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Abstract

Purpose—In diffusion MRI (dMRI), fractional anisotropy derived from the single-tensor model 

(FADTI) is the most widely used metric to characterize white matter (WM) micro-architecture, 

despite known limitations in regions with crossing fibers. Due to time constraints when scanning 

patients in clinical settings, high angular resolution diffusion imaging (HARDI) acquisition 

protocols, often used to overcome these limitations, are still rare in clinical population studies. 

However, the tensor distribution function (TDF) may be used to model multiple underlying fibers 

by representing the diffusion profile as a probabilistic mixture of tensors.

Methods—We compared the ability of standard FADTI and TDF-derived FA (FATDF), calculated 

from a range of dMRI angular resolutions (41, 30, 15, and 7 gradient directions), to profile WM 

deficits in 251 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and to 

detect associations with (1) AD diagnosis, (2) Clinical Dementia Rating scores, and (3) average 

hippocampal volume.

Results—Across angular resolutions and statistical tests, FATDF showed larger effect sizes than 

FADTI, particularly in regions preferentially affected by AD, and was less susceptible to crossing 

fiber anomalies.

Conclusion—The TDF “corrected” form of FA may be a more sensitive and accurate alternative 

to the commonly-used FADTI, even in clinical quality dMRI data.
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INTRODUCTION

Diffusion-weighted MRI (dMRI) is a variant of standard MRI that can measure the diffusion 

of water molecules in biological tissues, such as the brain. By characterizing the diffusion 

process at the voxel level, we can make tentative inferences about the underlying white 

matter (WM) microstructure and factors that affect it (1). Since dMRI was developed, 

acquisition protocols have improved to increase angular, spatial, and spectral resolution. 

Multiple mathematical models have been developed to describe the diffusion process. One of 

the first – and still most popular – methods to summarize diffusion properties in a specific 

voxel is the single tensor model (2) commonly referred to as diffusion tensor imaging (DTI) 

(3). This model is limited as it assumes diffusion is purely Gaussian; it can only model a 

single fiber population, with a single dominant orientation, at every voxel. It cannot resolve 

complex WM architecture, such as dispersing, crossing or kissing fibers. Yet, at the current 

resolution of dMRI, between one-third and two-thirds of WM voxels contain fiber crossings 

(4, 5). dMRI can also be used to evaluate disease-related gray matter (GM) abnormalities, 

where the micro-architecture is even more complex (6). Nevertheless, the tensor-derived 

fractional anisotropy (FADTI) metric is still the most widely used scalar measure to 

characterize tissue micro-architecture. It is widely used in research studies of schizophrenia, 

depression, autism, HIV/AIDS, and other developmental, psychiatric, and neurodegenerative 

disorders including Alzheimer’s disease (7, 8).

In recent years, many new models have been proposed to overcome limitations of the tensor 

model, including q-ball imaging and diffusion orientation distribution functions (ODF) (9), 

constrained spherical deconvolution (CSD) (10), multicompartment models such as the “ball 

and stick” model (4), diffusion spectrum MRI (DSI) (11), and neurite orientation dispersion 

and density imaging (NODDI) (12). Due to the numerous types of biological, 

neuropsychiatric and imaging data often acquired for clinical populations, time constraints 

are often placed on imaging protocols to reduce patient attrition or motion, and ensure 

adequate sample sizes. This precludes state of the art models like DSI and NODDI, which 

require extremely dense or multi-shell acquisitions, and may prevent the reliable 

reconstruction of many other higher-order diffusion models. However, the tensor distribution 

function (TDF), as proposed by (13), may still be feasible. The TDF is a probabilistic 

extension of a multi-tensor model that describes crossing fibers mathematically as an 

ensemble of Gaussian tensors. However, unlike other multicompartment models (4, 12, 14–

16) where one needs to specify in advance the total number of compartments in the tissue, 

the authors propose a continuous distribution of tensors, with a profile of “weights” or 

relative contributions estimated for tensors with a continuously varying range of shapes and 

sizes, in the tensor space.

