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Abstract

Modern clinical trials on Alzheimer disease (AD) focus on the early symptomatic stage or even the 

preclinical stage. Subtle disease progression at the early stages, however, poses a major challenge 

in designing such clinical trials. We propose a multivariate mixed model on repeated measures to 

model the disease progression over time on multiple efficacy outcomes, and derive the optimum 

weights to combine multiple outcome measures by minimizing the sample sizes to adequately 

power the clinical trials. A cross-validation simulation study is conducted to assess the accuracy 

for the estimated weights as well as the improvement in reducing the sample sizes for such trials. 

The proposed methodology is applied to the multiple cognitive tests from the ongoing 

observational study of the Dominantly Inherited Alzheimer Network (DIAN) to power future 

clinical trials in the DIAN with a cognitive endpoint. Our results show that the optimum weights to 

combine multiple outcome measures can be accurately estimated, and that compared to the 

individual outcomes, the combined efficacy outcome with these weights significantly reduces the 

sample size required to adequately power clinical trials. When applied to the clinical trial in the 

DIAN, the estimated linear combination of six cognitive tests can adequately power the clinical 

trial.
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Introduction

Alzheimer disease (AD) is an age-related brain-damaging disorder that results in progressive 

cognitive and functional impairment and death. An estimated 5.4 million Americans are now 

living with AD, and that number will rise to as many as 16 million by 2050 [1]. 

Accumulating research suggests that neurodegenerative processes associated with AD may 

begin during middle age [2-4] and almost certainly many years prior to symptomatic onset 

[5-7]. Clinicopathologic studies also demonstrate that asymptomatic individuals can 

manifest the neuropathological changes of AD, notably senile plaques and neurofibrillary 

tangles [4, 8, 9]. These observations, coupled with the absence of treatments that alter the 

pathological processes of AD, have led to a major paradigm shift in the search for treatments 

of AD. The focus of modern AD clinical trials now is on individuals at the earliest clinical 

stages of the illnesses, variably labeled as Mild Cognitive Impairment (MCI, [10]), 

prodromal AD [11], and very mild dementia [12] that merits a Clinical Dementia Rating 

(CDR, [13]) of 0.5 (here together are termed early symptomatic AD [14]). Even the 

preclinical stage of AD [15], prior to the substantial development of symptoms, can be 

targeted as interventions in this stage may have the greatest chance of preserving brain 

function.

The major paradigm shift in randomized clinical trials (RCTs) on AD, however, poses a 

major challenge in designing such trials. Because symptomatic progression of the disease in 

these early stages typically is subtle, the rate of longitudinal change in the placebo arm is 

expected to be slow. Given that there have been no pharmaceutical treatments that can 

reverse the pathological processes of AD, a slow rate of change implies that there is not 

enough room for improvement even with an efficacious active treatment. As a result, the 

RCTs on early stage AD must be designed with very large sample sizes and very long 

follow-up to guarantee that meaningful statistical conclusions can be drawn. Large, long-

duration RCTs are time-consuming and prohibitively costly, and present a major bottleneck 

to allow promising therapies to be fully tested on a timely manner [16]. Moreover, it remains 

an open question as to which cognitive test or tests provide the best power and should be 

used as the primary efficacy endpoint. Recent secondary preventive RCTs that enroll 

asymptomatic individuals with preclinical AD (and, in some, early symptomatic individuals) 

include the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) trial, the 

Dominantly Inherited Alzheimer Network (DIAN)-Trials Unit (DIAN-TU) trial, and the 

Alzheimer's Prevention Initiative (API) trial. They all propose to employ different cognitive 

endpoints for their efficacy analysis, typically in the form of some types of composite 

cognitive score with equal weights over several cognitive tests. For example, the A4 trial 

proposed a composite of four cognitive measures that are well established as showing 

sensitivity to decline in prodromal and mild dementia [17]: the total recall score from the 

Free and Cued Selective Reminding Test (FCSRT) (0-48 words, [18]), the delayed recall 

score on the Logical Memory IIa subtest from the Wechsler Memory Scale (0-25 story units, 

[19]), the Digit Symbol Substitution Test score from the Wechsler Adult Intelligence Scale–

Revised (0-93 symbols, [20]), and the Mini-Mental State Examination (MMSE) total score 

(0-30 points, [21]). The composite score was determined from its components using an 

established normalization method [22]. Each of the 4 component change scores is divided by 
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the baseline sample standard deviation of that component, to form standardized z scores. 

