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Abstract

Successful clinical translation of antibody-drug conjugates (ADCs) can be challenging due to 

complex pharmacokinetics and differences between preclinical and clinical tumors. To facilitate 

this translation, we have developed a general pharmacokinetic-pharmacodynamic (PK-PD) 

modeling and simulation (M&S)-based strategy for ADCs. Here we present the validation of this 

strategy using T-DM1 as a case study. A previously developed preclinical tumor disposition model 

for T-DM1 (Singh and Shah, AAPSJ. 2015; 18(4):861–875) was used to develop a PK-PD model 

that can characterize in vivo efficacy of T-DM1 in preclinical tumor models. The preclinical data 

was used to estimate the efficacy parameters for T-DM1. Human PK of T-DM1 was a priori 
predicted using allometric scaling of monkey PK parameters. The predicted human PK, 

preclinically estimated efficacy parameters, and clinically observed volume and growth parameters 

for breast cancer were combined to develop a translated clinical PK-PD model for T-DM1. 

Clinical trial simulations were performed using the translated PK-PD model to predict 

progression-free survival (PFS) and objective response rates (ORRs) for T-DM1. The model 

simulated PFS rates for HER2 1+ and 3+ populations were comparable to the rates observed in 

three different clinical trials. The model predicted only a modest improvement in ORR with an 

increase in clinically approved dose of T-DM1. However, the model suggested that a fractionated 

dosing regimen (e.g., front loading) may provide an improvement in the efficacy. In general, the 

PK-PD M&S-based strategy presented here is capable of a priori predicting the clinical efficacy of 

ADCs, and this strategy has been now retrospectively validated for all clinically approved ADCs.
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INTRODUCTION

Biotechnology revolution in the past two decades has resulted in plethora of antibody-based 

therapeutics capable of targeting specific tissues inside the body. Antibody-drug conjugates 

(ADCs) are one such emerging class of compounds, which uses the targeting capability of a 

monoclonal antibody (mAb) to deliver potent cytotoxic agents directly to tumor cells (1,2). 

With more than 55 molecules currently in development (3,4), ADCs continue to demonstrate 

superiority over conventional anticancer agents by widening the therapeutic window (5). A 

typical ADC molecule consists of highly potent anticancer agents covalently attached to a 

mAb backbone via a chemical linker. The number of drug molecules attached to an antibody 

can vary within the same ADC formulation, where the number of drug molecules attached to 

an antibody is known as the drug/antibody ratio (DAR). Most clinically evaluated and 

approved ADCs (e.g., Adcetris® (6) and Kadcylla® (7)) were developed using random 

conjugation method and thus consist of a heterogeneous mixture of different DAR species. 

Upon systemic administration, the ADC molecules travel to the site-of-action and bind to 

cell surface receptors on the tumor cells via the mAb portion. Internalization of the receptor 

bound ADC inside the tumor cells leads to specific delivery of anticancer agents into the 

targeted cells. In order to understand and predict this pharmacokinetic (PK) behavior of 

ADCs, it is important to analyze and mathematically characterize the disposition of ADCs 

and their components on systemic and tumor levels. Once developed, the PK model can 

provide an efficient tool to predict the PK of ADC in plasma and tumor for not only animals 

but also humans (8,9). In addition, the PK model can be used to develop a quantitative 

exposure-response or dose-response relationship for ADCs by integrating the model with a 

suitable pharmacodynamic (PD) model (10). The PK-PD relationship developed 

preclinically can also serve as a cornerstone for the preclinical-to-clinical translational of 

ADC efficacy (11–13). Once validated, the translated PK-PD model can provide an efficient 

and cost-effective way of investigating the performance of different ADC dosing regimens 

on targeted patient population. Thus, for an efficient development of ADCs, it is vital to have 

a PK-PD modeling and simulation (M&S)-driven translational strategy that can integrate 

experimental data from discovery and preclinical stages to successfully predict clinical 

outcomes of ADCs. We have developed one such strategy and associated PK-PD models in 

the past, and in this paper, we present the validation of this ADC translational strategy using 

retrospective analysis of trastuzumab emtansine (T-DM1).

The ADC translation strategy and associated multi-scale mechanistic PK-PD model were 

first developed based on the experimental data from clinically approved ADC brentuximab-

vedotin (SGN-35) (11). Brentuximab-vedotin consists of anti-CD30 mAb attached to potent 

tubulin polymerization inhibitor monomethyl auristatin E (MMAE) via a protease cleavable 

linker valine-citrulline (vc). First, the disposition of different brentuximab-vedotin-related 

analytes in CD30+ tumor cells was characterized using a cell-level PK model. The cellular 

PK model was then integrated with the systemic and tumor disposition PK model to a priori 
predict tumor exposures of unconjugated MMAE. Total concentrations of unconjugated 

MMAE inside the tumor were then used to characterize preclinical tumor growth inhibition 

data. Finally, integrated PK-PD model was translated to clinic by using systemic PK of ADC 

in the clinic and introducing patient-specific tumor growth parameters. Upon clinical trial 
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simulations, a priori predicted progression-free survival (PFS) rates by the translated PK-PD 

model were found to be very similar to the observed PFS in Hodgkin’s lymphoma and 

anaplastic large cell lymphoma (ALCL) patients. The validity of ADC tumor disposition 

model has been further evaluated using anti-5T4 ADC A1mcMMAF (10), where the model 

was able to a priori predict tumor exposures of the unconjugated drug.

Our strategy for clinical translational of ADCs was recently employed by Betts et al. (13) for 

inotuzumab ozogamicin, which is an anti-CD22 mAb linked to ozogamicin (a calicheamicin 

derivative) via an acid-labile linker. The authors employed the mechanistic PK-PD model to 

translate the efficacy of ADC from animals to human, and a priori predicted the PFS in non-

Hodgkin’s lymphoma patients following the ADC treatment. Using the translated PK-PD 

model, the authors also evaluated the performance of different dosing regimens in the clinic 

and concluded that fractionated dosing regimen was much more efficacious than a traditional 

“once per 3 weeks” (Q3W) regimen. Using PK-PD M&S, Betts et al. were also able to 

highlight the expected differences in the tumor cell exposure of the released drug between 

solid tumors and liquid cancers like acute lymphocytic leukemia (ALL).

