using large number of single nucleotide polymorphisms (SNPs) without 

prior knowledge [The Wellcome Trust Case Control Consortium 2007]. Apart from 

discovery of susceptibility genes, prediction of individual’s phenotype from high-

dimensional genetic information, termed as a genetic prediction, is an important task for 

personalized medicine. Currently, researchers are exploring the most effective way of 

building genetic prediction models [Purcell et al. 2009, Evans et al. 2009]. In this paper, we 

develop a new statistical approach, smooth-threshold multivariate genetic prediction, for 

building genetic predictive models with input of large-scale genome-wide SNPs data.

We consider standard multiple regression model but with high-dimensional predictor 

variables. To be specific, y = (y1, . . . , yn)T represent response variables of individual’s 

phenotype data modeled by a conditional distribution given predictor variables X = (X1, . . . , 

Xp) observed for n individuals, in which Xj = (x1,j, . . . , xn,j)T for j ∈ M = {1, . . . , p}. The 

conditional expectation of yi given xi = (xi,1, . . . , xi,n) is assumed to be a linear combination 

η{E(yi|xi)} = xiβ, where η is some known monotone function and β is a vector of regression 

coefficients. In this paper, we consider linear regression with identity map η for quantitative 

trait such as clinical characteristics, and logistic regression with logit function η for binary 

trait such as affected/unaffected status. Each Xj is either genotype at a SNP site or other 

covariate such as sex, age, body mass index (BMI), smoking status, alcohol consumption 

and principal components for population stratification [Price et al. 2006]. Each SNP can take 

one of three possible genotypes, gg, gG and GG, where g and G denote minor and major 

alleles at the SNP site, respectively. If Xj represents the observed count of minor allele g at a 

SNP site, Xj takes a value from {0, 1, 2}. Under the Hardy–Weinberg equilibrium (HWE), 

the observed count of minor allele g at each SNP follows a binomial distribution with 

parameter f ∈ [0, 0.5] called a minor allele frequency (MAF), i.e. frequency of the minor 

allele g in general population. Quality controls (QCs) are often conducted to remove low-

quality SNPs by checking HWE and missing rates as well as low MAF SNPs. Even after 

those QCs, large number of SNPs still remain. Since sample sizes are usually far less than 

the number of SNPs, the predictive modeling in GWAS faces the p ≫ n problem (e.g. Fan 

and Lv [2008]). The p ≫ n condition hampers multiple regression that fits simultaneously 

using p predictors X.

Standard GWAS analysis conducts marginal association scan between y and each Xj 

independently, i.e. a univariate analysis which tests the slope parameter in univariate 

regression model [The Wellcome Trust Case Control Consortium 2007, Yamagata University 

Genomic Cohort Consortium 2014], followed by multiple test using a Bonferroni correction 

with a stringent significance level (e.g. p-value less than 5 × 10−8) in order to control the rate 

of false positive findings. Meanwhile, suppose that X does not include covariates and 

consists of SNPs only. Let Tj(y, X) represent a non-negative test statistic for testing 

association between jth SNP Xj and y as a function of y and X, and the corresponding 

inclusion threshold be t > 0. For example, t is a chi-squared quantile at a given p-value cutoff 

for chi-squared test statistics Tj(y, X). The resulting SNP set from a marginal association 

screening at a threshold t is defined by A = {j ∈ M : Tj(y, X) > t}. Purcell et al. [2009] 
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proposed a gene score method which simply averages each genotype data weighted by 

estimated effect size for each SNP in A. Warren et al. [2013] consider multiple regression 

for SNPs in A, called a multivariate gene score method.

In the purpose of prediction, the cutoff t can be chosen in terms of prediction ability. 

However, evaluating prediction ability is not straightforward unlike in traditional setting 

without screening. It is known that, the screening invalidates traditional statistical 

procedures, called an winner’s curse effect [Zollner and Pritchard 2007, Zhong and Prentice 

2008, Ghosh et al. 2008]. Analogous problem arises in the context of prediction modeling. 