These z scores are summed to form the composite. In the API trial, the proposed cognitive 

composite is also equally weighted among the following individual tests over multiple 

cognitive domains [23]: Consortium to Establish a Registry for Alzheimer's Disease 

(CERAD) Word List Recall, CERAD Boston Naming Test (high frequency items), MMSE 

Orientation to Time, CERAD Constructional Praxis, and Raven's Progressive Matrices (Set 

A) [24-27]. It is reported that the proposed composite is more sensitive than using the entire 

CERAD battery [23]. Whereas each of the proposed cognitive composite score weighs 

multiple tests equally, and has performed reasonably well, it remains unknown whether they 

provide the optimum power for designing RCTs on early stage AD. Given that recently 

revised Food and Drug Administration (FDA) guidelines for RCTs on early AD mandate 

that treatments be only approved if they demonstrate cognitive and functional benefits (FDA 

Guidance for Industry AD: Developing Drugs for the Treatment of Early Stage Disease 

[28]), it is crucial to search for the optimum cognitive endpoint that can best power these 

trials [16].

In this article, we propose a novel statistical method to combine multiple outcome measures 

in AD trials so that the power for testing the efficacy hypothesis can be improved. We 

employ a mixed model for repeated measures (MMRM) for each outcome measure and link 

the models across multiple outcome measures through a set of random effects. We derive the 

linear combination of multiple outcome measures such that the ratio between the mean 

change from the baseline and the standard deviation (SD) is maximized. We then provide 

estimates to the weights of the optimum linear combination. Because the power analysis for 

a real world clinical trial with the combined outcome measure requires estimates first for the 

weights, and then for the corresponding mean and SD on the combined outcome, we assess 

the impact of estimating the latter (i.e., mean and SD on the combined outcome) using the 

same data set for estimating the weights or an independent data set (i.e., cross-validation 

data set) through an extensive simulation study. Finally, we demonstrate the proposed 

methodology by combining multiple cognitive outcome measures across multiple domains 

using longitudinal data from the DIAN study [29], and assess the improvement in reducing 

the sample size of the future DIAN-TU trial when the optimum combination of multiple 

cognitive outcomes is used as the primary efficacy endpoint.

Method

We consider the case when M disease outcome measures (or markers) are to be combined to 

achieve the smallest possible sample sizes required to adequately power a clinical trial. We 

assume a clinical trial on AD with baseline (t=0) and t=1, 2, …, T, scheduled post-baseline 

assessments. In analyzing the clinical trial data on AD, it has been a routine practice to first 

compute the change from baseline on efficacy outcomes for each individual and then 

compare the mean change across individuals between the active treatment arm and the 

placebo arm. For marker m, m=1, 2, …, M, we use  (in the following, a super index m 
does not mean a power function with the exception of variance which is always squared in 

notation) to denote the change from baseline at post-baseline time t=1, 2, …, T, for a 
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randomly selected individual j from i-th treatment arm (i=0=placebo arm, i=1=active 

therapy). We further assume a multivariate MMRM [MMMRM, 30-32] as follows:

where  is the mean of m-th marker for i-th treatment at time t,  is the subject-level 

random effects on the m-th marker, and e's are within-subject errors across different time 

points. Here, for each individual marker m=1, 2, …, M, we follow the standard assumptions 

that subject-level random effects p's are independent of within-subject errors e's, and that 

 (here super index t means matrix transpose) follows a multivariate 

normal distribution with mean 0 and covariance matrix  (structured or unstructured) 

whose entries are  (i.e., the variances) on the diagonal for t=1, 2, …, T, and σmt1t2 off 

the diagonal when 1 ≤ t1 ≠ t2 ≤ T. To introduce the correlation between different markers 

from the same subjects, we further assume that the vector of random effects, 

, follows another multivariate normal distribution with mean 0 

and a M by M covariance matrix

We also assume that, conditioning on pij,  's are independent of each other for m=1, 2, …, 

M. The ultimate efficacy goal in a clinical trial of AD is to estimate and compare the change 

from the baseline at the final time point, T. The statistical power to compare the drug and the 

placebo depends not only on how efficacious the drug is, but also independently on how 

sensitive the outcome measures are. In fact, if the effect size of the active treatment is 

expressed as a percentage of improvement on the mean change from the baseline, in 

comparison to the placebo arm, the statistical power is a function of the ratio between the 

mean (i.e., the magnitude) and the standard deviation on the change from the baseline for the 

placebo arm. The power analysis can be based on a single outcome measure. However, the 

fact that essentially all individual outcome measures show only subtle changes during early 

stages of AD in the placebo arm, coupled with a relatively high heterogeneity in early 

disease progression (i.e., large variance on the change from baseline), implies that a power 

analysis using a single outcome measure will likely result in a formidable sample size for 

these trials. Therefore, it is reasonable to hypothesize that use of multiple outcome measures 

may help to reduce the sample sizes required to adequately power RCTs on early stage AD 

by maximizing the ratio between the mean (i.e., the magnitude) and the standard deviation 

on the change from the baseline for the placebo arm. Here we provide the linear combination 

of multiple outcome measures so that the sample size to detect a fixed effect size of the 

active drug (in the percentage of improvement on mean change from the baseline as 
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compared to the placebo arm) can be minimized with a reasonable statistical power (say, 

