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Abstract

Genome-wide association studies (GWASs) commonly use marginal association tests for each 

single nucleotide polymorphism (SNP). Because these tests treat SNPs as independent, their power 

will be suboptimal for detecting SNPs hidden by linkage disequilibrium (LD). One way to 

improve power is to use a multiple regression model. However, the large number of SNPs preclude 

simultaneous fitting with multiple regression, and subset regression is infeasible because of an 

exorbitant number of candidate subsets. We therefore propose a new method for detecting hidden 

SNPs having significant yet weak marginal association in a multiple regression model. Our 

method begins by constructing a bi-directed graph locally around each SNP that demonstrates a 

moderately sized marginal association signal, the focal SNPs. Vertexes correspond to SNPs, and 

adjacency between vertexes is defined by an LD measure. Subsequently, the method collects from 

each graph all shortest paths to the focal SNP. Finally, for each shortest path the method fits a 

multiple regression model to all of the SNPs lying in the path and tests the significance of the 

regression coefficient corresponding to the terminal SNP in the path. Simulation studies show that 

the proposed method can detect susceptibility SNPs hidden by LD that go undetected with 

marginal-association testing or with existing multivariate methods, including lasso. When applied 

to real GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our method 

detected two groups of SNPs: one in a region containing the apolipoprotein E (APOE) gene, and 

another in a region close to the semaphorin 5A (SEMA5A) gene.
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1 Introduction

In genome-wide association studies (GWASs), researchers routinely use univariate 

regression to analyze each single nucleotide polymorphism (SNP). Although GWASs have 

led to the discovery of many new SNPs that are involved in disease development and/or 

progression of clinical characteristics, the genetic architecture of many human traits remains 

largely unknown (Manolio 2013). This is referred to as a missing heritability problem 

(Manolio et al. 2009, Maher 2008), for which several explanations have been proposed. 

These include gene-environment interaction; gene-gene interaction; and the contributions of 

rarer variants, structural variants, and many variants with small effects. Researchers are 

attempting to develop statistical methods to test such challenging scientific hypotheses. 

Linkage disequilibrium (LD) may also contribute to missing heritability (Ehret et al. 2012). 

The univariate regression approach—or marginal association testing—works for SNP panels 

designed to capture causal variants under the assumption of a single causal variant or 

unlinked multiple causal variants (de Bakker et al. 2005, Eberle et al. 2007, Spencer et al. 

2009). If this assumption is violated, marginal association testing, which treats SNPs as 

independent and does not fully take LD into account, may fail to achieve adequate statistical 

power. For example, if multiple causal SNPs in a region are in LD, the marginal association 

signal can be weakened due to cancellation of effects (Eberle et al. 2007). (See 

“Supplementary Information Section 4” for an illustration under a bivariate model.) We refer 

to this as the hidden signal problem. It differs from the case of an untyped causal variant, 

where the true causal variant is not included in the panel of SNPs tested. The hidden signal 

problem can occur even if all causal variants are included in the data. Therefore, an 

association signal hidden by LD may be undetectable, even with genotype imputation, when 

a marginal association test is employed.

Simultaneous analysis using multiple regression may be effective if the number of candidate 

SNPs is small. However, because GWAS data contain a large number of SNPs, fitting them 

simultaneously with a multiple regression model is impossible. A two-marker test based on 

bivariate regression is applicable to the above problem: Kim et al. (2010), Slavin et al. 

(2011), and Wang et al. (2012) proposed using two adjacent SNPs, and Howey and Cordell 

(2014) recently proposed a different two-marker test, an artificial imputation (AI) test. All of 

these two-marker tests are motivated by the goal of improving statistical power under a 

scenario in which a single causal variant exists and coverage by the marker (tag) SNPs is 

poor. Another applicable method is the multiple marker test based on a sliding window 

approach, as implemented in the UNPHASED method (Dudbridge 2008, Dudbridge et al. 

2011); this approach tests the effect of a haplotype comprising multiple SNPs. The sliding 

window approach tests the combined, group effect of a set of nearby SNPs. However, it is 

not necessary that nearby SNPs possess similar effects. Taking a wider window may avoid 

missing causal SNPs, but it concomitantly increases the number of tested SNPs, thereby 

expending degrees of freedom—in particular, when most of the SNPs in a group are neutral

— so that statistical power is greatly decreased.

In this paper, we describe a new method that can detect SNPs hidden by LD. To account for 

LD, we fit a multiple regression model for each SNP one-at-a-time (which we call the focal 
SNP) by incorporating other, adjacent SNPs that are in LD with the focal SNP. We develop a 
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SNP selection method based on a bi-directed graph (Cox and Wermuth 1996, Kauermann 

1996, Drton and Perlman 2007) to narrow the field of candidate SNPs to be incorporated 

into the model. Adjacency is defined by using a measure of LD. Then, in the bi-directed 

graph, all shortest paths to the focal SNP are identified and saved. Finally, the multiple 

regression model is fitted to all of the SNPs lying in each shortest path, and significance of 

the regression coefficient corresponding to the terminal SNP (the SNP farthest from the 

focal SNP) in each path is tested. The rationale for seeking the shortest paths is that the 

regression coefficient of the terminal SNP has nonzero effect in a noiseless setting (see 

Proposition 2). Our method aims to detect SNPs that have weak marginal association but 

show strong association in a multiple regression model after adjustment is made for 

confounding due to multiple nearby SNPs. We develop a conservative multiple testing 

procedure to control the family-wise error rate in testing the regression coefficients of the 

terminal SNPs in each graph. Simulation studies and application to real GWAS data from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) demonstrate that the proposed method 

can detect disease susceptibility SNPs hidden by LD that go undetected with the marginal 

association test or with existing multivariate methods.