Actually, simulation studies as well as examination on real GWAS datasets reported that 

screening leads to overfitting [Kooperberg et al. 2010]. In Supplementary Material, we show 

that the screening can deflate the residual sum of squares (RSS) compared with the RSS 

without screening, so that the RSS becomes too optimistic. Since screening complicates the 

behavior of RSS, naive use of RSS is unwarranted in measuring prediction ability. Instead, 

we can use cross-validation (or sample splitting) which divides the training data into two 

parts, one of which is used for ranking SNPs and remaining is used to construct a predictive 

model [Purcell et al. 2009, Kooperberg et al. 2010, Wray et al. 2013, Wei et al. 2013]. 

Purcell et al. [2009] choose an optimal inclusion cutoff by cross-validation.

Although cross-validation takes into account of the screening, reduced sample sizes in 

training stage may lose predictive power [Dudbridge 2013], which is a severe concern when 

sample sizes are small. Five or ten-folds cross-validation is commonly used in model 

selection. For example, the SparSNP program [Abraham et al. 2012] implementing 

penalized regression methods, the lasso and elastic net, searches for entire genome-wide 

SNPs data without SNP screening. SparSNP selects the tuning parameter by k-fold cross-

validation with default setting of k = 10. Repeated genome-wide scans needed at each 

candidate tuning parameter and multiple runs of model fit-ting in each fold increase 

computational cost. For large-scale data such as the whole-genome sequencing (WGS) data, 

heavy computational cost critically limits the applicability although penalized methods are 

known to give better predictive power than the simpler gene score method [Purcell et al. 

2009].

In this paper, we develop a new predictive modeling approach, a smooth-threshold 

multivariate genetic prediction, which is really applicable to large-scale genome-wide data 

such as WGS data while preserving high prediction ability. Our method consists of two 

stages. At the first stage, our method continuously screens SNPs based on the output from 

standard univariate analysis for marginal association of each SNP. At the second stage, the 

predictive model is built by a generalized ridge regression simultaneously using the screened 

SNPs with SNP weight determined by the strength of marginal association reflecting the 

uncertainty of inclusion. Since the final predictive model is essentially built in multiple 

regression model as in the sure independence screening [Fan and Lv 2008], the correlations 

between predictor variables are accounted for (See also Warren et al. [2013]). Marginal 

association signal is used only for penalizing each regression coefficient. Our method is very 

rapid because computationally expensive genome-wide scan is required only once in 

contrast to the penalized methods which need genome-wide scan several times. Our proposal 

can be seen as a smoothed version of multiple regression after single SNP-GWAS screening 

Ueki and Tamiya Page 3

Genet Epidemiol. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of predictor variables at some p-value cutoff, in which the discontinuous process in 

screening is replaced by a continuous function. The resulting continuity makes the 

prediction stable in the sense of Breiman [1996]. The continuity in SNP screening also leads 

to a closed form expression of generalized degrees of freedom (GDF) [Ye 1998, Efron 

2004], and allows an application of Stein’s unbiased risk estimation (SURE) [Stein 1981]. 

While the Mallows’ Cp [Mallows 1973] with the usual degrees of freedom is no longer 

unbiased model selection criterion due to the effect of screening, we can readily construct an 

unbiased Cp-type model selection criterion using the GDF [Ye 1998, Efron 2004]. It allows 

data-dependent choice of optimal SNP inclusion cutoff without relying on cross-validation. 

The effect of screening is properly accounted for by the SURE’s unbiasedness. Since no 

cross-validation is needed, computationally expensive genome-wide scan is required only 

once in ranking SNPs. We also extend to generalized linear models and propose a 

loglikelihood-based Cp-type model selection criterion. Simulation studies which mimic real 

SNP-GWAS data for both quantitative and binary traits show that the proposed method gives 

better performance than gene score and genomic best linear unbiased prediction (GBLUP) 

[Goddard et al. 2009, Yang et al. 2011, Lee et al. 2011, Makowsky et al. 2013, de Los 

Campos et al. 2013, Speed and Balding 2014] and attains a comparable or sometime 

improved prediction performance with the lasso and elastic net in SparSNP program. 

Application to large-scale WGS data from Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) exhibits that the proposed method gives higher predictive performance than both the 

gene score and GBLUP methods.