Here we provide the validation of our PK-PD M&S-driven translational strategy using 

clinically approved ADC T-DM1, with the goal of presenting a general translational strategy 

that can be employed for clinical development of other novel ADC molecules. Previously, 

we have presented the development and validation of an augmented tumor disposition model 

for T-DM1 ((14), which is an ADC that consists of a non-cleavable linker. Briefly, 

intracellular catabolism of T-DM1 was characterized in three different HER2-expressing cell 

lines using a cellular PK model, where the parameter associated with intracellular 

degradation of ADC was introduced. Disposition of released drug across the tumor cells was 

characterized using passive diffusion and active efflux terms. The updated cellular model for 

ADC was integrated with the tumor disposition model to a priori predict tumor exposures of 

different analytes of T-DM1. In the analysis described within this paper, the previously 

developed preclinical tumor PK model for T-DM1 (14) was merged with a PD model to 

develop a PK-PD model that can characterize tumor growth inhibition (TGI) data generated 

following T-DM1 administration in a range of tumor bearing mice, where different tumors 

had differing levels of HER2 expression. Parameters associated with the preclinical PK-PD 

model of T-DM1 were translated to the clinic by using clinically observed breast cancer-

related parameters and allometrically scaled human PK of T-DM1. Clinical trial simulations 

were performed for multiple phase-II and phase-III trials of T-DM1, and the simulated PFS 

was compared with the observed data in patients with varying levels of HER2 expression. 

Finally, different dosing regimens for T-DM1 were compared using the validated PK-PD 

model.

MATERIALS AND METHODS

Plasma Pharmacokinetic Model

Figure 1a describes the integrated plasma PK model for T-DM1. Similar structural model 

was assumed across different species (mice, monkeys, and humans) to characterize the PK 

of multiple analytes of T-DM1 (i.e., total trastuzumab—TTmAb, T-DM1, and DM1 

catabolites) in the systemic circulation. The biexponential profile of TTmAb/T-DM1 was 
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captured by a two-compartment model with linear elimination from the central compartment 

(CLADC). The distribution of TTmAb/T-DM1 to the peripheral compartment was 

characterized using a clearance distribution term (CLDADC). To characterize the faster 

eliminating profile of T-DM1 compared to TTmAb, an additional 1st-order elimination rate, 

coined as “non-specific deconjugation rate ,” was introduced. The presence of both 

TTmAb and T-DM1 profiles allows the estimation of the two distinct clearance pathways 

from the central compartment of the ADC. Both elimination pathways of T-DM1 serve as 

the input for the central compartment of DM1 catabolites. Disposition of released DM1 

catabolites is also characterized using a two-compartment model with a linear elimination 

(CLDrug) from the central compartment and distributional clearance (CLDDrug) to the 

peripheral compartment. Detailed model equations are provided below, and the description 

of each state variable is provided in Supplementary Table S2.

(1)

(2)

(3)

(4)
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(5)

(6)

(7)

Integrated Tumor PK-PD Model

Figure 1b describes the schematics of the integrated PK-PD model used to characterize 

tumor disposition of ADC and the released drug as well as ADC-induced regression in 

tumor volume. Mechanistic processes involved in the tumor disposition of ADC are 

described in detail in our previous work (10,11,14). Briefly, after T-DM1 administration in 

the systemic circulation, disposition of both ADC and the released drug is characterized by a 

two-compartment model as explained in Fig. 1a. Due to high interstitial pressure and lack of 

functional lymphatic system in a tumor microenvironment, the exchange of ADC and small 

molecule is assumed to be limited to only diffusive processes. As described in the original 

model developed by Wittrup et al. (15–17), the exchange of both ADC and released drug is 

characterized by molecular size-specific permeability and diffusion associated terms (see 

Eqs. 8 and 16). With an assumption of a spherical tumor, size/radius of the tumor determines 

the rate of ADC/drug exchange in the tumor via diffusion across the tumor surface or 

permeability across the blood vessel endothelium. These terms are reflected in Fig. 1b as the 

surface exchange and vascular exchange processes. At lower tumor sizes, the surface 

exchange predominates whereas at higher tumor sizes, the vascular exchange predominates. 

Effectively, higher concentrations of ADC and drug achieved in certain parts of the tumor 

due to heterogeneous distribution of ADC/drug are characterized by incorporating “void 

volume (ε)” terms specific to antibody and small molecule. Within the tumor 

microenvironment, a cellular space is assumed to characterize the catabolism of ADC 
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molecules. ADC molecules in the extracellular space are available to bind (characterized 

using  and ) to free HER2 followed by antigen-mediated internalization 

( ) and proteases-induced degradation ( ) processes. Free drug released in the 

cytoplasm after degradation of ADC is available to bind to microtubules, characterized using 

total tubulin concentration (Tubtotal) and binding constants (  on and ). Free 

unconjugated drug in the cytoplasm is transported outside via a bidirectional diffusion 

process operating across the concentration gradient and an outward active efflux process. 

Unconjugated drug generated in the extracellular space, either via non-specific 

deconjugation process or from the cellular release, is then transported outside the tumor 

microenvironment via drug-specific permeability and diffusion terms explained earlier.

To model the PD effect of T-DM1, intratumoral DM1 concentrations were assumed to 

induce the tumor regression. Growth of the tumor was modeled using an equation proposed 

by Haddish-Berhane et al. (12), which is a modification of the original cell distribution 

model proposed by Simeoni et al. (18). When the tumor is small, the growth is characterized 

mainly using the exponentially function KgEx, and as the tumor grows, the model switches 

from exponential growth to linear growth (KgLin). At a very late stage, the tumor volume 

reaches a maximum carrying capacity (Vmax) and the tumor stops growing. Total 

intracellular concentrations of unconjugated DM1 catabolites (free and tubulin bound) were 

used to induce the regress in the tumor volumes (TV(t)) using a 1st-order killing rate 

constant (KKill).

All the model equations associated with the PK-PD model are provided below, and the 

details of model parameters are provided in the Table I. The description of each state 

variable is provided in Supplementary Table S2.