Nir et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large longitudinal multisite 

study of healthy elderly controls, individuals with mild cognitive impairment (MCI), and 

Alzheimer’s disease (AD). The goal is to identify sensitive imaging biomarkers that can be 

used to track or predict changes in the brain, which is vital for drug trials to identify 

candidates for treatment and monitor effectiveness. In addition to the battery of cognitive 

tests, cerebrospinal fluid (CSF) and blood tests, ADNI collects several functional and 

structural MRI modalities including T1 and T2-weighted anatomical MRI, positron emission 

tomography (PET), arterial spin labeling (ASL), and resting state functional MRI, and 

dMRI. In such longitudinal studies, there is a real concern about patient attrition, especially 

in elderly individuals who may not be able to tolerate being confined to a scanner for long 

periods. In an effort to collect such a wide range of data-types and maintain patient 

enrollment, there are time constraints placed on possible dMRI protocols, including debates 

as to whether or not to continue acquiring dMRI in the next phase of ADNI. Clearly it is of 

great interest to maximize the power of the available scans and show that even clinical 

quality diffusion scans can be powerful tools for uncovering disease related abnormalities in 

tissue microstructure and WM neurocircuitry.

Here we aimed to find whether FA metrics derived using the TDF model (FATDF) may be 

more sensitive to disease-related differences than the corresponding FADTI measure that is 

now widely used. Building upon preliminary findings in (17), our goal was to understand 

how the imaging protocol may influence the sensitivity of the metrics, and further compared 

performance for each metric computed from subsamples of the full ADNI dMRI 41 gradient 

direction angular resolution, including subsets of 30, 15, and 7 gradient directions. Voxel-

wise association tests were used to compare FATDF and FADTI metrics computed from a 

range of angular resolutions, and their ability to detect microstructural differences between 

AD patients and healthy elderly controls (CN). We also evaluated associations between the 

two FA metrics and common AD biomarkers—hippocampal volume and Clinical Dementia 

Rating (CDR) scores. Finally, we evaluated the test-retest reliability of each model’s fit and 

the resulting scalar FA maps. In comparing models, there is interest in detecting clinical 

associations with maximal sensitivity and power, ideally using improved metrics, which 

measure standard properties more accurately.

METHODS

Subjects and Image Acquisition

Standard MRI, dMRI, and clinical data were downloaded from the publicly available 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.usc.edu/ADNI). 

We analyzed baseline data from 251 participants: 53 healthy controls (CN; mean age: 72.6+/

−6.1 yrs; 24M/29F), 28 with significant memory concern (SMC; mean age: 72.4+/−4.5 yrs; 

10M/18F), 121 with mild cognitive impairment (MCI; mean age: 72.6+/−7.3 yrs; 75M/46F 

and 49 with AD (mean age: 75.0+/−8.6 yrs; 29M/20F). Of the 53 CN participants, 33 

returned for follow-up evaluations after 3 months and their scans were used for test-retest 

analyses (mean age: 72.8+/−6.5 yrs; 16M/17F). All procedures were reviewed and approved 

by institutional review boards. All participants gave written informed consent.
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All subjects underwent whole-brain MRI scanning on 3T GE Medical Systems scanners at 

17 acquisition sites across North America. Anatomical T1-weighted SPGR (spoiled gradient 

echo) sequences (256×256 matrix; voxel size = 1.2×1.0×1.0 mm3; TI=400 ms; TR = 6.98 

ms; TE = 2.85 ms; flip angle=11°), and dMRI (128×128 matrix; voxel size: 2.7×2.7×2.7 

mm3; TR=9000 ms; dMRI scan time = 9 min) were collected. 46 separate images were 

acquired for each dMRI scan: 5 T2-weighted images with no diffusion sensitization (b0 

images) and 41 diffusion-weighted images (DWI; b=1000 s/mm2).

Baseline hippocampal volume summary metrics, processed using the FreeSurfer package 

(http://surfer.nmr.mgh.harvard.edu/), were downloaded from the ADNI database (n=243 

available), as was the “sum-of-boxes” Clinical Dementia Rating (CDR-sob; n=238) (18).

Image Preprocessing

Raw images were preprocessed as in (7). Extra-cerebral tissue was removed, raw DWI 

images were corrected for motion and eddy current distortions, and T1-weighted images 

underwent inhomogeneity normalization. Each T1-weighted image was linearly aligned to a 

standard brain template. The diffusion images were linearly and then elastically registered 

(19) to their respective T1-weighted scans to correct for echo-planar imaging (EPI) induced 

susceptibility artifacts. Gradient tables were corrected for DWI linear registrations.

Diffusion Gradient Subsampling

To gain a better understanding of the dMRI parameters necessary to employ the TDF model, 

we used the framework presented in (20) to essentially downsample the angular resolution 

from 41 gradient directions to include only a subset of either 30, 15, or 7 gradient images. 

Gradient subsets were selected by optimizing the spherical angular distribution energy. 