2 Materials and Methods

Here we consider linear multiple regression model, y = μ + ε, where μ = E(y|X) = Xβ, ε ~ 
N(0, σ2In), X is a p-dimensional design matrix and β is the corresponding p regression 

coefficients. Since p is much larger than n in typical GWAS data, some dimensionality 

reduction is required. Sparsity assuming that many components of β are zero would be a 

realistic assumption. If susceptible SNPs show relatively large marginal signal, marginal 

association screening effectively reduces the dimensionality. The gene score method [Purcell 

et al. 2009] and its multivariate generalization [Warren et al. 2013] use upper-ranked SNPs 

in marginal association, A = {j ∈ M : Tj(y, X) > t}, for a given cutoff value t > 0. Although 

dimensionality is effectively reduced, discontinuity in y present in the screening process in 

A may incur instability of prediction, i.e. small change in data can make large changes in the 

prediction [Breiman 1996]. See also Fan and Li [2001]. To address the discontinuity issue, 

we use a smooth-thresholding proposed by Ueki [2009]. To be specific, we propose to 

estimate the regression coefficients by

(1)

where Ac indicates the complement set of A, ǦA = {(I|A|−ĎA)(ΣAA+λI|A|)+τĎA}−1, Σ = 

XTX, ΣAA = (Σjk)j∈A,k∈A, γ and τ are non-negative tuning parameters and λ > 0 is a small 
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constant to avoid singularity of ǦA. The corresponding prediction of yi is then . 

Here Ďj is an adaptive lasso smooth-thresholding function defined by

(2)

Since Ďj = 1 if and only if Tj(y, X) ≤ t, the screened set A with Ďj is the same as that with D̂
j 

= 1{Tj(y,X)≤t}, where 1{·} denotes the indicator function. It can be seen that Ďj replaces the 

discontinuous screening process D̂
j by a continuous function. As a result, μ̌i(y) turns out to 

be continuous in y.

The regression coefficient for the screened set in (1), β̌A, can be seen as a solution to

(3)

with WA = diag(Wj : j ∈ A) where Wj = λ + τ Ďj/(1 − Ďj), which is the minimizer of a 

generalized ridge regression loss, , with respect to βA. Ridge 

weight for each predictor variable, Wj, represents uncertainty of marginal association 

screening. If the marginal association is very weak, we have Ďj ≈ 1 and large Wj, then the 

corresponding regression coefficient is strongly shrunken towards zero. If the marginal 

association is strong, we have Ďj ≈ 0 and Wj ≈ λ, then the corresponding regression 

coefficient is less penalized. From the fact that the winner’s curse effect produces larger 

selection bias for small regression coefficient [Zhong and Prentice 2008], it is expected that 

the above penalization decreases the selection bias.

Predictive power largely depends on the choice of t. It may be done using cross-validation 

by dividing a dataset into test and training samples [Warren et al. 2013]. Cross-validation 

takes into account sampling variability due to the screening [Wray et al. 2013, Wei et al. 

2013]. However, repeated genome-wide scans to obtain the screened set A needed in cross-

validation incurs computational burden. It is also concerned that the reduction in training 

sample sizes decreases the predictive power of the model [Dudbridge 2013]. Instead of 

cross-validation, we propose a Cp-type criterion based on SURE using GDF. The continuity 

of μ̌i(y) in y leads to a closed-form expression of GDF. In what follows, we consider p-value 

cutoff α instead of t by a one-toone transformation t = F−1(1 − α), where F−1 is a quantile 

function of the distribution of Tj(y, X) under the null hypothesis of no marginal association 

such as F or χ2 distribution. An optimal α is determined by minimizing the Cp-type criterion 

within a range of α for search, [αmin, αmax]. The proposed procedure is outlined at the end 

of this section. It is noteworthy that the computational intensive genome-wide scan is 

required only once in the single-SNP association screening at Step 1. Subsequent Steps 2–4 

are performed on the reduced set of SNPs whose single-SNP association p-value is less than 

αmax.
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It is shown that in Supplementary Material that expectation of the Cp-type criterion equals to 

. The selection bias in RSS due to screening mentioned above is 

accounted for by this unbiasedness property. Consequently, model selection with the Cp-type 

criterion is expected to work properly. In principle, the two tuning parameters (γ and τ) 

other than α may be selected by the Cp-type criterion. However, simulation studies and our 

experiences in real data applications suggested that better predictive power is attained with 

some fixed values of γ and τ, possibly, because the reduction of tuning parameters decreases 

sampling variability due to search of optimal prediction model. Specifically, we use fixed 

values of γ = 1 and  throughout. Consequently, we consider single tuning 

parameter α to be optimized. The Cp-type criterion contains σ2 which is often unknown. A 

surrogate estimate of σ2 is given in Supplementary Material. More details of this section 

including formulas, derivations, extension to generalized linear models and additional 

descriptions are given in Supplementary Material.