Equations associated with tumor distribution of T-DM1 and DM1 containing catabolites are 

as follows

(8)

(9)
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(10)

(11)

(12)

(13)

(14)
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(15)

(16)

(17)

(18)

Equations associated with tumor growth inhibition by T-DM1 are as follows:
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(19)

(20)

(21)

Model Building and Validation Datasets

Tables II and IV and Supplementary Table S1 list different preclinical and clinical studies of 

T-DM1, data from which is used to validate the PK-PD M&S-based translational strategy for 

ADCs. TGI study dataset (Table II) is obtained from diverse sources and incorporates 

different mouse models (xenografts, patient-derived xenograft (PDX), and orthotropic), 

different cell lines with varying levels of HER2 expression, and different doses and dosing 

regimens of T-DM1. T-DM1 PK in monkeys (Table S1) is obtained from different 

toxicokinetic studies, where 3- and 10-fold higher doses than the clinically approved dose 

were administered in a single or multiple dosing regimen, and three different analytes 

(TTmAb, T-DM1, and DM1) were measured (25,26). PK dataset in humans was obtained 

from both phase-I and phase-II studies conducted at the clinically approved dose of 3.6 

mg/kg Q3W in HER2-positive metastatic breast cancer patients (20,27). Table III lists 

clinically reported values for tumor growth parameters, which were obtained from different 

sources in the literature and utilized for translating the PK-PD model. Table IV lists the 

details of different clinical trials (phase-II and phase-III), which were utilized for the 

validation of model-predicted PFS values (7,28–30). In all the clinical publications, both 

independent radiological facility (IRF) and investigator (INV) assessments were presented, 

and both were reported to be very similar.

PK-PD Translation Strategy and Data Analysis

Figure 2 provides the step-by-step details of our general PK-PD M&S-based preclinical-to-

clinical translational strategy for ADCs. The same strategy was employed in this 

investigation to develop/validate a mechanistic PK-PD model for T-DM1, which was then 

used to a priori predict the clinical PK and PFS for the ADC.

Characterization of intracellular and tumor disposition of ADCs—First two steps 

of our strategy include (i) characterization of the cellular disposition of T-DM1 in an in vitro 
system and (ii) integration of the cellular disposition model with the in vivo systemic PK and 

tumor disposition model to a priori predict tumor exposures for different analytes of T-DM1 
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in xenograft mouse model. These two steps have been accomplished for T-DM1 and have 

been reported in detail in our previously published manuscript (14).

Estimation of efficacy parameters for ADCs using PK-PD model—Third step of 

the strategy entails using the predicted intratumoral concentrations of DM1 catabolites to 

drive the TGI data in various mouse models, in order to estimate the efficacy parameters for 

the ADC. The model described in Fig. 1b was used to accomplish this step. Our previous 

work on cellular disposition of T-DM1 used common cellular PK parameters for three 

different HER2-expressing cell lines, which differed only in their levels of HER2 

expression. Consequently, it was assumed that antigen expression was the only varying 

parameter among different mouse models included in this analysis. For the PDX tumors for 

which no information on the receptor numbers per cell was available, we converted the semi-

quantitative immunohistochemical (IHC) scores of PDX tumors into HER2 receptor 

numbers per cell using the work of Van der Lee et al. (19). These authors have performed a 

comparative analysis of semi-quantitative IHC scores of PDX tumor tissues with established 

breast cancer cell lines, and based on their analysis, we assumed that a 3+ mouse model has 

∼1 million, 2+ has ∼0.5 million, and 1+ has ∼0.1 million HER2 receptors per cell. Tumor 

concentrations of the released drug following systemic administration of ADC in different 

mouse models were predicted using the multi-scale mechanistic tumor disposition model 

presented before (Fig. 1b). In order to characterize the TGI data, all datasets pertaining to a 

given mouse model were fitted simultaneously. From each tumor model, the growth rate of 

the tumor and ADC-induced killing rate constant (KKill) was estimated, along with the log-

normal distribution of the parameter (i.e., ). Based on all the animal models, a 

composite distribution of estimated killing rate constants and tumor doubling times was 

generated.

Characterization of pharmacokinetics of T-DM1 in monkey—The 4th step of the 

translational strategy involves estimation of monkey PK parameters for the ADC. PK 

profiles of different T-DM1 analytes in monkey after the systemic administration of ADC 

were fitted simultaneously using the model shown in Fig. 1a to estimate the T-DM1 PK 

parameters in monkeys.

Prediction of clinical PK of ADC using allometric scaling of monkey PK—PK 

parameters for TTmAb/T-DM1 and DM1 were scaled up using the following allometric 

equation

(22)

where “θ” in Eq. 22 stands for the mean value of the four pharmacokinetic parameters (i.e., 

CL, CLD, V1, and V2) for either TTmAb, T-DM1 or small molecule DM1. The term “e” 

refers to the allometric exponent used to scale up the parameter from monkeys to humans. In 

case of mAb (TTmAb/T-DM1), exponent value of “1” was used for all the PK parameters, 

as per our previous report (12). In case of small molecule (DM1), however, exponent of 

Singh and Shah Page 10

AAPS J. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“0.75” was used for CL and CLD and “1” was used for V1 and V2. The value of non-

specific deconjugation rate ( ) was assumed to be the same between monkeys and 

humans. Scaled up human PK parameters for the ADC were used to perform Monte Carlo 

simulations on 250 subjects, and the resulting median and 2.5th and 97.5th percentile 

profiles were superimposed over the observed PK profiles of T-DM1 in the clinic to assess 

the quality of the allometric scaling.