80%). For the placebo arm, let  be the vector (on change 

from baseline) of all M outcome measures for a random subject j at time t. Let 

 be the mean (change from baseline) vector at last time point 

T where the efficacy comparison will be conducted. Let Ω be the covariance matrix of 

. The entries in the diagonal of the matrix are variance 

 The entries off the diagonal of the matrix are the covariance 

 for 1 ≤ m1 ≠ m2 ≤ M.

Let W = (w1, w2, …, wM)t be a weight vector to be assigned to the outcome measures m=1, 

2, …, M. Let  be the linear combination of these outcome 

measures at last time T. The mean of U is , and the variance is 

. One optimum choice of the weight vector is to make the mean at last time T 

(on change from baseline) of the combined marker U (i.e., ) as large as possible, 

whereas at the same time, the variance of U (i.e., ) as small as possible. Because 

the power function for comparing the means between the active treatment arm and the 

placebo arm at time T ultimately depends on the ratio of the mean and the standard deviation 

(SD) of U, maximizing the ratio (in absolute value) between the mean and standard 

deviation over all the possible choices of weight vectors will lead to improvement in 

designing clinical trials, i.e., the most reduced sample sizes. Let

We assume here that the individual outcome measures are all oriented so that μ0T < 0. We 

further assume that the weight vector W is chosen so that Wtμ0T <0. Maximizing R (in 
absolute value) is equivalent to maximizing

The maximum is achieved when W is an eigenvector W0 corresponding to the largest 

eigenvalue of  [33]. The maximizing value of R2 is the largest eigenvalue λ0 of 

. Because  is a matrix of rank 1, the largest eigenvalue of the matrix is 

its trace, i.e., . Further, it is easy to verify that W0 = −Ω−1μ0T is an 

eigenvector corresponding to the largest eigenvalue (unique up to a constant). Therefore, the 
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mean (change from baseline at last time T) for the optimally combined marker  is 

given by

The variance of the optimally combined marker  at the final time point T is

Notice that our proposed analytic approach with MMMRM is very different from some of 

the traditional clinical trial analyses on later stage AD [34-36] in which a cross sectional 

analysis was conducted on the cognitive change from baseline, typically on the last-

observation-carried-forward (LOCF) endpoint. We choose MMMRM because almost all 

reported clinical trials on AD are longitudinal (designed with cognitive measurements per 

subject at multiple time point including intermediate time points in addition to baseline and 

the end of trial), and almost all have considerable missing data and dropouts. Although the 

main efficacy test in clinical trials on AD is on change from two time points (baseline to the 

end of the trial), and the approach of LOCF has been used in the literature to impute the 

missing data and hence reduce the efficacy test into a simple cross sectional analysis, it has 

been well documented in the clinical trial literature [37] that the cross sectional analysis on 

the LOCF endpoint provides biased estimates to the true effect size. Therefore, appropriate 

longitudinal models such as MMRM that can adequately handle missing data and utilize the 

entire longitudinal data (including those at intermediate time point between the baseline and 

the end of the trial) must be used to provide valid efficacy test. In addition, the entire mean 

vector μ0T, as well as the covariance matrix Ω in the MMMRM, are both needed in the 

derived optimal weights, W0 = −Ω−1μ0T. The maximum likelihood estimation (MLE) of 

these parameters, especially those in Ω, must rely on the MMMRM under the standard 

assumptions in the model. Further, because the variance-covariance parameters (part of 

matrix Ω) in the subject-level random effects, , are shared by all 

the time points (including the intermediate time points) within the same subjects, the 

MMMRM provides a much better estimation to all these important parameters because the 

model allows the use of all longitudinal data in the estimation, including those from subjects 

whose cognitive data are available only on some, but not all, of the cognitive tests, as well as 

from those who drop out in the middle of the trial. As a matter of fact, this optimal approach 

of using all available data to estimate the parameters in Ω is exactly what we will implement 

in the real world application of our proposed methodology (see below: Designing Clinical 
Trials on Autosomal Dominant Alzheimer Disease).