2 Material and Methods

2.1 The proposed bi-directed graph approach

Suppose that we have observations consisting of n subjects with p SNPs X = (X1, … , Xp), 

where Xj = (X1j, … , Xnj)T with Xij ∈ {0, 1, 2} (i.e. the minor allele count) for i = 1, … , n 
and j = 1, … , p, together with quantitative phenotype data y = (y1, … , yn)T. Let M = {1,… , 

p}. For a subset A ⊂ M, we denote by XA the sub-column matrix of X in which the indexes 

run through the subset A. Similar notation is used for vectors throughout. In standard SNP-

GWAS analysis, the effect of each SNP is investigated by testing the null hypothesis that the 

regression coefficient βj of jth SNP is zero in a marginal model,

where β0 is the intercept, 1 denotes an n-vector with all components being unity, and ∊ ∼ 
N(0, σ2I). When the marginal effect is weak, the standard marginal testing approach is 

expected to be underpowered. The existence of multiple causal SNPs that are in LD may 

weaken the marginal association signal (See “Supplementary Information Section 4”). In 

this situation, controlling for the correlation structure due to LD should improve the 

detection power. Therefore, we consider testing for the effect of the jth SNP conditional on a 

set of other SNPs, A ⊂ M \ {j}. Specifically, we test the null hypothesis that βj, the 

regression coefficient of jth SNP, is zero in a multiple linear regression model,

where βA is the vector of regression coefficients corresponding to XA and ∊ ∼ N(0, σ2I). Let 

β̂j,A be the regression coefficient estimated by least squares in the above multiple regression 

model. If A = ∅, the above test reduces to the standard marginal association test. To detect 
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SNPs whose effect is hidden by LD, testing for the effect of βĵ,A with a non-empty set A ⊂ 
M \ {j} may produce higher power than the marginal association test. However, there exist 

numerous choices for A, so with GWAS data, where p is large, it is difficult to compute β̂j,A 

for all possible subsets A ⊂ M. Even if all combinations of A are computable, we face a 

multiple testing burden in evaluating β̂j,A, i.e. testing the null hypothesis

It is unclear how to carry out a multiple testing correction. There are  possibilities 

of βĵ,A for A with |A| = m for a given m < n. For example, consider p = 500, 000 SNPs. 

Then, for m = 2, 3, and 4 (i.e. two, three, and four conditioning SNPs), we have roughly 1.2 

× 1011, 2 × 1016, and 3 × 1021 possibilities, respectively. If all tests are independent, then the 

Bonferroni correction is appropriate. However, the independence assumption is violated by 

the correlation among tests due to LD as well as the repeated tests of the jth SNP simply by 

altering the set of conditioning SNPs. Therefore, the naive Bonferroni approach should lead 

to unrealistically stringent multiple testing correction.

To deal with this challenging problem, we utilize a bi-directed graph (Drton and Perlman 

2007) for SNPs with adjacency defined by the pairwise correlation between SNPs. For a 

given matrix X, let QX = I − PX, where PX is the projection onto the column space of X. 

Then, for an n-dimensional vector x, QXx is the residual from regression of x onto X. 

Hereafter, we assume that n-dimensional vectors are standardized: specifically, assume that 

x satisfies both xT1 = 0 and ║x║2 = 1. For two standardized n-dimensional vectors x1 and 

x2, the inner-product  equals the sample correlation. Centering of an n-

vector Xj is obtained by xj = Q1Xj = Xj − P1Xj, then  holds. In some circumstances, 

we have covariates Z, such as age, gender, and known genetic variants, whose effects on y 
need to be removed according to prior scientific knowledge. In such cases, we consider xj = 

Q(1,Z)Xj.

We denote the bi-directed graph by G = (V, E) having a vertex set V = {0} ∪ M and an edge 

set E ⊂ V × V. Hence |V| = 1 + p. Let the vertex 0 be the phenotype, i.e. x0 = μ = E(y|X). 

The remaining vertexes belonging to M correspond to the p SNPs. Two arbitrary vertexes j 
and k in V are adjacent if and only if (j, k) ∈ E; Otherwise, they are not adjacent. Here, we 

say that two vertexes j and k (j ≠ k) in V are adjacent if

(1)

Adjacent vertexes are said to be spouses, and they are joined by a bi-directed edge j ↔ k. 

Therefore, absence of an edge between vertexes j and k corresponds to , whereas the 

presence of an edge corresponds to . A path from vertex j to vertex k is a sequence 
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of adjacent edges connecting j and k for which the corresponding sequence of vertexes 

contains no repetitions. We refer to the first and the last vertexes as the terminals of the path, 

and all other vertexes as intermediate vertexes. For two standardized SNP vectors, xj and xk, 

coded as 0, 1, 2,  coincides with the Wellek–Ziegler correlation coefficient, which 

measures the magnitude of LD — just as with the Pearson correlation coefficient for haploid 

data — even if the SNPs are unphased. In fact, the population version of the Wellek–Ziegler 

correlation coefficient coincides with the population Pearson correlation coefficient for 

haploid data under Hardy–Weinberg equilibrium (Wellek and Ziegler 2009). With real 

GWAS data, a value of adjacency  exactly equal to zero is not practical in finite 

samples. In practice, we introduce a non-zero cutoff value for judging an adjacency of zero 

in our bi-directed graph.