Prediction of PFS—The PK-PD model shown in Fig. 1b was used to perform clinical trial 

simulation in HER2-expressing breast cancer patients in order to predict PFS for T-DM1. In 

the translated PK-PD model, systemic PK parameters for T-DM1 were scaled up from 

monkey PK parameters as described above, and T-DM1 tumor disposition parameters were 

the same as used preclinically (14). Based on the systemic PK and preclinically validated 

tumor disposition model, the tumor concentrations of ADC were predicted. While there is no 

clinical data to validate the predicted tumor concentrations of ADC in the clinic, it is known 

that plasma PK of ADC is notably different than tumor PK, and therefore, it is hypothesized 

that the model generated tumor PK of ADC would be a better driver to characterize ADC-

induced tumor regression in the clinic. The tumor growth parameters estimated for mice 

were replaced by clinically observed growth parameters for HER2+ metastatic breast cancer 

patients (Table III). The physiological and biochemical heterogeneity (variability) in the 

breast cancer patients that would lead to different tumor growth rates was accounted for by 

including literature reported variability values of the growth rate parameter during clinical 

trial simulations (Eq. 19; Table III). Difference in the antigen expression levels between 

different patients was also accounted for by including different absolute HER2 receptor 

number values in different patient populations during the clinical trial simulations. In the 

absence of any direct information about the number of HER2 receptors in HER2 

overexpressing patients, it was assumed that HER2 3+ and 1+ patients expressed ∼1 and 

∼0.1 million HER2 receptors on the surface of cancer cells, respectively. Variability in the 

inherent sensitivity for T-DM1 between different patient populations was accounted for by 

utilizing different preclinically estimated KKill values (obtained from 11 different TGI 

studies) along with their estimated variability to predict the clinical efficacy. Clinical trial 

simulations were performed (via stochastic simulation) for 1000 breast cancer patients in the 

presence and absence of 1 year therapy with T-DM1 (mimicking studies described in (7,28–

30) at the clinically approved dosing regimen of 3.6 mg/kg given Q3W. Patients with HER2 

positive status of 3+ and 1+ were simulated. PFS values were calculated from the simulated 

tumor diameters every month (up to 16 months) using the Response Evaluation Criteria In 

Solid Tumors (RECIST) criteria (34) and superimposed over the observed data for 

comparison. As the model simulations did not specifically address the effect of patient 

censoring on PFS, this effect was evaluated by creating artificial scenarios where 10% (n = 

100) of the population was censored from upper, middle, lower, and entire range of 

simulated tumor profiles for HER2 3+-expressing patients (n = 1000). PFS rates between the 

original and different censored populations were compared.

Calculation of changes in ORRs at different dose levels—The translated PK-PD 

model for T-DM1 was used to explore clinical dose-response relationship for the ADC. T-

DM1 treatment at the doses ranging from 0.1 to 20 mg/kg, given Q3W for 1 year, was 
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evaluated. Objective responses were binned into four categories based on RECIST 

guidelines: (i) complete response (tumor undetectable, assumed diameter <0.5 cm), (ii) 

partial response (>30% decrease in tumor diameter, but still detectable), (iii) stable disease 

(<30% decrease and <20% increase in tumor diameter), and (iv) progressive disease (>20% 

increase in tumor diameter) (34). Changes in ORRs observed at 16 months post start of the 

T-DM1 treatment were used to establish the dose-response relationships.

Effect of different dosing regimens on PFS—The translated PK-PD model was used 

to evaluate the performance of a fractionated dosing regimen of T-DM1 in the clinic. The 

total amount of ADC dose per cycle and the total number of cycles were kept constant while 

evaluating different regimens. Effects of T-DM1 on tumor growth were evaluated at the 

following: (a) 3.6 mg/kg given every 4 weeks (Q4W); (b) 1.2 mg/kg given every 1 week 

(Q1W); and (c) 3, 0.3, and 0.3 mg/kg given on days 0, 7, and 14 of a 21-day cycle (front-

loading regimen). Predicted PFS for each regimen was compared with the PFS obtained at a 

clinically approved dosing regimen of 3.6 mg/kg given Q3W in patients with HER2 3+ and 

1+ status.

Modeling and simulation—All the datasets were digitized from original publications 

using Grab It!® software package. To minimize the error associated with digitalization, 

time-point values for all the digitized data points were replaced with the original reported 

time-point values in the publications. Stochastic simulations for the PK-PD model were 

performed using the software Berkeley Madonna (University of California at Berkeley, CA), 

and model was fitted to the data using maximum likelihood (ML) estimation methods in 

ADAPT-5 software (BMSR, CA) (35). For the model fitting, following variance model 

(Var(t)) was used, where σintercept refers to the additive error and σslope refers to the 

proportional error with respect to the model prediction (Y(t)):

(23)

RESULTS

TGI data fittings using the PK-PD model

Figure 3 describes the model fitting for 11 different HER2+ tumor bearing mouse models. 

Different dosing regimens and data from different studies were pooled together to estimate 

the unified growth and T-DM1 efficacy parameters for each mouse model. For most of the 

TGI studies, distinct linear and saturable phases were unavailable in the observed growth 

data. Therefore, a minimalistic exponential growth model was used to capture all the growth 

profiles. A unified doubling time  was able to capture all data for a given mouse 

model. A linear killing function was chosen over a non-linear killing function due to model 

identifiability issues. The mean value and inter-individual variability on the linear efficacy 

parameter (KKill) was estimated with reasonable precision for most tumor models (see Table 

I). Most of the mean estimates on inter-individual variability (IIV) were below 40%, 

whereas in some mouse models (e.g., MAXF 449 TNBC), incorporation of IIV was not 
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required. All the estimated doubling time values and killing constants (KKill) are plotted 

together in Supplementary Fig. S1 and Fig. 3l, respectively. The distribution of killing rate 

constants (KKill) (Fig. 3l) was later used to perform the stochastic simulations for clinical 

translation. While translating for high-expressing (HER2 3+) population, the distribution of 

efficacy parameters from 3+ mouse models was used, whereas for low-expressing (HER2 

1+) population, the mean and standard deviation from 1+ mouse models was used to 

perform the stochastic simulations.

Fitting monkey plasma PK and prediction of T-DM1 human PK

Figure 4 (A1–3) shows the simultaneous fitting of systemic PK profiles of three different 

analytes of T-DM1 (TTmAb, T-DM1, and DM1) in monkey using the integrated systemic 

PK model shown in Fig. 1a. The model was able to capture all the data (detailed in 

Supplementary Table S1) very well. Due to a lower precision (>50% CV) on the estimate of 

the central compartment volume of distribution (V1) for the DM1 catabolite, it was fixed to 

a value similar to central compartment volume of distribution for antibody. This assumption 

is based on the expectations that the initial volume of distribution for the molecules released 

from ADC will be similar to that of the ADC itself. The rest of the model parameters were 

estimated with a good precision (CV% <50).