Briefly, the angular distribution energy, Eij, of a pair of points, i and j, on the unit sphere 

may be defined as the inverse of the sum of the squares of (1) the least spherical distance 

between point i and point j, and (2) the least spherical distance between point i and point j’s 

antipodal, symmetric point J. As in prior work, we acknowledge that protocols with fewer 

gradients would be independently optimized for angular distribution rather than subsample 

directions from an existing protocol, but the subsampling we use is designed to lead to the 

most equally distributed sampling on the sphere possible. It also helps us to assess effects of 

gradient count while keeping other factors of the patient’s scan constant (e.g. motion, 

artifacts).

dMRI Reconstruction Models and Scalar Maps

For each angular resolution (41, 30, 15, or 7 gradient directions), three different dMRI 

reconstruction models were used to generate scalar FA maps. First, a single diffusion tensor 

(3) – equivalent to a 3D ellipsoid capturing a single fiber orientation – was modeled at each 

voxel in the brain from the corrected DWI scans. This model assumes that the diffusion is a 

3D Gaussian process, fitted using just six independent parameters of a tensor (3 eigenvalues 

describing its shape, and 3 Euler angles describing its orientation). Scalar fractional 

anisotropy (FADTI) maps were obtained from the resulting diffusion tensor eigenvalues (λ1, 

λ2, λ3):
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In contrast to the single tensor model, the tensor distribution function (TDF) represents the 

diffusion profile as a probabilistic mixture of tensors that optimally explain the observed 

DWI data, allowing for the reconstruction of multiple underlying fibers per voxel, together 

with a distribution of weights. We applied the framework proposed in (13, 21) to the angular 

diffusion signal, to compute the voxel-wise optimal TDF P*(D(θ, λ))– the probability 

distribution function of all feasible Gaussian tensors D(θ, λ) that best describes the observed 

signal. As in (13), to reduce the solution space, each tensor D(θ, λ) at spherical angle θ was 

assumed to be cylindrical such that λ=(λ1,λ2=λ3) and λ1>=λ2. However, unlike the 

gradient descent approach in (13) to solve for this optimal TDF, here we used a quadratic 

programming approach (see Appendix A for details). The tensor orientation distribution 

function (TOD), was then calculated by computing the marginal density function of the TDF 

with the eigenvalues λ= (λ1, λ2) integrated out.

For each θ, the eigenvalues are calculated by computing the expected value of each 

eigenvalue along θ, from which a corresponding scalar FA metric is calculated:

At each voxel, the final scalar FATDF metric across all θ is then calculated as the sum of all 

FA(θ) weighted by the probability that θ is the principal fiber direction, TOD(θ).

A healthy control subject’s FADTI and FATDF maps, calculated from various angular 

resolutions, are shown in Figure 1a and 1b for visual comparison. A voxel-wise two-tailed 

paired T-test was performed to quantitatively compare TDF and DTI FA values in the 

healthy control group. All resulting statistical maps were corrected for multiple comparisons 

*Many investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data, but most of them 
did not participate in this analysis or writing this report. A complete list of ADNI investigators may be found at: https://
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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using the standard false discovery rate (FDR) method at q=0.05 (22), and thresholded at the 

FDR critical P-value.

For comparison to an established HARDI technique also designed to reconstruct multiple 

fiber orientations in a given voxel, we fitted orientation distribution functions (ODFs) at each 

voxel, with a non-parametric q-ball reconstruction technique, using the normalized and 

dimensionless constant solid angle (CSA) method (9, 23). The generalized FA (GFAODF) 

was then calculated from the CSA-ODF. GFAODF is analogous to FADTI, but calculated at 

each diffusion direction of the ODF (9) and is defined as:

Here, Ψ(u) is the ODF, i is each diffusion direction and  is the mean of the 

ODF.

Template Creation and Spatial Normalization

To avoid bias in the diffusion-based registrations, we created multi-channel study-specific 

minimal deformation templates (MDTs) with the ANTs registration software (24), equally 

weighting FADTI, FATDF, GFAODF and T1-weighted maps. Similarly, to spatially normalize 

each subject’s three FA maps we performed a 3-channel linear then non-linear registration to 

the MDT. In this way all FA maps were used to drive the registration and they were all 

normalized to the same space. To avoid differences in registration accuracy, the deformations 

from the full angular resolution registration were applied to the FA maps calculated from the 

various DWI gradient subsets for each individual.