Our proposed approach is based on the shortest paths to μ in a bi-directed graph constructed 

locally for each SNP that shows (weak) association with y with a moderate p-value cutoff α1 

— we call these SNPs of interest focal SNPs. Using the shortest paths, we can narrow the 

candidates for A, thereby rendering computation feasible and reducing the multiple testing 

burden. The motivation behind our proposal is given in the “Appendix”. Centered around 

each focal SNP, say SNP X1, which has p1 nearby SNPs, we compute  Wellek–

Ziegler correlation coefficients. Subsequently, we collect all of the shortest paths starting 

from x1 in the bi-directed graph. (We regard the focal SNPs with moderate marginal signals 

as being adjacent to μ.) An illustration of constructing the bi-directed graph is given in 

Figure 1. If one of the shortest paths is μ ↔ X1 ↔ X2 ↔ ⋯ ↔ Xl ↔ Xl+1, we test the 

null hypothesis βl+1 = 0 for the terminal SNP, with the test based on the multiple regression 

model,

(2)

If X1 and μ are truly adjacent, then the path is the shortest between μ and SNP Xl+1. Then, 

Proposition 2 in the “Appendix” ensures that E(β̂l+1,{1,…,l}|X) ≠ 0 where βl̂+1,{1,…,l} is the 

least-squares estimator in (2). However, the adjacency between X1 and μ is arbitrarily 

determined by some moderate p-value cutoff. Furthermore, the above statement only 

mentions nonzero effects but takes no account of stochastic noise. We overcome these issues 

by testing hypotheses for the β̂l+1,{1,…,l}. We employ a conservative testing approach for the 

terminal SNP in each shortest path as described in Section 2.2. For binary phenotypes, we 

use the multiple logistic regression model with the Wald test.

2.2 Algorithm description

Here, we describe the proposed algorithm in detail.

1. Initialization Set a p-value cutoff α1 for screening, and a desired family-wise 

error rate α (e.g. 5%).
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2. Marginal association test Conduct marginal association tests for all SNPs k ∈ 
M = {1, … , p} under the marginal model β0 + Xkβk, which yields p-values Pk, k 
∈ M. Let H = {k ∈ M : Pk < α1} be the set of SNPs of interest, the focal SNPs.

3. Test in bi-directed graph For each k ∈ H, set SNP k as the focal SNP. Denote 

its nearby SNPs by N(k) ⊂ M including the focal SNP (SNP k) itself, where 

nearby SNPs are determined by a 100 kb window (see Section 5) both upstream 

and downstream of the kth SNP. Build a bi-directed graph where adjacency 

between two vertexes l,m ∈ N(k) is declared if . Here amin and 

amax (amin < amax) are pre-specified cutoff values, and ρlm is the Wellek–Ziegler 

correlation coefficient (Pearson correlation coefficient for SNP genotypes coded 

0,1,2) between the lth and mth SNPs. Denote the resulting bi-directed graph by 

Gk.

3.1. Collection of shortest paths to centered SNP k Collect all shortest paths from the 

focal SNP k to each vertex in Gk and denote the set of all shortest paths by A(k).

3.1.1. Fit multiple regression model for each shortest path For each shortest path e 
∈ A(k), fit the multiple regression model,

where t(e) represents the other terminal vertex of the path e (other than k), and e− 

denotes the index set where the terminal vertex t(e) is removed from the index set e. 

Obtain the p-value, Pt(e)|{k,e−}, for testing the null hypothesis, βt(e) = 0.

3.1.2. Conservative multiple test correction Declare SNP t(e) as significant if 

Pt(e)|{k,e−} < α/(α1p|A(k)|) where |A(k)| is the number of elements of A(k).

In Step 3.1.2, the factor α1p|A(k)| can be interpreted as the number of tests accounting for 

marginal association screening in Step 2. Under the null hypothesis of no effect of all SNPs, 

the family-wise error rate in detecting any SNPs as declared significant in 3.1.2 is never 

greater than the nominal level α : a proof is given in “Supplementary Information Section 

3”. We propose to declare adjacency between two SNPs l and m with correlation ρlm if 

 holds. The cutoff amin eliminates uncorrelated pairs, and amax avoids 

multicollinearity in the multiple regression fit (as described in the “Appendix”. If there are 

covariates, we slightly modify the proposed algorithm by adding the covariates to all 

regression models as with usual covariate adjustment. We investigate appropriate values of 

amin and α1 in simulation studies where we set amax = 0.8 throughout. We implemented the 

proposed method in R (R Core Team 2015) with input of the result from PLINK's marginal 

association testing, such as by using the -- assoc option, where the shortest paths in the bi-

directed graph were collected by using the get.all.shortest.paths function 

implemented in the R package igraph (Csardi and Nepusz 2006).
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3 Simulation studies

To examine the performance of the proposed method, we conducted studies with simulated 

data that mimic real SNP-GWAS data. We investigated type I error and statistical power. 