In order to evaluate the quality of the allometrically scaled human PK parameters for the 

ADC, Monte Carlo simulations (n = 250) were performed using the scaled mean parameters 

(as described in the “MATERIALS AND METHODS” section) and their associated 

variability. The median PK profiles and 95% confidence interval around it were 

superimposed over the clinically observed PK data. As shown in Fig. 4 (B1–3), the 

predictions very well matched the observed data for all three analytes and most of the data 

fell within the 95% confidence interval. While the predicted median PK profiles for TTmAb 

and T-DM1 passes through the middle of the observed data, there was a systemic bias 

(under-prediction) observed for the DM1 profile. This discrepancy can result from several 

assumptions, including the use of standard small molecule coefficients for allometric scaling 

(36), use of an ADC deconjugation rate similar to monkey, formulation impurities, and 

analytical method related issues. Nonetheless, since it is known that the systemic 

concentrations of the released drug do not contribute significantly towards the total tumor 

concentrations of the drug (10,14), the scaled-up human PK parameters were deemed 

acceptable for further analysis.

Predictions of the clinical efficacy of T-DM1

Figure 5 (A1–3) shows the simulated tumor diameters for different patient populations (1000 

patients/population), after 1 year therapy with T-DM1 at the dosing regimen of 3.6 mg/kg 

given Q3W. Clinical trial simulations were conducted to mimic the actual clinical trials 

reported in Table IV. Clinically relevant growth values along with scaled up human PK and 

estimated mouse efficacy parameters ( , 

)were used to make PFS predictions. The PFS predictions for 

control (non-treatment) arm were very similar to observed PFS in non-responding patients 

with normal levels of HER2 expression (Fig. 5 (B)). The PFS predictions in HER2 1+ 
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patients were very close to the observed PFS in clinic for HER2+ patients having below 

median level of HER2 expression. It is important to note that we only had two HER2 1+ 

preclinical mouse model data, and availability of more preclinical data would have 

strengthen this predictions. The predictions made for HER2 3+ patients very well 

superimposed over the observed PFS from three different clinical trials, where the 

overexpression of HER2 in the participants was experimentally determined using the IHC 

score of 3+ (7,28–30). The effect of patient censoring on the simulated PFS rates is shown in 

the Supplementary Fig. S2. The PFS rates between the original and different censored 

populations completely superimpose each other, suggesting that the chosen sample size (n = 

1000) for PFS predictions is large enough to prevent the generations of any bias associated 

with patient censoring.

Prediction of ORR vs. dose relationship

Figure 6a describes the changes in the ORRs (i.e., PD, CR, SD, and PR) with an increase or 

decrease in clinically approved dose of T-DM1. The model predicted a gradual decrease in 

progressive disease, gradual increase in complete response, minimal decrease in stable 

disease, and no changes in partial response, with increasing dose of T-DM1 in a Q3W 

regimen. A decrease in the dose resulted in relatively steeper changes in the ORRs. Overall, 

the predicted improvements in ORRs with an increase in the clinically approved dose of T-

DM1 were minimal.

Effect of different dosing regimens on PFS

Figure 6b, c shows the predicted effects of different dosing regimens of T-DM1 on the PFS 

of both HER2 1+ and 3+ breast cancer patients (n = 1000). In both the patient populations, 

T-DM1 given at 3.6 mg/kg Q4W (in pink) resulted in a slight reduction in the PFS compared 

to the established dosing regimen of 3.6 mg/kg given Q3W (in red). However, both the 

fractionated regimens (1.2 mg/kg given Q1W (green) and 3.0 + 0.3 + 0.3 mg/kg (yellow) 

given on days 0, 7, and 14 of a 21-day cycle) resulted in a modest improvement in the PFS 

compared to the clinically approved regimen.

DISCUSSION

Despite significant efforts to improve the discovery and development of novel anticancer 

agents, the success rate for their bench-to-bedside translation remains low. Majority of these 

failures occur in the late stages of clinical development due to the lack of significant 

improvement in the efficacy compared to the standard of care treatment. This also applies to 

ADCs. Some of the most prominent discontinuations of ADC molecules over the last decade 

include the following: CD56-targeting IMGN901 (ImmunoGen Inc.) after phase-II trial in 

small cell lung cancer patients (37), CD33-targeting Gemtuzumab Ozogamicin (Mylotarg®, 

Pfizer Inc.) after phase-III trial in acute myeloid leukemia (AML) patients (25), CD-70 

targeting SGN-75 (Seattle Genetics, Inc.) after phase-Ib trial in renal cell carcinoma patients, 

and CD33-targeting SGN-33 (Seattle Genetics, Inc.) after phase-IIb trial in acute myeloid 

leukemia (AML) patients (38). Lower clinical success rates are often a result of failure to 

correctly translate the information learned from preclinical investigations in order to predict 

the clinical outcomes (39). These disappointments often lead to skepticism in the current 
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preclinical methodology/animal models, and their ability to accurately identify promising 

candidates for the clinic (40). However, often the failures are not a result of poor preclinical 

models, but rather inability to adequately translate the preclinical exposure-response 

relationships to the clinic. For the targeted molecules like ADCs, whose plasma 

concentrations are not in rapid equilibrium with the tumor concentrations, the discrepancies 

in preclinical and clinical TGI responses especially arises when plasma concentrations are 

used to drive the efficacy of an ADC using an empirical PK-PD model (41). Additionally, 

differences in the antigen expression levels, tumor size, and growth rates, as well as 

sensitivity of the cells to the drug molecules, also lead to preclinical-to-clinical translational 

failures. Consequently, a mechanistic model that accounts for the disposition of ADC in the 

tumor, based on the systemic exposure of the ADC and key tumor biomeasures (e.g., tumor 

size, antigen expression level, antigen internalization, etc.), is often more suitable to develop 

a clinically translatable PK-PD relationship. We have developed one such model for ADCs 

(11), which has been previously applied to predict the clinical outcomes of brentuximab-

vedotin (11) and inotuzumab-ozogamicin (13). In this paper, we present further validation of 

the mechanistic PK-PD model and associated PK-PD M&S-based preclinical-to-clinical 

translational strategy for ADCs, using a case study on the clinically approved ADC T-DM1.