Test-retest FADTI and FATDF maps generated from baseline and 3-month follow-up dMRI 

scans were each linearly aligned to an intermediate space half way between each subject’s 

two time points (25). Baseline and follow-up maps were each spatially normalized to the 

baseline MDT with 2-channel linear then non-linear registrations. The deformations from 

the full angular resolution registration were applied to the various DWI gradient subsets as 

well as the respective FA maps

Clinical Associations and Effect Sizes

To test for statistical effects of AD diagnosis on measures of white matter microstructure in 

FADTI, FATDF, and GFAODF maps calculated at various angular resolutions, we ran voxel-

wise, random-effects linear regressions, covarying for age and sex, and using the acquisition 

site as the random grouping variable. In an effort to try and tease apart microstructural 

associations from those driven by atrophy and registration, we also covaried for the log 

Jacobian determinant derived from the non-linear spatial normalization of each map to the 

template. In addition to AD diagnosis, we also tested for voxel-wise associations between 

FA and CDR-sob scores as well as average bilateral hippocampal volume (after covarying 

for intracranial volume) across the entire study sample. All statistical tests were limited to 
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voxels present in all subject scans, as some scans had a slightly cropped FOV. As such, we 

did not consider the inferior parts of the cerebellum and brain stem. All resulting statistical 

maps were corrected for multiple comparisons using the standard false discovery rate (FDR) 

method at q=0.05 (22), and thresholded at the FDR critical P-value. We show regression 

coefficients (β-values) only in regions where the false discovery rate was controlled.

We computed cumulative distribution function (CDF) plots to visualize and rank effect sizes 

across voxel-wise tests. The sorted observed voxel P-values from each regression were 

plotted against the P-values from the expected null distribution. If the CDF curve initially 

rises at a rate steeper than 20 times the null CDF (y = 20x), then the corresponding maps 

have supra-threshold or FDR significant voxels at q = 0.05. Curves that rise at a steeper rate 

than that line represent significant voxels and larger deviations represent larger effect sizes.

Effect sizes for detecting AD versus control group differences were also compared using 

Cohen’s d calculated as (μAD−μCN)/spooled, where spooled=√[(s1
2+s2

2)/2] (26). This metric 

has been widely used in studies of disease effects on imaging measures (27–29) For each FA 

metric and angular resolution, we used the average FA metric from both the respective 

statistical test’s significant cluster. To avoid overfitting, a 10-fold cross validation approach 

was used. In each fold, 80% of the data were used for voxel-wise regressions to estimate the 

significant clusters (training data), and the remaining test data was used to compute the 

Cohen’s d effect sizes.

Test-Retest Reliability and Model Fit

We used the framework defined in (30, 31) to evaluate the goodness of the fit of each dMRI 

model in healthy controls. We first compared voxel-wise root mean squared error (RMSE) 

between the observed signal (A) and expected signal (B) from each model in each voxel:

where N is the number of gradient directions or DWIs, and Ai, Bi – the observed and 

expected signal intensities in the given voxel in the i-th DWI. Additionally, baseline and 3-

month follow-up test-retest data was used to cross-validate each model’s fit—the model 

parameters were first estimated on baseline control subjects’ DWI scans, and then used to 

predict the signal in the 3-month follow-up DWI scan. As proposed in (30), we defined the 

test-retest relative root mean squared error (rRMSE) in each voxel as:

Here, RMSE(M1,D2) is the RMSE between the data observed in the follow-up scan and 

predicted from the first scan, RMSE(M2,D1) is the RMSE between the observed data in the 

first scan and that predicted from the follow-up scan, and RMSE(D1,D2) is the RMSE 

between the observed data from both scans. A model that predicts the repeated measurement 
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more accurately than the original will result in an rRMSE < 1 (30). To compute RMSE 

(M1,D2), we used parameters learned from the first scan, and the bvecs (scanner gradient 

directions) and b0 from the follow-up scan, and vice versa for RMSE(M2,D1). A voxel-wise 

two-tailed paired T-test was performed to compare TDF and DTI baseline RMSE and 

rRMSE values in the healthy control group. All resulting statistical maps were corrected for 

multiple comparisons using the standard false discovery rate (FDR) method at q=0.05 (22); 

resulting maps were thresholded at the FDR critical P-value.

We also evaluated the test-retest reliability for FADTI and FATDF maps calculated from each 

angular resolution by computing the voxel-wise intra-class correlation (ICC) between 

baseline and 3-month follow-up healthy control FA maps, with the R PSYCH package 

(personality-project.org/r/html/ICC.html). Again, the FDR method was used to correct for 

multiple comparisons.