Data were simulated by sampling individuals from the general population. We used 

HAPGEN v2.2.0 (Su et al. 2011) with input consisting of haplotype data comprising 73,832 

SNPs from the HapMap3 east Asian population (JPT+CHB). We compared our proposed 

method with three other methods: the marginal association test in PLINK with the -- assoc 

option, SnipSnip, and UNPHASED with option - window 5 - zero 0.2.

3.1 Type I error

For type I error simulations, we generated by HAPGEN 1,000 datasets of the 73,832 SNPs 

for 1,000 subjects. We considered both quantitative and binary traits. For quantitative traits, 

we generated the phenotype independently and identically from a standard normal 

distribution. For binary traits, we randomly assigned the value of 0 (control) to one-half 

(500) of the subjects and assigned the value 1 (case) to the other half. We then applied the 

proposed method with various parameters. We also ran the marginal association test and the 

SnipSnip procedure for comparison (we did not include UNPHASED in type I error 

simulations because its computational cost running on 73,832 SNPs is prohibitive). We 

considered four nominal levels of the family-wise error rate: α = 30, 20, 10, and 5%. 

Because we assumed that no SNPs were causal, type I error was defined by whether ‘any’ 

SNPs were detected (declared significant) in each replicate. For marginal association testing 

and SnipSnip, we used Bonferroni correction with 73,832 SNPs. For the proposed method, 

we considered all 16 combinations of (amin, α1) ∈ {0.1,0.3,0.5,0.7} × 

{0.01,0.001,0.0001,0.00001}. The results are given in Figures 2 and 3. All methods 

maintained type I error rate at or below the nominal level. Regardless of the values of amin 

and α1, the proposed method was conservative, as expected. Mean and maximum shortest 

path length, as well as number of shortest paths, are given in “Supplementary Information 

Section 5”. These summary measures tended to decrease as α1 decreased or amin increased, 

and amin = 0.3 tended to produce longer path lengths than amin = 0.1.

3.2 Power

For power simulations, we extracted a region on chromosome 10 ranging from 2,001,233 to 

3,499,300 (in NCBI Build 36 base pair position) consisting of 1,273 SNPs. Phenotype data 

for each sampled subject with these 1,273 SNPs was generated according to a regression 

model assuming the causal SNPs were the five SNPs listed in Table 1, which also shows the 

correlation structure. We considered six scenarios with different true regression coefficients 

based on the values of the  given in Table 1. We multiplied  by a constant m > 0 to 

define the jth true regression coefficient. Nominal family-wise error rate α was fixed at 0.05 

and total number of SNPs was assumed to be 1,000,000 in all simulations.

Quantitative traits—We generated by HAPGEN 1,000 simulated datasets of the 1,273 

SNPs for n = 1000 subjects, and then we generated phenotype data yi for subject i according 

to the linear regression model with the five causal SNPs given in Table 1:
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where Xi,j denotes the minor allele count (0, 1, or 2) at the jth causal SNP (j = 1, … , 5), β0,j 

represents the jth regression coefficient, and ∊i is an independently and identically 

distributed standard normal error for the ith subject. Using each of the six sets of regression 

coefficients  in Table 1, we set  for a given constant m > 0. Two scenarios, m = 1 

and m = 1.5, were considered. Consequently, we carried out twelve power simulations. The 

proposed method was examined at 16 combinations of the parameters (amin, α1) ∈ {0.1, 0.3, 

0.5, 0.7} × {0.01, 0.001, 0.0001, 0.00001}. The power of overall detection for the region, 

with m = 1 and m = 1.5, is given in Figures 4 and 5, respectively. We report the proportion of 

runs where any SNP within a 110 kb window upstream of the first causal SNP and 

downstream of the last causal SNP was significant. Scenario 1 assumes a single causal SNP, 

implying that the marginal association test works well. The marginal association test gave 

the highest power among the methods (see also “Supplementary Information Section 4”). 

Further insights are obtained by looking at the other simulations. Scenarios 2–6 were 

designed so that the marginal association test is underpowered due to the presence of more 

than one causal SNP. Overall, irrespective of the choice of parameters amin and α1, the 

proposed test gave higher power than the three other methods. Using amin = 0.7 or α1 ≤ 
0.0001 gave lower power. The optimal choice of (amin, α1) depended on the underlying 

genetic architecture, as no single pair of (amin, α1) gave the best performance among the 

candidate parameters across scenarios 2–6. Mean and maximum shortest path length and 

number of shortest paths in the bi-directed graphs are given in “Supplementary Information 

Section 5”. These summary measures varied across scenarios, but tended to decrease as α1 

decreased. In general, amin = 0.3 tended to give longer shortest-path length and greater 

numbers of shortest paths. Shortest-path length and number of shortest paths may influence 

statistical power through multiplicity of tests. However, no obvious relation between these 

summary measures and power was observed.

Binary traits—For simulations with binary traits, we considered case-control data. We 

generated case-control samples with 1,000 cases and 1,000 controls. Samples were collected 

by repeatedly sampling from the general population, as described below in detail. A binary 

phenotype yi ∈ {0,1} for each individual from the general population was generated 

according to the logistic regression model

where Xi,j denotes the minor allele count (0, 1, or 2) at the jth causal SNP (j = 1, … , 5); β0,j 

represents the jth regression coefficient; and β0 is the intercept, which was determined to 

produce a prevalence of roughly 1%. Using each of the six regression coefficients  in 
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Table 1, we set  for a given constant m > 0. We considered two scenarios, m 
= 1 and m = 1.5. We then carried out twelve power simulations. For each replicate, we 

generated 1,000 subjects with genotype data at these 1,273 SNPs. Subsequently, a binary 

phenotype was assigned to each subject according to the above logistic regression model. 