Figure 2 provides the detailed step-by-step methodology adopted in the development of a 

clinically translatable PK-PD model for ADCs. Step 1 involves the development of a cellular 

PK model that is able to characterize in vitro disposition of the ADC in the target tumor 

cells. Such models are really helpful in characterizing key processes like ADC binding and 

internalization, ADC degradation and linker-cleavage, drug release and interaction with the 

intracellular site-of-action, as well as efflux of released drug in the extracellular space. With 

the help of in vitro PK profiles of multiple analytes (e.g., total antibody, conjugated 

antibody, total drug, and unconjugated drug), one can accurately estimate the values of the 

parameters that represent the key intracellular processes mentioned above. Such cellular 

level PK model for T-DM1 has been developed by us before (14), which was able to 

estimate the values of prominent pathways responsible for bringing DM1 to intracellular 

site-of-action (i.e., tubulin) in different HER2-expressing cell lines. This model is different 

than the one previously used to characterize the cellular PK of brentuximab-vedotin (11), as 

it is augmented with intracellular degradation rate of ADC and accounts for both passive as 

well as active pathways of drug efflux from the tumor cells.

Step 2 of the strategy involves integration of the cellular disposition model of ADC 

(developed in step 1) with the in vivo tumor disposition model of ADC and validation of this 

PK model in a murine tumor model. Data from a tumor biodistribution study, including 

plasma and tumor exposures for different analytes of ADCs, is required to accomplish this 

step. First the plasma PK of all the analytes is characterized using the model shown in Fig. 

1a, and then the systemic PK parameters are incorporated in the model shown in Fig. 1b to a 
priori predict tumor exposures of different analytes just based on their plasma PK. Thus, this 

step serves as a validation step for the tumor distribution model of ADC. Using the 

molecular size specific parameters for antibody and small molecule distribution into the 

tumor, our model has been able to a priori predict the tumor exposures for multiple ADCs in 

the past (brentuximab-vedotin (12), A1mcMMAF (10)), including T-DM1 (14).
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Step 3 of the strategy is aimed towards estimating the efficacy of the ADC preclinically. The 

concentrations of the active component (i.e., released drug) at the site-of-action (i.e., tumor 

cells), which is predicted using the PK model developed in step 2, is used to drive the 

efficacy of the ADC. The TGI data obtained from different preclinical tumor models is 

characterized using the PK-PD model shown in Fig. 1b to estimate the efficacy-related 

parameters for the ADC and establish a reliable exposure-response relationship for the ADC. 

It is advisable to incorporate the TGI data from diverse preclinical tumor model for this step 

(42). For example, in the analysis presented in this manuscript, we have used TGI data for T-

DM1 obtained from five xenograft, five patient-derived xenograft (PDX), and one 

orthotropic mouse model. Additionally, it is advisable to use the tumor models with diverse 

antigen expression levels. For the T-DM1 analysis presented here, the mouse models differed 

in the level of HER2 expression, and belonged to 1+, 2+, and 3+ IHC scores (see Table II). It 

is also advisable to use the TGI data obtained following the administration of ADC via 

different dosing regimens, as shown for T-DM1 in the Fig. 3. This step also allows one to 

obtain a biological distribution of tumor growth rates (e.g., doubling times) (Supplementary 

Fig. S1) and ADC efficacy parameters (e.g., killing rate) based on different animal tumor 

models (see Fig. 3l), which can be further used for realistic clinical trial simulations.

Step 4 involves prediction of the human PK of ADC in order to incorporate it in the PK-PD 

model shown in Fig. 1b for the clinical trial simulations. In both previous translation reports 

(Shah et al., JPKPD (11), and Betts et al., AAPSJ (13)), clinical PK of the ADC was first 

characterized using available clinical data and then the efficacy was predicted. However, in 

this paper, we have employed a more prospective strategy where clinical PK for different 

ADC analytes (i.e., total antibody, conjugated antibody, and unconjugated drug) is predicted 

a priori using preclinical data. For mAbs, it is shown that single-species allometric scaling of 

the monkey PK parameters provides a good a priori estimate of the human PK parameters 

(43). Based on this report, and our prior experience with allometric scaling of ADC PK (12), 

we prefer to allometrically scale up the PK of ADCs in monkey to predict the human PK. 

For T-DM1, the PK model shown in Fig. 1a was able to simultaneously characterize the 

monkey PK of all three analytes (TTmAb, T-DM1, and DM1) at two different dose levels 

reasonably well. There have been reports in the literature where more complex PK models 

have been used to characterize the deconjugation of T-DM1 and disposition of different 

DAR species of T-DM1 (44,45). However, most of the time the systemic PK for individual 

DAR species is not available, and hence, we have refrained from using those models. In 

addition, our previous work has shown that the 1st-order non-specific deconjugation rate 

constant ( ) for ADC, which is used in the model shown in Fig. 1a, is able to well 

characterizes the faster elimination of conjugated mAb compared to the total mAb (see 

Table I). In order to scale the PK of T-DM1 from monkey to human, a scaling exponent of 1 

was used for both CL and V of ADC, whereas the scaling exponents of 0.75 and 1 were used 

for CL and Vof DM1 catabolites. While the exponents used for DM1 are typical for small 

molecular drugs, there are no universally accepted scaling coefficients for ADCs. For mAbs, 

the allometric scaling exponents vary based on whether the molecule exhibits target-

mediated disposition (9,46) or linear pharmacokinetics (43,47), and the same may be true for 

ADC. However, on top of the mAb elimination, the PK of ADC is also determined by the 

deconjugation of drug from the ADC, scaling of which across the species is not yet well 
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understood. Therefore, the scaling exponents of 1 for ADC CL and V were chosen based on 

our previous experience (12). The quality of allometrically scaled human PK parameters for 

T-DM1 was evaluated by performing Monte Carlo simulations with the scaled parameters 

and comparing the simulated PK profiles with the clinically observed PK profiles of 

different analytes of T-DM1. As shown in Fig. 6, most of the observed PK profiles for T-

DM1 analytes fell within the predicted confidence intervals, suggesting that allometrically 

scaled PK parameters are able to represent clinical PK of T-DM1 reasonably well. Of note, 

development of immunogenicity against the ADC in the clinic can impair our model’s 

ability to a priori predict plasma PK of T-DM1 in humans, as the systemic clearance of the 

ADC can be affected by the presence of anti-therapeutic antibodies. However, for T-DM1, 

very minimal immunogenicity reactions (∼4.5%) have been reported in three different 

clinical trials (48), suggesting that it would not be a significant concern for our predictions.