RESULTS

Both a visual comparison of FADTI and FATDF maps (Figure 1a and 1b) and T-test between 

maps (Figure 1c) reveal that FATDF maps have higher FA values not only in the core, 

coherent WM structures but throughout the tissue, including near gray/white matter 

boundaries. The standard FADTI measure tends to show loss of signal near cortical 

boundaries and in regions with known fiber crossings and complex gray matter architecture.

Clinical Associations and Effect Sizes

As expected, across all of the FA metrics, AD diagnosis, greater cognitive impairment 

(higher CDR-sob score), and lower average hippocampal volume, were associated with 

significant WM deficits (lower FA) after correction for multiple comparisons (Figure 2a). 

However, across statistical tests, larger effect sizes, as denoted by greater β-value magnitude 

and more widespread differences, were detected with FATDF voxel maps, as compared to 

FADTI and GFAODF. Moreover, FATDF findings are highly localized to the temporal lobe 

and hippocampal regions most vulnerable to early changes in AD. CDF plots further reflect 

the increased sensitivity of FATDF for differentiating disease groups, and for detecting 

clinical associations (Figure 2b).

Across maps, some very small regions exhibited significant associations with FA in direction 

contrary to what would traditionally be accepted as showing impairment (i.e., higher FA 

with impairment; Figure 2a boxed regions). These regions were largely found at the junction 

of the corpus callosum commissural fibers and the corona radiata, a region notorious for 

fiber crossings that may reduce the FA, as computed from the tensor model (32). However, 

across analyses, FATDF showed fewer associations that were contrary to the hypothesized 

effects of the disease (Figure 2c). Relative to the total number of significant voxels, FADTI 

showed between ~13–15% of these voxels, GFAODF showed ~8–10%, while FATDF showed 

<0.5% across tests, suggesting that FATDF may be handling computations better for crossing 

fibers.

A comparison of the same three clinical associations on FADTI and FATDF computed from a 

subset of 30, 15 and 7 gradient directions reveals that even at 7 gradient directions, FATDF is 
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consistently the most sensitive metric across statistical tests (Table 1; Figure 3). In fact 

FATDF calculated from 7 gradient directions has larger effect sizes than FADTI calculated at 

the full angular resolution. Across statistical tests performed at each angular resolution, 

FATDF consistently showed less than 0.5% of significant voxels with a direction of 

association opposite to that hypothesized, compared to FADTI which showed ~5–15% (Table 

1). Finally, the mean Cohen’s d effect sizes for picking up AD versus CN group differences, 

calculated from test data from the 10-fold cross validation, once again confirm that across all 

angular resolutions, FATDF showed larger effect sizes (Table 2).

Test-Retest Reliability and Model Fit

Mean maps of the RMSE calculated from the DTI and TDF model fit in the subset of 53 

healthy control subjects are shown in Figure 4a and 4b. A voxel-wise T-test revealed 

significantly lower error in the TDF fit throughout the tissue regardless of angular resolution 

(Figure 5a; FDR critical P-value for 41 gradients = 0.041, 30 gradients =0.041, 15 gradients 

= 0.042, and 7 gradients = 0.043). The mean rRMSE maps from DTI and TDF models from 

33 healthy control individuals at two time points are shown in Figure 4c and 4d. While the 

rRMSE is high in both the TDF and DTI models in the superior cortical gray matter (mean 

rRMSE > 1), the fit is stable (< 1) in WM and overall temporal lobe regions where most of 

the AD-related effects were detected. A T-test between the DTI and TDF rRMSE maps 

(Figure 5b) reveals significantly lower rRMSE with the TDF fit, in not only the temporal 

lobes, but in the region of the superior WM where commissural fibers and the corona radiata 

intersect, often leading to depleted FADTI. The TDF model shows higher error only in CSF. 

TDF rRMSE is progressively more similar to DTI (i.e. less area of significant differences) 

with lower angular resolution (FDR critical P-value for 41 gradients = 0.024, 30 gradients 

=0.021, 15 gradients = 0.017, and 7 gradients = 0.001).

In terms of test-retest reliability of the scalar FA maps, we found that across resolutions 

there was an overall stable and strong ICC between baseline and follow-up FATDF maps 

(mean ICC ~0.8; Figure 5c), while, as might be expected, there was a degradation in FADTI 

ICC at the lowest angular resolutions (Figure 5d).

DISCUSSION AND CONCLUSIONS

Here we show that FA metrics derived from the tensor distribution function (TDF) may be 

more sensitive to disease related microstructural abnormalities than corresponding single 

tensor-derived FA metrics that are now widely used to assess clinical data. FA is highly 

affected by numerous factors including the number of dominant fiber directions and 

orientation coherence as well as partial volume effects from neighboring gray matter. By 

using the TDF approach, we can still employ an extension of the tensor model, adapted to 

identify contributions to FA from separate crossing fiber compartments in tissue with more 

complex micro-architecture and voxels on tissue boundaries that are susceptible to partial 

voluming.