The sampling of 1,000 subjects was repeated until 1,000 cases and 1,000 controls were 

collected. We simulated 1,000 such datasets. The proposed method was examined at 16 

combinations of the parameters (amin, α1) ∈ {0.1,0.3,0.5,0.7} × {0.01, 0.001, 0.0001, 

0.00001}. The power of overall detection in the region for m = 1 and m = 1.5 is given in 

Figures 6 and 7, respectively. The results were roughly consistent with the quantitative 

power simulations, and the optimal choice of (amin, α1) depended on the underlying genetic 

architecture.

4 Application to ADNI-GWAS data

We applied our proposed method to the ADNI-GWAS dataset obtained from the publicly 

available data of the Alzheimer's Disease Neuroimage Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessments can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's 

disease (AD). For up-to-date information, see www.adni-info.org. ADNI is an ongoing, 

longitudinal study with primary purpose being to explore the genetic and neuroimaging 

information associated with late-onset Alzheimer's disease (LOAD). The study investigators 

recruited elderly subjects older than 65 years of age comprising about 400 subjects with 

mild cognitive impairment (MCI), about 200 subjects with Alzheimer's disease (AD), and 

about 200 healthy controls. Each subject was followed for at least 3 years. During the study 

period, the subjects were assessed with magnetic resonance imaging (MRI) measures and 

psychiatric evaluation to determine the diagnosis status at each time point.

The ADNI-GWAS data were obtained from 818 DNA samples of ADNI1 participants using 

the Illumina Human 610-Quad genotyping array (Shen et al. 2014). The data initially 

included 620,901 SNPs. We included the apolipoprotein E (APOE) SNPs rs429358 and 

rs7412 in our analysis. We used data from 684 non-Hispanic Caucasian samples after we 

excluded one pair showing cryptic relatedness (revealed by the PLINK pairwise π̂ statistic 

being greater than 0.125) (Purcell et al. 2007), and we excluded subjects whose reported sex 

did not match the sex inferred from X-chromosome SNPs. We then applied further quality 

control measures by excluding SNPs with missing genotype rate > 0.1, Hardy–Weinberg 

equilibrium test P < 10−6, and MAF < 5%; the total number of remaining SNPs was 

528,984. There were 166 controls and numbers of cases with early MCI (EMCI), late MCI 

(LMCI), or AD were 67, 110, and 341, respectively. We classified the MCI cases into two 

sub-categories, EMCI and LMCI, following the procedure in the report ‘Multistate modeling 

of ADNI progression’ that is included with the ADNIMERGE R package provided by 

ADNI. We then scored the controls and cases of EMCI, LMCI, and AD as 0, 2, 3, and 4, 

respectively, which was treated as a quantitative trait in our analysis (we assigned score 1 to 
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cases with significant memory concern [SMC], but the ADNI1 cohort did not contain any 

subjects with SMC — see http://adni.loni.usc.edu/study-design/background-rationale/ — 

and no subjects having score 1 were present in the ADNI-GWAS data). We also considered 

adjustment for the covariates sex and age in the proposed method. With covariate 

adjustment, p-values increased only slightly and the same SNPs were significant, so we only 

report results without covariate adjustment.

We applied our method with the same 16 combinations of (amin, α1) as in the simulation 

studies ({0.1, 0.3, 0.5, 0.7} × {0.01, 0.001, 0.0001, 0.00001}). The nominal family-wise 

error rate was set as α = 0.05, in which the number of SNPs, 528,984, was used as the 

multiple testing correction factor. In Tables 2–5, we show the significant shortest paths and 

the SNPs contained in them. We so not show shortest paths containing SNPs with genome-

wide significance (i.e., those with marginal association p-value less than 0.05/528,984), so 

that only SNPs undetected by marginal association scans are shown (a full list of results is 

given in “Supplementary Information Section 5”). Without paths containing genome-wide 

significant SNPs, four combinations of (amin, α1) remained: (0.1, 0.01), (0.1, 0.001), (0.1, 

0.0001), and (0.3, 0.001). All SNPs detected with (0.1, 0.0001) were also contained among 

the significant results with (0.1, 0.01) and (0.1, 0.001), which implies that α1 = 0.0001 is too 

stringent a threshold, as was observed in our simulation studies. The ADNI-GWAS 

application also implies that amin = 0.7 is unlikely to provide high power, again as observed 

in our simulation studies.

As seen in Tables 2–5, SNPs with weak marginal signals showed enhanced association 

signals with multiple regression. The results varied with the choice of parameters (amin, α1), 

but SNPs on chromosome 19 were detected in most of the scenarios. The noteworthy regions 

contain APOE4 SNPs, which are also genome-wide significant even with the marginal 

association test, SnipSnip, and UNPHASED, as seen in Table 6. We also applied lasso 

(Tibshirani 1996) by using the PUMA software (Hoffman et al. 2013) with the default 

setting and optimal model chosen according to AIC (Akaike information criterion). The 

SNPs detected with lasso are shown in “Supplementary Information Section 5” along with 

p-values from PUMA (PUMA p-values are a ranking measure, not the usual measure of 

statistical significance). Six unique SNPs on chromosome 5 given in Tables 3 and 5 are more 

interesting as they were not detected by the marginal association test, SnipSnip, 

UNPHASED, or lasso. The gene closest to these unique SNPs on chromosome 5 is 

semaphorin 5A (SEMA5A). The Ensembl Variant Effect Predictor (McLaren et al. 2010) 

predicted that these SNPs are intergenic and function as modifiers. The SEMA5A gene was 

previously reported to be a susceptibility locus for Parkinson's disease (Maraganore et al. 