The final step of the translational strategy (i.e., step 5) involves prediction of the clinical 

outcomes of ADC using the translated PK-PD model that is developed by combining the 

projected human PK (from step 4) and efficacy parameters estimated from preclinical TGI 

studies (in step 3). Since PFS is the primary end point for many clinical trials and also serves 

a surrogate end point for the overall survival (OS) (49), validation of the PK-PD model-

predicted clinical response was performed by comparing the model generated PFS profiles 

with clinically observed profiles. One of the most important parameter for the clinical PK-

PD model is the growth rate of the tumor. Since the growth rates for clinical tumors are 

much slower than the rates observed in the preclinical animal models, for T-DM1 clinical 

PK-PD model, the observed growth rates for HER2+ metastatic breast cancers obtained 

from literature reported values were used. Since there is a range of values reported for the 

growth rate of breast cancer in the literature (see Table III), data from different sources were 

integrated using the growth model provided in Eq. 19 (as explained in the “MATERIALS 

AND METHODS” section). Faster doubling time reported in some studies (32) served as the 

early exponential phase (KgExp) whereas the slower doubling time reported by others (33) 

was utilized as a later linear phase (KgLin). A maximum achievable tumor burden of 523.8 

cm3 was used based on an assumption that a spherical tumor of 10 cm diameter will be fatal 

to a breast cancer patient. The validity of our predictions using literature derived tumor 

growth rate parameters was evaluated by generating PFS in the absence of ADC and 

comparing it with the clinically observed PFS in T-DM1 non-responding patients (29). In 

general, the model-predicted PFS values and the observed PFS values were quite similar; 

however, since non-responders still exhibit some degree of response with the current 

treatment on-board, a slight overprediction of the growth rate (i.e., faster decline in PFS) was 

predicted with the model (Fig. 5b). Nonetheless, these results provide confidence in our 

tumor growth model and our ability to predict clinical tumor growth using literature derived 

growth rate values for the first time.

Subsequently, the PFS predictions were made for HER2 1+ and 3+ patients using the PK-PD 

model that utilizes the T-DM1 efficacy parameters (KKill) estimated from the preclinical TGI 

studies. Information about the level of HER2 expression in different patient populations was 

derived from the reported semi-quantitative immunohistochemical (IHC) scores, using the 

same strategy that was used to estimate HER2 expression in patient-derived xenografts. The 

model-predicted PFS rates were found to be very similar to the clinically observed PFS 
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values for both below-median HER2 overexpressing patients (assumed 1+) and above-

median HER2 overexpressing patients (assumed 3+) (Fig. 5b). These results validated the 

ability of our mechanistic PK-PD model to predict the efficacy of ADC in different patient 

populations with different levels of antigen expression. In addition, for the first time, these 

results provide an evidence that our PK/PD model can be used to support the precision 

medicine efforts for ADCs in the clinic.

Once validated, the translated PK-PD model can be used to predict different clinical 

outcomes. For example, here we have used the model to simulate ORR vs. dose relationship 

for T-DM1. Figure 6a describes the simulated relationship, which suggest that marginal 

(e.g., 2-fold) increase in the clinical dose (3.6 mg/kg given Q3W) of T-DM1 is not expected 

to improve the efficacy or change the ORRs significantly. We have also used the translated 

PK-PD model to evaluate the effects of alternative dosing regimens on the simulated PFS for 

T-DM1 in HER2 1+ and 3+ patients. As shown in Fig. 6b, c, model simulations suggested 

that the two different fractionated dosing regimens (1.2 mg/kg given Q1W and 3.0 + 0.3 

+ 0.3 mg/kg given on days 0, 7, and 14 of a 21-day cycle) were relatively more efficacious 

than the clinically approved dosing regimen. The increased benefit was more prominent in 

“high HER2-expressing” (HER2 3+) population as compared to “low HER2-expressing” 

(HER2 1+) population. Of note, there was a substantial delay of 2–4 months (3–4 cycles) 

before the improved tumor responses were observed with the fractionated dosing regimen, 

and based on the modeling analysis, we hypothesize that this was due to the amount of time 

needed for accumulation of enough drug (DM1 catabolites) in the tumor with the new 

regimen. Jumbe et al. (20) have also evaluated different dosing regimens for T-DM1 (Q1W, 

Q2W, and Q3W) in preclinical HER2-expressing animal models (BT474EEI and F05). They 

concluded that there was no improvement in the efficacy of ADC when a fractionated dosing 

regimen was used. The discrepancy between our clinical simulations and preclinical 

observations by Jumbe et al. may stem from the use of very high ADC dose (i.e., 15 mg/kg) 

in the preclinical study. At this high dose (∼4.5-fold higher than the clinically approved dose 

of 3.6 mg/kg), all the regimens may be very efficacious, and it may be hard to assess the 

differences in the efficacy with different dosing regimens. While the fractionated dosing 

regimen has been shown to be more efficacious for other ADCs (50), superiority of the 

fractionated dosing regimen for T-DM1 can only be evaluated once the PK-PD model is also 

combined with the PK-TD model (51) to assess how the therapeutic index (TI) for the ADC 

changes with this regimen.

While the translational strategy presented here is capable of a priori predicting clinical PK-

PD of ADCs, there are several issues that need to be considered before implementing it. This 

strategy heavily relies on preclinical data to accomplish the end goal. Thus, if the ADC used 

for clinical translation is produced in-house, one needs to generate a wealth of data to 

support this strategy. On the other hand, if most of the preclinical data for this work come 

from published studies, the error associated with digitization of data and misinterpretation of 

published experimental methods needs to be considered. If the strategy is used to predict 

clinical PK and efficacy of an ADC that is at the discovery or early development stage, one 

needs to keep in mind that there may not be a way to validate the predictions made by the 

model. Lastly, it is also important to keep in mind that the predictions made by the model are 
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only approximations, and the quality of the predictions is as good as the quality of the 

parameter values used to perform clinical simulations with the model.