Outline of algorithm

Step 1. Perform single-SNP association analysis for p SNPs.

Step 2. Screen SNPs whose single-SNP association p-value is less than αmax.

Step 3. Fix γ and τ as suggested in main text, and select an optimal α from candidate 

values in [αmin, αmax] by minimizing the Cp-type criterion:

Explicit formulas are given in Supplementary Material.

Step 4. Compute β̌ by (1) using the selected α.

3 Results

3.1 Simulation results

To examine the performance of the proposed method, we conducted simulation studies with 

artificial data which mimic real SNP-GWAS data. Simulations were based on sampling 

individuals from general population where HAPGEN v2.2.0 [Su et al. 2011] was used with 

input of haplotype data consisting of 73,832 SNPs on chromosome 10 from HapMap3 east 

Asian population (JPT+CHB). In our experiments, we compared the proposed method, 

lasso, elastic net, GBLUP and gene score (GS) methods. For lasso and elastic net, we used 

SparSNP program, in which default parameters of 10 × 10 cross-validation were used for 

tuning. For elastic net, a fixed L2 penalty of λ2 = 1 was used throughout as in Abraham et al. 

[2013]. For GBLUP, we used GCTA v1.24.4 [Yang et al. 2011]. For GS, we used PRSice 

v1.23 [Euesden et al. 2015] with default setting with clumping, in which samples are 

randomly divided into two datasets with 1:9 proportion (1/10 for target data and 9/10 for 

training data) for selecting optimal p-value cutoff from {0.01, 0.02, , . . . , 0.5}.
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Quantitative traits—Using HAPGEN v2.2.0, n individuals from general population were 

sampled. Then, a quantitative phenotype yi for each individual i = 1, . . . , n was generated 

according to the linear regression model, yi = μi + εi, where X0,iβ0, εi ~ N (0, σ2) is an 

independent Gaussian noise, X0,i is a vector of p0 causal SNPs, a subset from 73,832 SNPs 

coded 0, 1, 2 for minor allele counts in the generated genotype data and β0 is the p0 true 

regression coefficients for causal SNPs. In our simulations, p0 was set in advance, then p0 

causal SNPs were randomly assigned from 73,832 SNPs.

We consider both oligogenic and polygenic architectures as follows. For oligogenic scenario, 

we set n = 1000, and each of p0 elements of β0, β0,j, was randomly chosen from three values 

{0.2, 0.1, 0.05}. We repeated simulations 50 times and examined the following four models: 

Model O1, p0 = 10, σ2 = 1 (h2 = 0.13); Model O2, p0 = 10, σ2 = 2 (h2 = 0.07); Model O3, p0 

= 50, σ2 = 1 (h2 = 0.47); Model O4, p0 = 50, σ2 = 2 (h2 = 0.31). Here h2 denotes the narrow 

sense heritability averaged over 50 replicates. For each replicate, the narrow sense 

heritability is computated by  where  and qj is the 

MAF for each of p0 causal SNPs. For polygenic scenario, we set n = 5000, and each of p0 

elements of β0 was set as  and ξj was independently and identically 

generated from a double exponential (or Laplace) distribution with zero median and 

 scale parameter. We then set σ2 = 1 − h2 so that . We repeated 

simulations 20 times and examined the following six models: Model P1, p0 = 100, h2 = 0.3; 

Model P2, p0 = 100, h2 = 0.1; Model P3, p0 = 100, h2 = 0.05; Model P4, p0 = 200, h2 = 0.3; 

Model P5, p0 = 200, h2 = 0.1; Model P6, p0 = 200, h2 = 0.05.