2005, Lin et al. 2009) and for autism (Melin et al. 2006). SEMA5A is involved in axonal 

guidance during neural development.

5 Discussion

We present herein a new conservative multiple testing method for detecting genetic 

association signals hidden by LD. Our proposed bi-directed graph approach can be applied 

to high-dimensional genome-wide SNP data. Despite the conservativeness of our proposed 

method, simulation studies confirmed that the method has higher power than existing 
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methods. In an application to ADNI-GWAS data, our method detected new susceptibility 

SNPs on chromosome 5 that were originally undetected by existing methods, including 

lasso. The negative results with lasso are expected because lasso is a variant of stagewise 

regression (Efron et al. 2004); in view of lasso's iterative model update process (c.f. the 

coordinate descent algorithm (Friedman et al. 2010)), a SNP is entered into the model only if 

the absolute value of the correlation between that SNP and the residual of the current model 

is larger than some threshold as achieved by the soft-thresholding function. This in turn 

implies that a SNP weakly correlated with the current residual will never be included in the 

model. Hidden SNPs having large effects conditional on other SNPs will be included only if 

the current model contains those other SNPs. However, if the conditioning SNPs have only 

weak or moderately sized marginal signals, non-informative SNPs will be entered by chance 

into the model long before the conditioning SNPs are entered. Consequently, the non-

informative SNPs result in a model with unnecessarily high dimension, wasting degrees of 

freedom, and model building will terminate before the important, hidden SNP is included. In 

contrast, our method avoids including too many non-informative SNPs among the 

conditioning SNPs by restricting to the shortest paths in a ‘local’ bi-directed graph, making 

the hypothesis test more powerful.

Our theoretical consideration of the presence of multiple causal variants that are in LD is 

also new. So far, designing GWASs (in particular, selecting tag SNPs) has been based chiefly 

on statistical power analyses that assume causal variants exist separately in unlinked loci (de 

Bakker et al. 2005, Eberle et al. 2007, Spencer et al. 2009). Conclusions from existing 

studies based on the GWAS design may therefore not be generalizable to situations with 

multiple causal variants that are in LD. One consequence is that current SNP panels are 

suboptimal in this situation; hence, additional studies of statistical power are needed. 

However, power calculations turn out to be much more complicated than in situations with 

multiple causal variants that are not in LD: it remains unknown which of various genetic 

models and statistical methods is optimal.

Although our proposed method attempts to detect hidden SNPs that are difficult to detect 

with GWAS data (Eberle et al. 2007), detection should be distinguished from true 

association. Even though a particular combination of detected SNPs produces the highest 

power, it does not necessarily indicate that these are the causal SNPs. Subsequent, careful 

examination based on biological background and function is also necessary.

There are several possible directions for future work to improve our method. First, our 

proposed test is slightly conservative as shown in type I error simulations. This is because 

the method is based on Bonferroni-type control of multiplicity of shortest paths. There is 

inevitably overlap in the SNPs to be tested, resulting in redundancy. Development of a less 

conservative method of type I error control may further improve the statistical power. 

Second, our method has two tuning parameters (amin, α1); although the choice influences the 

result, we could not determine an optimal choice that could be used in all simulation 

scenarios. Because the optimal parameters seemed to depend on underlying genetic 

architecture, which is unknown, we recommend trying multiple sets of (amin, α1) in practice. 

Simulation studies suggested that the the two parameters be in the ranges amin ∈ [0.1, 0.5] 

and α1 ∈ [0.01, 0.001], which produced improved performance over existing methods. 
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Application to the ADNI-GWAS data also supported this choice of ranges. Based on our 

experience with applications to other real GWAS data (not shown), we found that amin = 0.3 

and α1 = 0.001 tended to allow detection of SNPs that had gone undetected with existing 

methods.

Our method builds a bi-directed graph locally within a fixed-size window centered (focused) 

around each SNP across the genome. This approach may fail in the presence of long-

distance LD, which is not ignorable in real human data (Pritchard and Przeworski 2001). 

However, use of a wider window size incurs both computational and multiple testing 

burdens as the number of shortest paths increases exponentially. As observed in simulation 

studies, the LD between two SNPs needs to be high for them to be adjacent in the bi-

directed graph. The cutoff amin approximately corresponds to that for r2. According to the 

relationship between average r2 and genetic distance in human data given in Figure 2 of 

(Pritchard and Przeworski 2001), the average of r2 is much lower than 0.1 for a 0.1 cM 

distance between SNPs. Thus, our choice of a 100 kb window could be reasonable on 

average in practice, although exceptions surely exist. We will continue applying our method 

to real human genetic data to explore the optimal choices of the parameters in future 

research. R code that implements our method for SNP-GWAS data in PLINK binary format 

is available from the authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank a referee, Prof. Shete, and Dr. Cologne for helpful comments that led to significant improvement 
of the paper. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense 
award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of 
Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, 
Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; 
Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; EliLilly and Company; 
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health 
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by 
the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease 
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern California. This work was carried out under the ISM General 
Cooperative Research 1 (2015-ISM-CRP-1013). This work was supported by JSPS KAKENHI Grant Numbers 
JP16K00064, JP16K08638, JP16H05242, JP15H01678.