Although we have focused on a methodology that compared treatment arms at the last time 

point, similar analytic approaches can be used to power secondary efficacy comparisons 

such as those at any post baseline time point, which is especially appealing, given that the 

longitudinal cognitive decline in the progression of AD is likely not a linear pattern, and 
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different drugs may have different efficacy for specific time windows of the disease 

progression.

It is important to point out that different treatments to be tested could have very different 

efficacy profiles across multiple cognitive outcomes, depending on their specific 

mechanisms of action. Because nobody knows the individual efficacy specific to each 

cognitive outcome for a novel treatment to be tested, it is essentially impossible to obtain the 

entire efficacy profiles across multiple cognitive outcomes at the design stage of a clinical 

trial during which a well defined primary cognitive efficacy endpoint has to be proposed and 

used to power the trial. Hence, our proposed methodology does not intend to identify the 

optimum combination of multiple cognitive outcomes for a specific efficacy profile from a 

specific treatment. Instead, our proposed methodology offers a general purpose approach 

that has the potential to provide a single composite score of multiple outcomes to improve 

the design of any clinical trial on early stage AD, which is consistent with the fact that 

essentially all published clinical trials on later stage AD thus far have all been based on the 

same single cognitive endpoint [34-36], i.e., the Alzheimer's Disease Assessment Scale for 

Cognition (ADAS-Cog, [38]). Just like the way ADAS-cog was developed, our proposed 

optimum combination of cognitive outcomes can be readily estimated from observational 

studies on subjects without receiving any active treatments. These estimates can be obtained 

from large observational studies such as the National Alzheimer's Coordinating Center's 

(NACC) Uniform Data Set (UDS, [39]) and the Alzheimer's Disease Neuroimaging 

Initiative (ADNI, [40]).

Simulation Results

In designing a real world clinical trial by using the proposed methodology, the optimum 

weights have to be first estimated using existing or pilot data that are collected in a sample 

comparable to the targeted population for the therapeutic intervention. These weights can 

then be used to form the combined outcome measure and then to power the clinical trials. It 

is important to assess how well these weights can be estimated, assuming different sizes of 

the sample for the pilot data. Notice that the power analysis also requires the estimates to the 

mean changes from the baseline on the combined outcome as well as the associated SD, 

which can be based on the same data or an independent sample (i.e., the cross-validation 
sample). We posit that, if these estimates are based on the same samples that are used to 

derive the optimum weights for combining the multiple outcome measures, some bias could 

be introduced in the power analysis. We therefore design a simulation study to examine the 

validity of our proposed methodology as well as the amount of bias if both weights and 

parameters (i.e., mean and SD) for the subsequent power analyses are estimated from the 

same samples. We consider the case when 3 outcome measures are to be combined across a 

set of chosen parameters in the trivariate mixed effects model representing a wide range of 

effect sizes across individual outcome measures. Specifically, for m=1, 2, 3, and t=1, 2, 3 

(i.e., 3 post-baseline follow-ups) and the model for the placebo, , we 

assume a non-linear pattern of the mean for individual outcome measures over time,

Xiong et al. Page 7

Biostat Epidemiol. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also assume that  follows a multivariate normal distribution 

with mean 0 and auto-regressive covariance matrix

Notice here we allow an increasing variance as a function of time, which is very common 

when cognitive changes from baseline are used as the primary efficacy endpoint in clinical 

trials on AD. We further assume that  follows a trivariate normal 

distribution with mean 0 and covariance matrix

We simulated 100 pairs of data sets from the model. Each pair contains two independently 

simulated data sets: one is used to estimate the optimum weights for combining three 

markers (called the training data set), and the other is used to estimate the mean changes 

(from baseline) as well as the related variance on the combined marker for the power 

analysis (called the validation data set). Table 1 reports the true weights, the mean of 100 

sets of estimated weights, the bias and mean square error (MSE) on the estimated weights 

(averaged over 100 estimates for each weight and then over 3 weights), and the true and 

estimated ratio between the mean and SD at t=3 (the endpoint of the trial where efficacy 

comparison will be done) for the true and estimated combination of 3 outcome measures for 

ρ=0.2, r=0.2. Table 1A to Table 1H in the Appendix report the similar results for other 

options of ρ=0.2, 0.5, 0.8, and r=0.2, 0.5, 0.8. Table 2 presents the results for the subsequent 

power analyses for a clinical trial with two arms and a 1:1 sample size ratio, i.e. the average 

total sample sizes (over 100 power analyses from 100 simulated pairs of data sets) required 

for 80% power to detect specified effect sizes (assuming ρ = r = 0.5). 40 subjects were 

assumed for the training data set (to estimate the optimum weights) as well as for the 

validation data set (to estimate the mean and SD on the combined outcome) in Table 2. Table 