Alzheimer’s disease (AD) is characterized by cortical and hippocampal neuronal loss and 

widespread gray matter (GM) atrophy driven in part by cortical amyloid plaque and 

neurofibrillary tangle deposits, and vascular changes. Structural and diffusion MRI studies 
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show white matter (WM) injury – perhaps due to myelin degeneration, and neuronal loss 

leading to progressive disconnection of cortical and subcortical regions (7, 33–36). Standard 

anatomical MRI is still the imaging technique most often used in AD studies and clinical 

trials, but dMRI is sensitive to microscopic changes in WM integrity not always detectable 

with standard anatomical MRI (37, 38). In addition to WM, dMRI is an emerging tool for 

the evaluation of disease related gray matter (GM) abnormalities as well (6, 39–43). A 

growing number of studies assess cortical and subcortical GM diffusivity changes in AD that 

may reflect GM cellular microstructure breakdown (6). Several studies report microscopic 

changes in the hippocampi that may be detectable prior to volumetric changes (43, 44). As 

dMRI changes may be detectable prior to, and predict gross volume loss (45, 46), it is 

important to maximize the power to detect such changes.

In this study, we found that compared to both GFAODF and FADTI, FATDF showed increased 

power to detect subtle or diffuse disease effects, especially in hippocampal and temporal 

lobe regions. AD pathology targets GM regions especially in the temporal lobe and 

hippocampus. In these regions, FADTI might be sub-optimal, as it is best suited to detect 

differences in cohesive WM fiber bundles such as the corpus callosum. We also found more 

significant FATDF associations in voxels at GM or CSF boundaries that may otherwise be 

susceptible to partial volume effects with FADTI. Compared to FADTI, larger FATDF effect 

sizes were preserved even when the dMRI angular resolution was subsampled from 41 

gradient directions to 30, 15, or even 7 gradient directions. Perhaps surprisingly, FATDF 

calculated from 7 gradient directions had larger effect sizes than FADTI calculated at the full 
angular resolution. While some higher order models require extremely dense or multi-shell 

acquisitions, TDF may better extract the information typically available in clinical settings, 

where time constraints limit scan times. It may also be helpful for studies of valuable but 

lower-resolution legacy data. The TDF as proposed by (13) makes no assumptions about the 

number of compartments per voxel and, unlike the tensor distribution function previously 

proposed by (47), does not impose the same exact anisotropy profile on all fiber 

compartments. This may lead to better estimates if there are higher levels of uncertainty in 

the data, such as may arise with low resolution data.

Furthermore, FATDF may also help to interpret apparent increases in FADTI found in disease. 

In many contexts, lower FA is hypothesized to reflect impairment. However, relative 

increases in FA have been reported in FADTI studies of AD, which may reflect a selective 

sparing or selective degeneration of one of the pathways in a region with crossing fibers 

(48). However, without histologic data, we cannot be certain whether selective degeneration 

or increased “integrity”, or some mix of both, is driving higher FADTI values in a 

neuroimaging study. FATDF, on the other hand, takes into account crossing fiber 

compartments. A relatively higher FA may more consistently reflect healthier tissue, while 

lower FA more consistently reflects deficits, making the direction of associations easier to 

interpret. Across analyses, we found that FATDF showed fewer ‘contrary to hypothesis’ 

regions (i.e., higher FA associated with greater deficits). Across all statistical tests and 

angular resolutions, compared to FATDF, FADTI showed both a higher absolute number of 

these types of significant voxels, and a higher percentage relative to the total number of 

significant voxels (~5–15% of voxels versus <0.5% with FATDF), suggesting that FATDF 

may in fact be resolving crossing fibers.
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Analyses of test-retest reliability and model fit show that the TDF is quite reliable and robust 

in regions that show disease effects in this analysis. Some instability in test-retest reliability 

is to be expected when using the ADNI dataset – the scans are 3 months apart, and the 

healthy control participants are elderly (mean age: 72.8 +/− 6.5 yrs). These individuals may 

show some biological aging and white matter deterioration, even over the 3-month interscan 

interval. All registrations were visually evaluated, but age-related changes and minor 

geometric miscalibration of the scanner may also contribute to minor discrepancies in 

alignment between 2 scans from the same subject, contributing to both the final ICC and 

rRMSE measure in both the DTI and TDF models.