Appendix: Motivation for the bi-directed graph approach

Here we describe the theoretical background behind our proposed method. First, we relate 

the bi-directed graph with the least-squares estimator β̂j,A in the model y = xjβj + Σk∈Axkβk 

+ ∊. Let XA = (xk : k ∈ A). To this end, we exploit the following representation (Rao and 

Yanai 1979, Ueki and Kawasaki 2013):
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Its expectation and variance are given by

and var (βĵ,A|X) = σ2║QXAxj║−2, respectively. Consequently, in order to evaluate whether 

E(βĵ,A|X) = 0 or not, it suffices to investigate the quantity

The following result, whose proof is given in “Supplementary Information Section 1”, helps 

us to screen SNPs to be entered into the conditioning set A for βĵ,A. It is essentially the 

equivalence between pairwise and global Markov properties in a bi-directed graph for a 

multivariate Gaussian distribution (Kauermann 1996, Drton and Perlman 2007).

Proposition 1. If there is no path between vertexes 0 (i.e. μ = E(y|X)) and j ∈ M = V \ {0} 

with intermediate vertexes being any subset from a vertex set {j1, … , jl} ⊂ M \ {j} = V \ {0, 
j} (allowing the empty set), then for any A ⊂ {j1, … , jl}, we have μT(QXAxj) = 0.

Proposition 1 implies that, for the discovery of SNP j such that E(β̂j,A|X) ≠ 0 for some A, we 

can ignore the SNPs having no paths to μ = E(y|X). Conversely, we can focus on SNPs 

having paths to SNPs that are adjacent to μ. The adjacency with μ corresponds to the 

presence of a marginal association signal as in a standard GWAS scan. In typical GWAS, 

however, SNPs often show weak marginal signals. Our target is the SNPs with low marginal 

association signals. To this end, we focus on SNPs that show a moderate marginal signal 

(e.g. marginal p-value less than a cutoff), and then build a bi-directed graph around each of 

those SNPs. In samples from the general population, LD between two SNPs far apart is 

expected to be low. We exploit this LD structure in application to GWASs. Namely, it 

suffices to consider SNPs for the conditioning set A that are close to the focal SNP to be 

tested for the effect; SNPs far away can be excluded from the candidates for A. As a 

consequence, we build a bi-directed graph locally, e.g. 100 kb (kilo base pair) window both 

upstream and downstream of each SNP.

We note that Proposition 1 does not guarantee its complementary statement — that is, that 

the existence of a path between μ (vertex 0) and SNP j with intermediate vertexes {j1, … , jl} 

implies the existence of some subset A ⊂ {j1, … , jl} such that E(β̂j,A|X) ≠ 0. In fact, the 

complement of Proposition 1 does not always hold. For instance, if there are two distinct 

vertexes j and k whose corresponding SNPs satisfy xj = xk = μ, then there is a path between 

vertexes 0 and j with an intermediate vertex k. We can easily obtain the result that μT(Qxkxj) 

= 0 as Qxkxj is the residual of xj from regression onto xk. More generally, if xj is represented 

by a linear combination of XA (i.e. there is a vector γA ∈ ℝ|A| such that xj = XAγA), then 
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μTQXAxj = 0. From the relationship with the regression coefficient of xj in multiple 

regression of μ on (xj, XA), this corresponds to perfect multicollinearity. Consequently, we 

still have the possibility that μTQXAxj = 0 using the SNPs on the paths to μ with terminal 

vertex j and intermediate vertexes A. In what follows, we explore a way of eliminating such 

redundant paths.

In the causal-inference literature, assumptions such as faithfulness are usually imposed to 

ensure that the complement of Proposition 1 is true. However, rather than assuming such 

conditions, we explore conditions under which the complementary result of Proposition 1 

holds. Define the length of the path between vertexes a and b with intermediate vertexes {j1, 

… , jl} by the number of edges on the path, i.e., l. The length between two adjacent vertexes 

a and b is defined to be zero. We declare that the path between vertexes a and b with length l 
≥ 0 is the shortest if and only if there is no path between a and b whose length is less than l. 
This definition permits the existence of multiple shortest paths with equal length.

We then have the following result, which complements Proposition 1.

Proposition 2. Suppose that there is at least one path between vertexes 0 and j, and that the 
set of intermediate vertexes of one of the shortest paths is {j1, … , jl} ⊂ M\{j} = V \ {0, j}. 
Then, we have μT(QX{j1,…,jt}xj) = 0.

The proof is given in “Supplementary Information Section 2”. For the discovery of SNP j 
such that E(βĵ,A|X) ≠ 0 for some A, Proposition 2 suggests that we should incorporate into 

the conditioning set A the intermediate vertexes of the shortest paths between μ = E(y|X) and 

j. In the above example for two distinct vertexes j and k whose corresponding SNPs satisfy 

xj = xk = μ, the length of the path between vertexes 0 and j with an intermediate vertex k is 

one, which is not the shortest because vertexes 0 and j are adjacent. That is, the path between 

0 and j (whose length is zero) is the shortest path. Proposition 2 states that μTxj ≠ 0 (the 

shortest path) is guaranteed but μTQxkxj ≠ 0 is not guaranteed (not the shortest path). Note 

that Proposition 2 does not eliminate the possibility that the non-shortest path gives μTQAxj 

≠ 0. Therefore, it is possible that our proposed method misses some non-shortest paths that 

give a large nonzero effect. Nevertheless, we consider that restricting the search to the 

shortest paths is useful because the shortest paths produce parsimonious regression models 

with low degrees of freedom. This narrows the candidate models to be considered, thereby 

improving statistical power.