2A to Table 2E in Appendix report the similar power analysis for other choices of sample 

sizes in the training/validation data sets (n=the shared sample size in both training and 

validation data sets=60, 80, 100, 120, and 140).
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Designing Clinical Trials on Autosomal Dominant Alzheimer Disease

Autosomal dominant Alzheimer's disease (ADAD) has informed the field of AD research 

about the molecular and biochemical mechanisms that are believed to underlie the 

pathological basis of AD. The DIAN study since 2008 has established an international, 

multicenter registry of individuals at risk or with a known causative mutation of AD in the 

amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes [29]. 

Interim cross-sectional analyses indicate a cascade of AD biomarker changes that begin at 

least 20 years before the symptomatic onset of AD [6]. The DIAN study evaluates 

participants at entry and longitudinally thereafter with clinical and cognitive batteries, 

structural, functional, metabolic, and amyloid imaging protocols, and biological fluid (blood 

and cerebrospinal fluid) collection with the goal of determining the sequence of changes in 

asymptomatic gene carriers who are destined to develop AD. Early analysis of DIAN 

longitudinal study has provided a suggestive algorithm of biomarker change in the ADAD 

population over time before the estimated age of onset of AD [41]. This reinforces the 

rationale that biomarker changes are ongoing in asymptomatic ADAD participants and 

allows the identification of drugs that demonstrate biomarker efficacy before they are tested 

in a large scale critical trial for cognitive efficacy. Building on this information, the DIAN-

TU was formally launched in December, 2012, to conduct clinical trial in the ADAD 

population by evaluating two anti-amyloid monoclonal antibodies, in comparison with 

placebo, for AD biomarker target engagement [29]. This trial measures the effects of the 

drugs on a comprehensive set of AD biomarkers (e.g., amyloid deposition [42], 

cerebrospinal fluid (CSF) Aβ and tau [41], magnetic resonance imaging (MRI) brain atrophy 

[43], and positron emission tomography (PET) imaging with 2- [18F] fluoro-2-deoxy-D-

glucose (FDG PET, [44]) that would be used to determine if a drug is likely to have a 

cognitive benefit in a subsequent cognitive endpoint trial.

An adaptive design has been implemented to seamlessly transition the biomarker phase of 

DIAN-TU trial to the Phase III trial in which the primary goal is to establish the efficacy of 

selected active drugs in slowing the rate of cognitive decline. A large cognitive battery has 

been administered in DIAN participants [45], covering a wide range of domains. Based on 

recent reports on cognitive domains that may exhibit early progression from the ongoing A4 

trial [17] and the API trial [23] as well as a preliminary analysis on the DIAN database, to 

demonstrate the application of our proposed methodology, we have chosen the following six 

candidates of the cognitive tests that can be considered for powering the upcoming Phase III 

cognitive endpoint trial:

1. the total score of the MMSE [21], a widely used screening test that evaluates 

overall cognitive function by examining orientation to place, orientation to time, 

attention, concentration, language, ability to recall previously given words and 

visual-spatial skills. The Score of MMSE ranges from 0 to 30 [21];

2. the total number of 16 words that are recalled (WORDDEL) by participants after 

a delay of approximately 20-30 minutes from the time they were read out loud to 

the participants. The WORDDEL score ranges from 0 to 16 [45];
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3. the total score (PAPER) from a multiple choice test of spatial problem solving 

ability, requiring participants to mentally manipulate pieces of paper. The 

PAPER score ranges from 0 to 12 [46];

4. the score on the Digit Symbol (DIGSYM) subscale of the Wechsler Adult 

Intelligence Scale (WAIS) which, by evaluating the amount of time it takes 

participants' to recode pairs of digit and symbol items, examines several 

cognitive abilities including attention, psychomotor speed, complex scanning, 

visual tracking as well as working memory. The WAIS DIGSYM score ranges 

from 0 to 93 [20];

5. the total score on a subscale on the Pair Binding task (PAIRBINDING), which 

assesses associative recall accuracy. The score of PAIRBINDING ranges from 0 

to 12 [47];

6. the total score on the 30-items Boston Naming test (BOSTON), examining word 

retrieval performance by requiring participants to name objects presented in 

drawings. The total score of BOSTON ranges from 0 to 30 [48].