A prior study also showed that FATDF was a more stable metric with decreasing spatial 

resolution, where FADTI values decreased more rapidly due to more fiber incoherence and 

greater partial voluming in larger voxels (49). However, further analyses of FATDF 

limitations on a wider range of diffusion protocols and comparisons of performance to 

numerous other proposed scalar metrics are necessary. In addition to FA, there is also a 

growing interest in assessing complementary diffusivity metrics, including mean diffusivity 

(MD), axial diffusivity (AxD), and radial diffusivity (RD). As, FA is an inherently 

normalized measure and diffusivity metrics are not, future work is necessary to define 

analogous measures within the TDF framework.

Multi-shell and other DSI or q-space techniques may ultimately outperform tensor model 

metrics, but they are often less feasible given the time constraints on dMRI protocols in 

clinical settings, as well as for recovering information from valuable legacy data. The TDF 

model may ultimately allow us to take advantage of such available clinical quality diffusion 

data with more sensitivity and fewer limitations than the classic DTI model.
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Appendix A

The probability distribution we fit to the tensors, P(D(θ, λ)), is defined as a nonparametric 

distribution, we sample the tensor space to solve the optimization problem. As in (13), we 

set λ2=λ3 and λ1≥λ2, thus reducing the search of tensors to 2 eigenvalues and a principal 

eigenvector direction. The cost function could be rewritten (up to a constant multipier S0) as:
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(eq1)

where  – is the vector of probabilities: , where M is the number 

of elements in sampling;  – is the vector of observed intensities of the DW measures, 

where N is the number of DW scans;  – is the matrix of elements, 

. Clearly, we search for a vector x that minimizes the cost function with 

two constraints:

Which lends itself to a classic quadratic programming (QP) problem (50). By definition, the 

matrix  is positive semi-definite, which means that the problem is convex. 

However, by construction, the rank of the matrix H cannot exceed N (the number of 

observations). So if the tensor space sampling has more than N points, then the problem has 

multiple optimal solutions. The original gradient descent approach in (13) used the 

substitution  to meet the constraint . It also used a feasible-

direction gradient descent method, projecting the steepest descent direction onto the 

constraint . Even so, as long as P is sought as a non-parametric distribution 

based on a sampling at pre-defined grid points, multiple optimal solutions still remain a 

problem. Instead, we use the primal-dual predictor-corrector interior-point method (51) to 

solve the optimization problem. The method that we use is one of the interior-point methods 

family, which converges to a unique solution from the feasible interior region to the 

optimum, following the central path (52). Generally, interior-point methods solve the 

problem:

given (in our case) , , and the constraint  and  as 

defined above. Starting with large , this functional is being decreased on every step, 

enforcing the solution to be close to the line , which is a minimizer for the 
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 term. A QP solver implemented as compiled C++ code (http://

sigpromu.org/quadprog/) was used for solving the minimization problem.

Numerical implementation details

The following sampling scheme was chosen for the tensor space: λ1 =[0.2 0.4 … 2.0], λ2 = 

[0.2 0.4 … λ1], resulting in 55 sampling points for the lambda combinations. Principal 

eigenvectors were sampled at 2 resolution levels, as centers of faces of half an icosahedron 

(to represent the hemisphere), resulting in 10 directions at the low-resolution level and 40 

directions at the higher-resolution level (by subdividing each icosahedral face into 4 new 

ones). A freely available set of functions (https://www.mathworks.com/matlabcentral/

fileexchange/37004-suite-of-functions-to-perform-uniform-sampling-of-a-sphere) was used 

to build and subdivide an icosahedron.

The algorithm may be summarized as follows:

1. Pre-compute matrices F, H.

2. For each voxel:

a. Compute the vector  (given s – vector of DW observations in 

voxel)

b. Solve the QP problem (eq1)

c. Compute the TOD as: 

d. For directions where the value of the TOD exceeds the threshold (as 

implemented in Leow et al., but set here to 1/10 = 0.1), upsample – 

replace each low-resolution direction with 4 corresponding higher-

resolution directions to fine tune the tensor orientation probabilities.

e. Solve QP again only for the higher-resolution directions.

f. Compute higher-resolution output metrics (TDF-FA), as well as root 

mean squared error measure (RMSE).
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Figure 1. 
Diffusion fractional anisotropy (FA) maps, (a) FATDF and (b) FADTI, are shown for a single 

subject calculated from 41, 30, 15 and 7 gradient direction sets. The FATDF maps show more 

sharply defined white matter (WM) boundaries, with much less signal drop-out in regions 

near the cortex that tend to have less coherent WM, compared to FADTI maps. (c) T-maps in 

regions where FADTI and FATDF maps are significantly different reveal lower FADTI values 