Because Propositions 1 and 2 are based on the bi-directed graph with which adjacency is 

based on the Wellek–Ziegler correlation (which can take value zero), it is not practical in 

real data applications. To resolve this, we introduce cutoff values for the Wellek–Ziegler 

correlation between SNPs to declare adjacency in the bi-directed graph. Specifically, for 

given correlation cutoffs amin and amax, if , we declare that 

SNPs j and k are adjacent; otherwise, we declare that they are not adjacent. We now derive 

amax empirically as follows. Consider a simple multicollinear case of two SNPs x1 and x2 

such that  and , and hence the residual Qx2x1 ≈ 0. Then, on the path μ ↔ 

x2 ↔ x1, we will have that  — i.e. the effect of x1 has been removed by x2. 
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Because the test statistic for testing the null hypothesis β1 = 0 in the regression model μ = 

x1β1+x2β2 is proportional to the correlation between y and Qx2x1 (Remark 1 in Ueki and 

Kawasaki 2013), the inclusion of x2, which is highly-correlated with x1, renders the test 

underpowered due to the above-mentioned effect removal. A similar consideration can be 

found in Howey and Cordell (2014), who noted that the power of their proposed AI test 

tends to improve by choosing a partner SNP such that the correlation with the anchor SNP is 

neither high nor low. Even with multiple x2, the test statistic for testing the null hypothesis 

β1 = 0 is proportional to the correlation between y and Qx2x1 (Ueki and Kawasaki 2013), so 

multicollinearity leads to underpowered detection due to effect removal. In that case, the 

cutoff amax avoids the inclusion of highly correlated SNPs simultaneously, and it is expected 

that multicollinearity will be alleviated.
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Figure 1. 
Illustration of the proposed shortest path test. The focal SNP, X1, shows (weak) marginal 

association with μ = E(y|X) based on a moderate p-value cutoff (path 0). A bi-directed graph 

around SNP X1 is constructed with adjacency defined by the magnitude of linkage 

disequilibrium, and all shortest paths to X1 are collected. In this example, there are five 

shortest paths numbered 1–5, as shown in the top right. For each of five shortest paths, the 

SNP corresponding to the terminal vertex is tested for association in a multiple regression 

model including all SNPs in the path. The fitted multiple regression model is described for 

each shortest path. The tested SNP and its regression coefficient are emphasized in bold and 

in red, respectively. Conservative multiple testing is adapted in order to take the number of 

shortest paths into account.
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Figure 2. 
Type I error rates from quantitative trait simulations comparing the proposed method with 

(amin, α1) ∈ {0.1,0.3,0.5,0.7} × {0.01,0.001,0.0001,0.00001}, the marginal association test, 

and SnipSnip. Nominal family-wise error rates are α = 30, 20, 10, and 5%.
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Figure 3. 
Type I error rates from binary trait simulations comparing the proposed method with (amin, 
α1) ∈ {0.1,0.3,0.5,0.7} × {0.01,0.001,0.0001,0.00001}, the marginal association test, and 

SnipSnip. Nominal family-wise error rates are α = 30, 20, 10, and 5%.
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Figure 4. 
Power with m = 1 for six scenarios in quantitative trait simulations with 16 combinations of 

(amin, α1) ∈ {0.1,0.3,0.5,0.7} × {0.01,0.001,0.0001,0.00001}. Nominal family-wide error 

rate was set at α = 0.05. The ordinate is the proportion of runs where any SNP within a 110 

kb window upstream of the first causal SNP and downstream of the last causal SNP was 

significant.
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Figure 5. 
Power with m = 1.5 for six scenarios in quantitative trait simulations with 16 combinations 

of (amin, α1) ∈ {0.1,0.3,0.5,0.7} × {0.01,0.001,0.0001,0.00001}. Nominal family-wide error 

rate was set at α = 0.05. The ordinate is the proportion of runs where any SNP within a 110 

kb window upstream of the first causal SNP and downstream of the last causal SNP was 

significant.
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Figure 6. 
Power with m = 1 for six scenarios in binary trait simulations with 16 combinations of (amin, 

α1) ∈ {0.1, 0.3, 0.5, 0.7} × {0.01, 0.001, 0.0001, 0.00001}. Nominal family-wide error rate 

was set at α = 0.05. The ordinate is the proportion of runs where any SNP within a 110 kb 

window upstream of the first causal SNP and downstream of the last causal SNP was 

significant.
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Figure 7. 
Power with m = 1.5 for six scenarios in binary trait simulations with 16 combinations of 

(amin, α1) ∈ {0.1,0.3,0.5,0.7} × {0.01,0.001,0.0001,0.00001}. Nominal family-wide error 

rate was set at α = 0.05. The ordinate is the proportion of runs where any SNP within a 110 

kb window upstream of the first causal SNP and downstream of the last causal SNP was 

significant.
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