The cognitive data used for the power analysis are from the sixth data freeze of the DIAN 

database, which had a data cutoff date of June 30, 2013. A total of 53 individuals met the 

inclusion and exclusion criteria for the ongoing DIAN TU trial on biomarkers. All had a 

pathogenic mutation for AD, and baseline cognitive assessment and at least one (and up to 

3) post-baseline follow-up measurements where each may occur either within 1, 2 or 3 years 

after the baseline. Only participants with a CDR of 0, 0.5, and 1 whose expected years to 

onset (computed as the participant's age minus the reported age of symptom onset from the 

affected parent) is between -15 to 10 years at baseline [49] are included in the analysis. 

Table 3 presents the baseline demographic, cognitive, and functional information of subjects 

in the data set.

For all six cognitive tests discussed above, higher scores indicate better cognitive 

performance. For each outcome measure and each individual, z-scores are derived by 

subtracting the mean of the entire sample at the baseline from the individual's raw scores 

(both at baseline and at follow-ups) and then dividing the difference by the standard 

deviation (SD) computed at baseline. Subsequently, the z-scores are used to compute change 

scores (i.e. change from baseline to each of the three annual follow-ups) which are then 

utilized as the outcome measures for power analyses.

Because of the relatively small sample size from the pilot data set, a stepwise process is 

implemented to combine the cognitive outcomes. First, a univariate mixed model for 

repeated measures [30] is used to model the change of z-scores over the longitudinal courses 

for each cognitive outcome measures. An unstructured covariance matrix for the within-

subject errors is assumed. The mean change from baseline for each cognitive outcome, as 

well as the variance/covariance parameters are estimated from the model. These estimates 

are used to conduct the power analysis for a future clinical trial using each cognitive 

outcome as the primary efficacy endpoint. Table 4 presents the sample sizes needed, for each 

of the six cognitive measures, for detecting various effect sizes (expressed as a percentage 

improvement relative to the estimated year 3 change from baseline) with 80% power. 
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Second, the cognitive outcome measure that results in the smallest sample size from the 

univariate power analysis is chosen to combine with each of the remaining cognitive 

outcome measures. A sequence of bivariate mixed models for repeated measures [BMMRM, 

31-32] is used to model the z-scores over the longitudinal courses between 2 outcome 

measures. An unstructured covariance matrix for the within-subject errors is assumed for 

each outcome measure, and another unstructured covariance matrix for the random effects 

across all outcome measures is also assumed. The optimum weights are first estimated from 

each BMMRM using the estimated mean change from baseline for both cognitive outcomes, 

as well as the variance/covariance parameters. The mean change from baseline for the 

combined cognitive outcome and the SD are then estimated from another univariate MMRM 

on the combined outcome, which are then used to conduct the power analysis. Because of 

the small sample size for the pilot data, no cross-validation procedure is implemented in 

these power analyses. Table 5 presents the sample sizes needed, for each combined outcome 

of two cognitive measures, for detecting various effect sizes (expressed as a percentage 

improvement relative to the estimated year 3 change from baseline) with 80% power.

The above process is repeated to form a composite of three cognitive outcome measures 

using the two cognitive measures whose combination yields the smallest sample sizes in 

Table 5. In order to derive the optimum weights, the combination of two cognitive measures, 

computed at the previous step, is treated as a single outcome variable which will be further 

combined with each of the remaining cognitive outcome measures through another sequence 

of bivariate mixed models for repeated measures (BMMRM). This “forward selection” 

algorithm for combining multiple outcome measures, bearing some resemblance to forward 

model selection in standard regression analyses, is one approach to deal with a situation 

when a researcher faces a potentially large pool of candidate outcome measures with a 

relatively small sample size. In which case, the simultaneous estimation of weights for many 

outcome measures, in a single high dimensional multivariate mixed model for repeated 

measures, may not be computationally feasible and in our experience, create frequent 

problems when the MMMRM do not converge likely because of a limited sample size. Table 

6 presents the sample sizes needed, for each combined outcome of three cognitive measures, 

for detecting various effect sizes (expressed as a percentage improvement relative to the 

estimated year 3 change from baseline) with 80% power.

In our simulation studies as well as our application to the DIAN-TU trial, all the estimated 

weights were positive. However, it is mathematically possible that some of the estimated 

weights could be negative. This is because that, even if the individual outcome measures are 

all oriented so that μ0T < 0 component wise and the weight vector W is chosen so that Wtμ0T 

< 0, the optimal weight vector W0 = −Ω−1μ0T are not all guaranteed to be positive 

component wise. If some weights are indeed estimated as negative in our application to 

DIAN-TU trial, they would make the interpretation of the combined cognitive outcome less 

straightforward. For example, the estimated negative weights may point to a much deeper 

insight of the multi-domain cognitive progression of early stage AD, namely, the fastest rate 

of cognitive progression at early stage AD is not from a simple (positively) weighted 

average of multiple cognitive domains, but some type of contrast between domains that are 

positively weighted and those negatively weighted. Whereas the possible negative weights 
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and their potential implications to our understanding of the early cognitive progression on 

AD is not the focus of the current manuscript, future research is needed in this direction.