In summary, here we have presented a generalized PK-PD M&S-based strategy for 

preclinical-to-clinical translation of ADCs, using T-DM1 as an example. This strategy has 

been now retrospectively validated for multiple clinically approved ADC molecules with 

varying drug-linker chemistries. In this paper, we have specifically presented the capability 

of the translated PK-PD model to a priori predict PFS for T-DM1 in different patient 

populations. The model was also able to provide an insight into how the ORRs and PFS for 

the ADC will change based on a change in the clinically approved dosing regimen for the 

ADC. While the validation presented here was for a clinically approved ADC, all the 

translational steps were blinded to the availability of clinical data, providing us confidence 

that the strategy presented in this manuscript can serve as a valuable tool for bench-to-

bedside translation of other novel ADC molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematics of the mathematical models used for the PK-PD analysis. a A PK model 

consisting of two integrated two-compartment models used for simultaneously 

characterizing the disposition of T-DM1 and DM1 catabolites in the systemic circulation. b 
A multi-scale PK- PD model used for characterizing the tumor distribution of T-DM1 and 

DM1 catabolites and ADC-induced tumor growth killing (refer to the “MATERIALS AND 

METHODS” section for the complete description of the model)
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Fig. 2. 
A flowchart detailing the proposed PK-PD M&S-based strategy for the preclinical-to-

clinical translation of ADCs
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Fig. 3. 
Observed (symbols) and PK-PD model fitted (lines) profiles of tumor growth inhibition by 

T-DM1 in different mouse tumor models. a BT474EEI. b Fo5. c Calu-3. d KPL4. e N87. f 
BT474. g MAXF 1162. h HBCx-34 HP. i ST313 HP. j HBCx-10 TNBC. k MAXF 449. l 
Estimated mean and inter-individual variability for T-DM1 killing rate constants in different 

mouse models
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Fig. 4. 
A1–3 Observed (symbols) and model fitted (lines) PK profiles for total trastuzumab (black), 

T-DM1 (purple), and DM1 (yellow), after T-DM1 administration in cynomolgus monkeys. 

A1 Ten milligrams per kilogram given Q3WX4. A2 Thirty milligrams per kilogram single 

dose. A3 Thirty milligrams per kilogram given Q3WX4. B1–3 Allometrically scaled PK 

parameters based human PK predictions for T-DM1 superimposed over observed PK in 

metastatic breast cancer patients. The solid lines represent predicted median, and the dotted 
lines represent 2.5th and 97.5th percentiles. Observed data are represented as symbols. B1 
Total trastuzumab. B2 T-DM1. B3 DM1 PK after 3.6 mg/kg T-DM1 administration in 

monkeys at the dosing regimen of Q3WX4
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Fig. 5. 
A1–3 Model generated simulations of tumor diameters in A1 control or no-treatment, A2 T-

DM1-treated HER2 1+ patients, and A3 T- DM1-treated HER2 3+ patients. B Model-

predicted PFS rates in HER2+ metastatic breast cancer patients (solid lines) overlaid with 

observed PFS rates (dotted lines) in the clinical trials. Non-responding population is shown 

in black, HER2 1+ population is shown in purple, and HER2 3+ population is shown in red
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Fig. 6. 
a PK-PD model simulated ORR vs. dose relationships. b Effect of different dosing regimens 

on the PFS rates in HER2 1+ population. c Effect of different dosing regimens on the PFS 

rates in HER2 3+ population
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Table II

A list of tumor growth inhibition (TGI) studies used to establish preclinical PK-PD relationship for T-DM1

Preclinical tumor growth inhibition (TGI) studies of T-DM1

Mouse models Model type HER2 status Dosing regimen Reference

BT474EEI Xenograft 3+ a. 0.3-15 mg/kg Q3WX3

b. 3.3-18 mg/kg Q1WX9

c. 6-18 mg/kg Q2WX5

Jumbe et al. (20)

Fo5 Breast tissue-
derived 
orthotropic and 
metastatic 
(BOM) model

3+ a. 1-30 mg/kg Q3WX3

b. 3.3-10 mg/kg Q1WX9

Jumbe et al. (20)

Calu-3 Xenograft 3+ a. 1-7 mg/kg single dose

b. 15 mg/kg Q6DX3

a. Lewis Phillips et al. (21)

b. Cretella et al. (22)

KPL4 Xenograft 3+ a. 0.3-3 mg/kg single dose

b. 15 mg/kg single dose

a. Lewis Phillips et al. (21)

b. Lambert et al. (23)

N87 Xenograft 3+ a. 1-10 mg/kg single dose

b. 5 mg/kg single dose

a. Haddish-Berhane et al. 
(2013) (12)

b. Yamashita-Kashima et al. 
(24)

BT474 Xenograft 3+ 0.2-5 mg/kg single dose Van der Lee et al. (19)

MAXF 1162 PDX 3+ 1-10 mg/kg single dose Van der Lee et al. (19)

HBCx-34 HP PDX 2+ 3-30 mg/kg single dose Van der Lee et al. (19)

ST313 HP PDX 2+ 3-30 mg/kg single dose Van der Lee et al. (19)

HBCx-10 PDX 1+ 3-30 mg/kg single dose Van der Lee et al. (19)

MAXF 449 TNBC PDX 1+ 3-30 mg/kg single dose Van der Lee et al. (19)
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Table III

A list of clinically reported breast cancer-related parameters used to build the translated PK-PD model

Parameters Definition Value (CV %) Units Source

TV(0) Initial tumor volume derived using the following 
expression

Initial tumor lesion length = 
19 mm (101%)

mm3 Bernadou et al. (31)

Initial sum of Lengths and 
Breadth for tumor lesions 
=35 mm (125%)

DTExp Doubling time associated with the exponential 
growth phase of the tumor

25 (200%) Day Pearlman et al. (32)

DTLin Doubling time associated with the linear growth 
phase of the tumor

621 (85%) Day Weedon-Fekjær et al. (33)

Ψ Switch between exponential growth and linear 
growth phases

20 Unitless Haddish-Berhane et al. (12)

Vmax Maximum achievable tumor volume 523.8 cm3 Assumed based on maximum 
achievable tumor radius to be 
5 cm (11,13)
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