In all simulations, we randomly chose 100 subjects for test samples, say Nte, and set the 

remaining Ntr = {1, . . . , n} \ Nte as training samples. Predictive power was evaluated by 

whether the proposed method trained on the training samples predicts the phenotype of test 

samples. Using the proposed unbiased model selection criterion, an optimal p-value cutoff 

was chosen from 50 equally-spaced candidate values between αmax = 9n/(p log n) and αmin 

= 5 × 10−8 in −log10 scale, i.e. αmax = α(1) > α(2) > ··· > α(50) = αmin We used PLINK --

assoc option to compute marginal association p-values, and then screened SNPs whose p-

value is less than αmax. Since the PLINK’s association p-value is based on Wald test, we 

recomputed F-test statistics (Tj(y, X) described in Supplementary Material) for the above 

screened SNPs. In practice, each p-value cutoff, αk, was converted to a threshold for Tj(y, 

X)s to be optimized, t(k) = F−1(1 − α(k)), where F−1 denotes the quantile function of F (1, n 
− 1)-distribution. The optimal cutoff was determined from t(1) < t(2) <···< t(50) which 

minimizes the Cp-type criterion.

Resulting prediction errors, PSEtr = |Ntr|−1 Σi∈Ntr E{(y0,i − μ̌tr,i)2} = |Ntr|−1Σi∈NtrE{(μi − 

μ̌tr,i)2} + σ2, and PSEte =|Nte|−1 Σi∈NteE{(yi − μ̌tr,i)2}, are plotted as a function of α in 

Figures 1 (oligogenic scenario) and 2 (polygenic scenario) averaged over replicates. Here, 

μ̌tr,i = Xiβ̌tr denotes the predicted value for ith sample using the regression coefficients β̌tr by 

the proposed smooth-threshold multivariate genetic prediction based on training samples, 

while y0,i is an independent future observation from the same distribution of yi given Xi, i.e., 

μi + ε0,i, with Gaussian noise ε0,i ~ N (0, σ2) independent of εi and μi = X0,iβ0. It can be 
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seen that the proposed Cp-type criterion indeed possesses the unbiasedness to the true mean 

squared prediction error for training samples, PSEtr, across various p-value cutoff values. 

Each curve had a minimum at some optimal cutoff value and formed a convex function.

The regression coefficients β̌tr estimated on training samples were used for predicting 

phenotype value of test samples. In Table 1, the predictive power was evaluated by the 

predictive correlation coefficient (PCC) which is the Pearson’s correlation between the 

predicted value and the actual phenotype of test samples. For the proposed method, the 

predicted values for test samples were computed at an optimal p-value cutoff value selected 

by minimizing the proposed Cp-type criterion. From the PCCs given in Table 1, the 

prediction performance of lasso and elastic net was comparable with the proposed method. 

On the other hand, the GBLUP and GS showed much lower performance than the proposed 

method, lasso and elastic net in some oligogenic scenarios. In polygenic scenarios, the 

proposed method gave slightly lower performance than the lasso and elastic net. We also 

conducted additional polygenic simulations assuming low heritabilities. The results given in 

Supplementary Material show that all methods gave very low predictive performance, 

agreeing with the observation in Warren et al. [2013].

For the proposed method, lasso, elastic net and gene score, Table 1 gives the average number 

of true and false positives, respectively, defined by that non-zero coefficients from each 

method are truly and falsely causal SNPs. Overall, all methods yielded large number of false 

positives, which would result from that the assumed effect sizes were small relative to the 

noise.

Binary traits—For simulations of binary traits, case-control data were used for training 

samples to build a predictive model, and then the predictive model was tested through 

independent test samples from general population. We consider both oligogenic and 

polygenic architectures as follows. For oligogenic scenario, 1000 balanced case-control 

samples (500 cases and 500 controls) for training and 1000 samples for test were considered. 

Case-control samples were collected based on repeated sampling from general population as 

described below in detail. A binary phenotype yi ∈ {0, 1} of each individual from general 

population was generated according to the logistic regression model μi = P (yi = 1|Xi) = 1/{1 

+ exp(−θi)}, where Xi denotes a realization of the individual i’s SNPs vector with additive 

coding as in the quantitative trait simulation, θi = Xiβ0 + b0, b0 is the baseline regression 

coefficient and β0 denotes p0 true regression coefficients. p0 causal SNPs were randomly 

chosen from all 73,832 SNPs, and then, 0,1,2 coding was carried out according to the minor 

allele count in reference haplotype data. Then, p0 regression coefficients β0 were randomly 

assigned from three values {(m/2) log 1.1, (m/2) log 1.2, (m/2) log 1.5}, with a constant 

parameter m. The following four models were considered: Model O5, p0 = 10, m = 2, b0 = 