Discussion

There is currently a major paradigm shift in the search for treatments of AD, that is, the 

focus of modern AD clinical trials now is on individuals at the earliest clinical stages, prior 

to the substantial development of clinical symptoms. The subtle disease progression at the 

early stages, however, poses a major challenge in designing such RCTs as a huge sample 

size is required to adequately power such trials. The lack of detection of progression by 

individual cognitive outcomes makes the sample size for RCTs on early stage AD a 

formidable task to achieve.

We tackled this challenge by combining multiple cognitive outcomes across several domains 

to optimize the rate of progression (divided by the SD) in individuals at an early stage or 

preclinical stage of AD. Whereas ongoing clinical trials on early stage AD such as the A4 

trial and the API trial have proposed differing cognitive composites using the same weights 

across multiple cognitive domains [17, 23], we sought to improve these by mathematically 

optimizing the weights so that the sample sizes for adequately powering such trials could be 

minimized. We proposed a multivariate mixed model for repeated measures to jointly model 

the longitudinal progression of multiple outcomes. The model amounts to individual 

MMRM for each cognitive outcome, but allows the correlation of multiple outcome 

measures from the same individuals through a set of random effects. We mathematically 

derived the optimum weights and the mean change from baseline on the combined outcome. 

We further provided estimates to the optimum weights as well as the estimates to the mean 

change from baseline and SD on the combined outcome using the maximum likelihood 

estimates from the standard statistical software such as PROC MIXED/SAS [50].

We conducted a simulation study to examine how accurate the optimum weights can be 

estimated as a function of sample sizes and under various parameter settings. Because the 

power analysis on efficacy outcome ultimately depends on the ratio of the mean change 

(from baseline) and the corresponding SD, we also assessed how the maximized ratio can be 

accurately estimated. Furthermore, we examined how the proposed methodology can be best 

implemented in designing real world clinical trials. Because our approach requires two 

sequential steps: first to estimate the weights to combine multiple outcomes, and then to 

form the combination and estimate the mean and SD on the combined outcome for the 

power analysis, a naive approach is to implement both steps in the same pilot data set for the 

power analysis. We proposed to estimate the weights to combine multiple outcomes and the 

mean and SD on the combined outcome for the power analysis on two independent samples 

(i.e., a training sample and a cross-validation sample), and assessed the difference between 

the two approaches on the results of subsequent power analyses.

Results in Table 1 indicate that the optimum weights can be accurately estimated, even when 

the sample sizes are as small as 40. The estimated bias is close to 0 for a wide range of 

sample sizes starting from 40 and other covariance parameters. The mean square error 

(MSE) is also small, and as expected, decreases as the sample size increases. Most 
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importantly, the estimated ratio of the mean and SD on the combined outcome is also close 

to the true ratio, and progressively closer as the sample size increases.

Results in Table 2 indicate a significant reduction of the sample size in powering a 1:1 two-

arm clinical trial by using the combined outcome measures, as compared to each individual 

outcome measure. Furthermore, the naive approach of estimating both weights to combine 

multiple outcomes and the resulting mean and SD on the combined outcome from the same 

pilot data set produces an under-estimate to the sample sizes to adequately power clinical 

trials, the under-estimation is more severe when the effect sizes are relatively small.

Finally, we applied the proposed method to the DIAN-TU trial on early stage AD by 

combining six cognitive tests from the DIAN cognitive battery. We found that the sample 

sizes to adequately power the DIAN-TU Phase III trial on cognitive endpoint are 

significantly reduced when the combined outcomes are used, in comparison to individual 

ones. We also found that the sample size improvement is more profound with the 

combination of three cognitive tests than two. Because the set of all linear combinations of 

more cognitive outcomes are a bigger set than all linear combinations from a subset of the 

outcomes (with zero weights for those outcomes not in the subset), adding more tests will 

always do better (i.e., smaller sample sizes) in theory. An important question in practical 

applications is how many cognitive tests are needed in the combinations until no appreciable 

improvement can be achieved. Further research is needed in this area. We also point out that 

there seem to be some conflicting results in Table 5 and Table 6 (i.e., the estimated sample 

size using MMSE and PAPER and BOSTON is actually larger than that using only MMSE 

and PAPER). This is due to the fact that all the optimum weights reported in Table 5 and 6 to 

combine multiple cognitive tests have to be estimated from the existing database from 

DIAN, each time with different data sets due to missing data in the added marker as well as 

dropouts. Different data sets in general result in different parameter estimates, which then 

implies different weights for the combined cognitive composite, leading to potentially 

conflicting sample sizes in power analyses.