(negative association) throughout the tissue regardless of angular resolution (FDR critical P-

value for 41 gradients = 0.047, 30 gradients = 0.047, 15 gradients = 0.047, and 7 gradients = 

0.046).
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Figure 2. 
(a) Beta-maps show regions where lower FADTI, FATDF, and GFAODF is significantly 

associated with AD diagnosis, higher CDR-sob cognitive deficits, and lower average 

bilateral hippocampal volume. Across tests, FATDF maps (left, middle row,) consistently 

show larger effect sizes in temporal lobe and hippocampal regions. This is denoted by 

greater β-value magnitudes and more pervasive significant associations. The patterns are 

also more in line with the expected topography of the disease effects. (b) Cumulative 

distribution function (CDF) plots show effect sizes for FADTI, FATDF, and GFAODF 

statistical associations. FATDF maps (green curves) are consistently the most sensitive metric 

(denoted by the higher critical P-values controlling the FDR, i.e., the highest non-zero x-

coordinate where the CDF crosses the y=20x line). (c) The absolute number and percentage 

of total significant voxels surviving FDR correction, showing an association direction 

opposite to that traditionally accepted as showing impairment–dark blue voxels highlighted 

by boxes in (a). FADTI and GFAODF associations show ~8–15%, while FATDF tests show 

<0.5% suggesting that FATDF may be handling computations better in areas with crossing 

fibers.
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Figure 3. 
Cumulative distribution function (CDF) plots of statistical associations between (a) AD 

diagnosis, (b) average bilateral hippocampal volume, and (c) CDR-sob and FADTI or FATDF 

maps computed from 41, 30, 15 and 7 gradient direction sets. FATDF maps (green curves) 

are consistently the most sensitive metric (denoted by the higher critical P-values controlling 

the FDR, i.e., the highest non-zero x-coordinate where the CDF crosses the y=20x line) 

across all gradient subsets. Curves correspond to values listed in Table 1.
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Figure 4. 
The left two columns show the root mean squared error (RMSE) maps from the (a) DTI and 

(b) TDF model fit, averaged across 53 healthy control subjects. The right two columns show 

the relative RMSE (rRMSE) maps from the (c) DTI and (d) DTI model fit, trained on 

baseline scans and tested on 3-month follow-up scans in each of 33 control subjects 

individually, and averaged across the group.
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Figure 5. Statistical differences in reliability between TDF and DTI models
(a) T-maps in regions where the root mean squared error (RMSE) maps of the TDF and DTI 

model fit in 53 healthy controls are significantly different reveal higher error for DTI 

(positive association) throughout the tissue (red) regardless of angular resolution (FDR 

critical P-value for 41 gradients = 0.041, 30 gradients = 0.041, 15 gradients = 0.042, and 7 

gradients = 0.043). (b) T-maps in regions where the relative RMSE (rRMSE) maps of the 

TDF and DTI model fit, trained on 33 healthy controls baseline scans and tested on 3-month 

follow-up scans, are significantly different reveal higher error for DTI (positive association) 

in the tissue (red), particularly in regions of known crossing fibers (FDR critical P-value for 

41 gradients = 0.024, 30 gradients = 0.021, 15 gradients = 0.017, and 7 gradients = 0.001); 
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the TDF model shows higher error only in CSF. (c) Intra-class correlation (ICC) maps in 

regions with a significant ICC between baseline and 3-month follow-up FATDF maps (FDR 

critical P-value for 41 gradients = 0.049, 30 gradients =0.049, 15 gradients = 0.049, and 7 

gradients = 0.049) and (d) FADTI maps (FDR critical P-value for 41 gradients = 0.050, 30 

gradients = 0.050, 15 gradients = 0.049, and 7 gradients = 0.047). The mean ICC and 

standard deviation (SD) of the ICC across all voxels are reported below each mapped 

coronal slice.
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Table 2

Mean and standard deviation (SD) Cohen’s d effect sizes across 10 folds, for picking up FADTI and FATDF 

group differences between AD patients and healthy CN, across angular resolutions.

Gradients FADTI

Mean (SD)
FATDF

Mean (SD)

41 1.64 (0.11) 1.90 (0.06)

30 1.63 (0.14) 1.88 (0.06)

15 1.64 (0.15) 1.87 (0.07)

7 1.77 (0.39) 1.95 (0.08)
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