−4 (h2 = 0.05); Model O6, p0 = 10, m = 3, b0 = −5 (h2 = 0.11); Model O7, p0 = 50, m = 0.8, 

b0 = −4 (h2 = 0.04); Model O8, p0 = 50, m = 1.2, b0 = −5 (h2 = 0.09). Here h2 denotes the 

narrow sense heritability averaged over 50 replicates just like the quantitative traits 

simulations using  except that σ2 = p2/3 which is the variance of logistic 

distribution with unit scale (i.e. liability follows logistic distribution rather than Gaussian). 

For polygenic scenario, 5000 balanced case-control samples (2500 cases and 2500 controls) 
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for training and 1000 samples for test were considered. First we generated liability from 

Gaussian distribution as done in the polygenic quantitative traits simulations, in which mean 

of liability is adjusted to be zero. Then, we assigned yi = 1 if the liability exceeds Φ−1(1 − 

K0) and 0 otherwise, where K0 = 0.1 and Φ−1 is the standard normal quantile function. We 

repeated simulations 20 times and examined the following six models: Model P7, p0 = 100, 

h2 = 0.3; Model P8, p0 = 100, h2 = 0.1; Model P9, p0 = 100, h2 = 0.05; Model P10, p0 = 200, 

h2 = 0.3; Model P11, p0 = 200, h2 = 0.1; Model P12, p0 = 200, h2 = 0.05, which correspond 

to the models with liability generated from Models P1,. . . ,P6.

n0 cases and n1 controls data were generated as follows. First, 1000 individuals were 

sampled from general population using HAPGEN as described in earlier of this subsection. 

In each sampling, case/control status was assigned for each individual according to the 

specified model. Since the number of cases was in general smaller than that of controls, a 

subset of controls with the same number of cases occurred was randomly chosen. As a 

result, cases and controls with equal numbers were stored. The above process was continued 

until total sample size reaches to the desired number. In addition, 1000 individuals were 

generated from general population using HAPGEN, and a case/control status was assigned 

from the specified regression model. The 1000 individuals were used for test samples.

Using the proposed (approximate) unbiased model selection criterion, an optimal p-value 

cutoff was chosen from 50 equally-spaced candidate values between αmax = 3n/(p log n) and 

αmin = 5 × 10−8 in −log10 scale. Marginal association screening was conducted as in the 

quantitative trait simulations except that the score test statistic was used for Tj(y, X) instead 

of the F-test statistic and that F −1 is the quantile function of χ2 distribution with one degree 

of freedom. As in Figures 1 and 2, Figures 3 and 4 give prediction errors measured by −2× 
loglikelihood, PLtr = |Ntr|−1Σi∈Ntrq{(μi, θ̌tr,i) and PLte = |Nte|−1Σi∈Nteq{(yi, θ̌tr,i), as a 

function of α. Here θ̌tr,i = Xiβ̌tr denotes the predicted value for ith sample using the 

regression coefficients β̌tr by the proposed smooth-threshold multivariate genetic prediction 

learned on the training samples. From Figures 3 and 4, the proposed Cp-type criterion 

appeared to be close to the true mean prediction −2× loglikelihood. Each curve had a 

minimum at some optimal cutoff value and formed a convex function.

The regression coefficients β̌tr estimated on training samples were used to predict the 

phenotype of test samples. In Table 2, the predictive power was evaluated by the area under 

a receiver operating characteristic curve (AUC). For the proposed method, the mean 

prediction errors for test samples were computed using an optimal p-value cutoff value 

selected by minimizing the proposed Cp-type criterion. Resulting prediction performances 

were given in Table 2. The proposed method, lasso and elastic net, showed comparable 

predictive power. On the other hand, the GBLUP and GS showed much lower performance 

than the proposed method, lasso and elastic net in some oligogenic scenarios. In 

Supplementary Material, we also conducted additional polygenic simulations assuming low 

heritabilities. The results are similar to that in quantitative traits simulations. For the 

proposed method, lasso, elastic net and gene score, average number of true and false 

positives were compared in Table 2. As in quantitative traits simulations, large number of 

false positives resulted in all methods.
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3.2 Application to ADNI-WGS data