Additionally, FDA and other regulatory authorities have traditionally required a novel 

treatment on AD only be approved with evidence of a beneficial impact on both cognitive 

outcome and functional outcome. Whereas FDA's new draft guidelines on RCTs on early 

stage AD seem more flexible in the functional impact due to the fact that subjects with early 

stage AD (preclinical stage or prodromal stage) have essentially no functional impairment 

[28], our proposed methodology can also be applied to any set of functional outcomes, (i.e., 

Activity of Daily Living (ADL), CDR sum-of-box) to derive the optimal combination of 

multiple functional outcomes for optimizing the efficacy comparison on the functional 

outcome in RCTs on early stage AD.

Finally, the MMMRM assumes that all random effects as well as the random errors are all 

normally distributed. It is well known that many of the cognitive tests used in early stage AD 

studies are subject to ceiling and floor effects and may not follow normal distributions. The 

validity of our proposed optimum weights for combining multiple cognitive outcomes 

against the distributional assumption need to be evaluated before the proposed methodology 

can be fully utilized in real world clinical trials on early stage AD. As a matter of fact, under 
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the multivariate MMRM, , our derivation of the optimum weights over 

the linear combinations is never based on the assumption of normal distributions for p's and 

e's. The only assumptions used are the existence of the covariance matrix, the conditional 

independence of  's for m=1, 2, …, M (given pij), and the independence between p's and 

e's. Hence, our proposed optimum weights are robust against departure from the normal 

distributions. Further, even without the assumption of normal distributions, these weights 

still maximize the absolute value of  over all possible weights. Notice 

that R is related directly to the asymptotic Wald test statistic on the combined cognitive 

outcome. Hence, assuming that the distributions of p's and e's meet standard regularity 

conditions on the smoothness of the density functions in the model but are not normal, the 

asymptotic property of the maximum likelihood estimators still implies that our estimated 

optimum weights minimize the same size required to power the efficacy comparison that is 

based on the asymptotic Wald's test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3
Baseline and longitudinal characteristics of the DIAN sample (N=53)

Age, mean (SD) 42.2 (8.6)

Female, N (%) 31 (58.5)

Education, years, mean (SD) 14.2 (2.3)

Estimated years to symptom onset mean (SD) -2.8 (5.3)

APOE genotype, N (%)

 23 3 (5.7)

 24 2 (3.8)

 33 31 (58.4)

 34 15 (28.3)

 44 2 (3.8)

MMSE: Baseline mean (SD), 28.0 (2.3)

Scale range 0 - 30

MMSE: 3-year change from baseline mean (SD) -4.5 (4.9)

WORDDEL: Baseline mean (SD) 1.9 (2.0)

Scale range 0 - 16

WORDDEL: 3-year change from baseline mean (SD) -0.8 (1.1)

PAPER: Baseline mean (SD) 5.9 (2.8)

Scale range 0 - 12

PAPER: 3-year change from baseline mean (SD) -1.1 (1.5)

WAIS DIGSYM: Baseline mean (SD) 53.3 (15.2)

Scale range 0 - 93

WAIS DIGSYM: 3 year change from baseline mean (SD) -4.0 (11.3)

PAIRBINDING: Baseline mean (SD) 9.8 (2.7)

Scale range 0 - 12

PAIRBINDING: 3 year change from baseline mean (SD) -0.5 (3.3)

BOSTON: Baseline mean (SD) 26.4 (3.2)

Scale range 0 - 30

BOSTON: 3 year change from baseline mean (SD) -1.5 (5.2)
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Table 6

Weights and total sample sizes required for 80% power to detect specified effect sizes (ES) at Year 3 in each 

combined marker composed of MMSE & PAPER (composite of two markers associated with smallest sample 

sizes) and each remaining individual marker from the DIAN data.

MMSE MMSE MMSE MMSE

PAPER PAPER PAPER PAPER

WORDDEL PAIRBINDING DIGSYM BOSTON

Estimated 2.6552 0.6648 1.0049 0.3315

weights 0.9815 0.2458 0.3714 0.1225

2.5862 0.2295 0.6970 0.1739

ES

20% 218 532 750 764

25% 140 340 480 489

30% 97 237 334 340

35% 72 174 245 250

40% 55 133 188 191

45% 43 105 149 151

50% 35 85 120 123
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