We applied our proposed method to ADNI-WGS dataset obtained from the publicly 

available data of the Alzheimer’s Disease Neuroimage Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). For up-to-date information, see www.adni-info.org. ADNI is an ongoing 

longitudinal study with the primary purpose of exploring the genetic and neuroimaing 

information associated with late-onset Alzheimer’s disease (LOAD). The study recruited 

elderly subjects older than 65 years of age consisting about 400 subjects with mild cognitive 

impairment (MCI), about 200 subjects with Alzheimer’s disease (AD), and around 200 

healthy controls (normal). Each subject was followed for at least 3 years. During the study 

period, the subjects were assessed with magnetic resonance imaging (MRI) measures and 

psychiatric evaluation to determine the diagnosis status at each time point.

We used high coverage WGS data called using Broad best practices (BWA & GATK 

HaplotypeCaller). From the ADNI-WGS data, we extracted 8,657,877 single nucleotide 

variant (SNV) sites. In our analysis, we used 713 non-Hispanic Caucasian samples 

excluding one of pairs showing cryptic relatedness implied by the PLINK’s pairwise π̂ 

statistic [Purcell et al. 2007] greater than 0.125. Consequently, the total numbers of subjects 

with the current status of normal, MCI and AD were 245, 426 and 42, respectively. We 

separately considered three different definitions of phenotypes: (i) normal (= 1), MCI (= 2) 

and AD (= 3) as quantitative traits, (ii) normal (= 1), MCI (= 2) and AD (= 2) as binary 

traits, (iii) normal (= 1), MCI (= 1) and AD (= 2) as binary traits. We also considered two 

kinds of adjustments for covariates: (a) sex and age, (b) sex, age, year of education (EDU) 

and family history (FH). For family history, we coded 1 if any of subject’s mother, father 

and siblings had affected AD, and 0 otherwise. We chose the above covariates because of the 

known influence on AD.

We used the proposed smooth-threshold multivariate genetic prediction, GBLUP and GP 

methods for building prediction model. In all three methods, covariates were adjusted. Since 

the ADNI-WGS data include large number of SNVs, we did not apply the lasso and elastic 

net in SparSNP due to prohibitive computational cost.

First, we randomly divided 718 samples into ten groups with roughly equal size. Then, one 

of ten groups was set as test samples and remaining was set as training samples. 

Consequently, we had ten combinations of test/training samples (i.e. 10-fold cross-

validation). For each of ten combinations, we built a prediction model based on training 

samples, and predict phenotype data of test samples by the prediction model. For each 

training data, we used SNVs with MAF > 1% and with missing genotype rates < 10% in 

building prediction model. For the proposed smooth-threshold multivariate genetic 

prediction, we searched for an optimal p-value cutoff from 50 equally-spaced points between 
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αmax = 3000/8657877 and αmin = 5 × 10−8 in −log10 scale while we fixed γ = 1 and 

.

In Table 3, predictive power for each three methods averaged over ten test/training datasets 

was given where standard deviation was given in parenthesis. In (i), phenotype data were 

treated as a quantitative trait, and the predictive power was evaluated by PCC. In (ii) and 

(iii), phenotype data were treated as binary traits, and the predictive power was evaluated by 

AUC. The proposed method showed the best predictive power among three competing 

methods as observed in simulation studies.

In Table 3, we also provided selected optimal p-value cutoff values in −log10 scale and 

number of screened SNVs by the proposed method averaged over 10 test/training datasets. 

We note that, in (iii), the proposed Cp-type criterion failed to identify the optimal p-value 

cutoff in the sense that the minimum value of the criterion was always at the boundary for 

search, 3000/8657877 (or 3.5 in −log10 scale), as seen in the zero standard deviation in Table 

3. It implies that the results for the proposal in Table 3 were suboptimal despite the higher 

predictive power than the competing methods. One reason of failing to select an optimal p-

value cutoff in (iii) would be the small sample size in cases, which made the estimation of 

Cp-type criterion highly unstable. On the other hand, for (i) and (ii), the proposed Cp-type 

criterion could take an optimal p-value cutoff which was not at the boundary, i.e. the 

selection of optimal p-value cutoff was successful.

Our proposed method gave higher predictive power than the GBLUP and gene score as 

observed in our oligogenic simulations. In our analyses, we included SNVs on APOE 

(Apolipoprotein E) gene known to have large contribution to developing AD. For such 

disease, the genetic architecture may be approximated by sparse models considered in the 

oligogenic scenarios. We note that the predictive power is still insufficient for practical 

genetic prediction. Recent studies [Chatterjee et al. 2013, Dudbridge 2013] under 

infinitesimal models [Fisher 1918] state that more sample sizes are needed to construct 

accurate predictive models. It is expected that increasing sample sizes improve the predictive 

power. Our proposed approach is general and has a potential to apply to various high-

dimensional problems based on multiple linear regression.

4 Conclusion

In this paper, we presented a new efficient predictive modeling using smooth-threshold 

multivariate genetic prediction. The method can be seen as a smoothed version of multiple 

regression after marginal association screening or multivariate gene score [Warren et al. 

2013]. Advantages of continuity include (i) stabilizing prediction and (ii) applicability of Cp-

type unbiased model selection criterion. For (i), through extensive simulation studies, the 

predictive power of the proposed method had a comparable performance with the 

contemporary shrinkage methods, lasso and elastic net, which has large computational cost. 

For (ii), the unbiasedness property of Cp-type criterion was confirmed by simulation studies. 

The use of Cp-type criterion allows to tune an optimal p-value cutoff without using cross-

validation. We are unnecessarily to be concerned on training sample sizes.
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The fact that the proposed method requires computationally intensive genome-wide scan 

only once makes computation more rapid. It is advantageous for WGS data which include 

large number of variants. An R code which implements the proposed method with input of 

PLINK-binary format data and summary statistics such as single-SNP association p-values 

is available from the authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prediction errors averaged over 50 simulation replicates for quantitative traits in oligogenic 

scenarios (Models O1,...,O4). Black dashed line (ST), average of mean prediction squared 

error for training data (PSEtr) for predictive models from smooth-threshold multivariate 

genetic prediction at each p-value threshold in minus log10-scale (x-axis). Black dotted line 

(ST.P), average of prediction squared error for test data (PSEte) for predictive model from 

smooth-threshold multivariate genetic prediction trained on the training data. Red solid line 

(CpST), average of the proposed Cp-type criterion (an unbiased estimator of the black 

dashed line).
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Figure 2. 
Prediction errors averaged over 20 simulation replicates for quantitative traits in polygenic 

scenarios (Models P1,...,P6). Black dashed line (ST), average of mean prediction squared 

error for training data (PSEtr) for predictive models from smooth-threshold multivariate 

genetic prediction at each p-value threshold in minus log10-scale (x-axis). Black dotted line 

(ST.P), average of prediction squared error for test data (PSEte) for predictive model from 

smooth-threshold multivariate genetic prediction trained on the training data. Red solid line 

(CpST), average of the proposed Cp-type criterion (an unbiased estimator of the black 

dashed line).
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Figure 3. 
Prediction −2 × loglikelihood averaged over 50 simulation replicates for binary traits in 

oligogenic scenarios (O5,...,O8). Black dashed line (ST), average of mean −2 × 

loglikelihood for training data (PSEtr) for predictive models from smooth-threshold 

multivariate genetic prediction at each p-value threshold in minus log10-scale (x-axis). 

Black dotted line (ST.P), average of prediction −2 × loglikelihood for test data (PSEte) for 

predictive model from smooth-threshold multivariate genetic prediction trained on the 

training data. Red solid line (CpST), average of the proposed Cp-type criterion (an 

approximate unbiased estimator of the black dashed line).
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Figure 4. 
Prediction −2 × loglikelihood averaged over 20 simulation replicates for binary traits in 

polygenic scenarios (P7,...,P12). Black dashed line (ST), average of mean −2 × loglikelihood 

for training data (PSEtr) for predictive models from smooth-threshold multivariate genetic 

prediction at each p-value threshold in minus log10-scale (x-axis). Black dotted line (ST.P), 

average of prediction −2 × loglikelihood for test data (PSEte) for predictive model from 

smooth-threshold multivariate genetic prediction trained on the training data. Red solid line 

(CpST), average of the proposed Cp-type criterion (an approximate unbiased estimator of 

the black dashed line).
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