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Abstract

Mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral 

sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. Several 

lines of evidence have shown that SOD1 mutations cause ALS through a gain of a toxic function 

that remains to be fully characterized. A significant share of our understanding of the mechanisms 

underlying the neurodegenerative process in ALS comes from the study of rodents over-expressing 

ALS-linked mutant hSOD1. These mutant hSOD1 models develop an ALS-like phenotype. On the 

other hand, hemizygous mice over-expressing wild-type hSOD1 at moderate levels (hSOD1WT, 

originally described as line N1029) do not develop paralysis or shortened life-span. To investigate 

if a decrease in antioxidant defenses could lead to the development of an ALS-like phenotype in 

hSOD1WT mice, we used knockout mice for the glutamate-cysteine ligase modifier subunit 

[GCLM(−/−)]. GCLM(−/−) mice are viable and fertile but display a 70–80% reduction in total 

glutathione levels. GCLM(−/−)/hSOD1WT mice developed overt motor symptoms (e.g. tremor, 

loss of extension reflex in hind-limbs, decreased grip strength and paralysis) characteristic of mice 

models over-expressing ALS-linked mutant hSOD1. In addition, GCLM(−/−)/hSOD1WT animals 

displayed shortened life span. An accelerated decrease in the number of large neurons in the 

ventral horn of the spinal cord and degeneration of spinal root axons was observed in symptomatic 

GCLM(−/−)/hSOD1WT mice when compared to age-matched GCLM(+/+)/hSOD1WT mice. Our 

results show that under conditions of chronic decrease in glutathione, moderate over-expression of 

wild-type SOD1 leads to overt motor neuron degeneration, which is similar to that induced by 

ALS-linked mutant hSOD1 over-expression.
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Introduction

The tripeptide glutathione (GSH, γ-l-glutamyl-l-cysteinyl-glycine) is the main non-protein 

thiol found in most aerobics cells. Glutathione serves several physiological functions 

including: i) direct quenching of radicals, ii) providing reducing equivalents for enzyme-

mediated degradation of hydrogen peroxide and organic hydroperoxides, iii) maintenance of 

protein thiol groups, iv) detoxification of electrophilic xenobiotics, v) providing a reservoir 

for cysteine and vi) modulation of critical redox signaling events (Meister, 1988; Sies et al., 

2017). These functions critically affect cell survival under normal and pathological 

conditions.

Oxidative and nitrative stress seem to have a critical role in the pathogenic mechanisms of 

neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS or Lou 

Gehrig’s disease is characterized by the progressive degeneration of motor neurons in the 

spinal cord, brain stem, and motor cortex. Motor neuron death leads to muscle weakness and 

paralysis, usually causing death in one to five years from the time of symptoms onset. In the 

United States and the United Kingdom, ALS accounts for about 1 in 500 to 1 in 1,000 adult 

deaths (Sreedharan and Brown, 2013) and current estimates indicate that the number of 

individuals with ALS will increase by more than two thirds worldwide between 2015 and 

2040 (Arthur et al., 2016). Roughly 10% of ALS cases present with a familial history of the 

disease (familial ALS, FALS) and are most frequently linked to a dominant mutation. The 

rest of the cases do not have a familial history (sporadic ALS, SALS) and may result from 

yet unidentified environmental exposure or genetic mutations (Renton et al., 2014).

The first ALS-linked gene identified was superoxide dismutase 1 (SOD1) (Rosen et al., 

1993). Mutations in several other genes and an intronic hexanucleotide repeat expansion in 

C9orf72 (orf 72 on chromosome 9) have been identified in many FALS cases (Al-Chalabi et 

al., 2012; Ravits et al., 2013; Renton et al., 2014; Taylor et al., 2016). Up to 20% of FALS 

and 1–2% of SALS cases are linked to SOD1 mutations and a significant share of our 

understanding of the disease comes from the study of rodents over-expressing ALS-linked 

mutant human SOD1 (hSOD1), which develop an ALS-like phenotype (Gurney et al., 1994). 

In contrast, moderate over-expression of wild-type human SOD1 (hemizygous hSOD1WT, 

originally described as line N1029) leads to very late pathological changes without overt 

clinical features of the disease (Dal Canto and Gurney, 1995; Graffmo et al., 2013; Jaarsma 

et al., 2000). However, homozygous hSOD1WT transgenic mice, that express hSOD1WT at 

about 25-fold higher level than the endogenous murine SOD1, develop hind limb paresis and 

shortened median survival (Graffmo et al., 2013), suggesting that the wild-type protein can 

also be neurotoxic.

Glutathione is synthesized by the consecutive action of two enzymes, glutamate-cysteine 

ligase (GCL) and glutathione synthetase. The formation of γ-glutamylcysteine by GCL is 

the rate-limiting reaction in glutathione synthesis and is feedback inhibited by glutathione 
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itself, a mechanism responsible for the regulation of cellular glutathione concentration. GCL 

is a heterodimer composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM) 

(Lu, 2013). To explore the role of glutathione in ALS we have previously used knockout 

(KO) mice for GCLM (Vargas et al., 2011), where total glutathione content in different 

tissues is reduced by 70–80% compared to wild-type littermates. We previously found that 

the lack of GCLM significantly accelerates disease and mitochondrial pathology in 

hSOD1G93A mice (Vargas et al., 2011). Throughout the duration of the above mentioned 

studies (8–9 months), the survival of GCLM(−/−)/hSOD1WT mice was unaffected. Here we 

show that hSOD1WT animals on a GCLM-KO background display reduced grip strength 

starting at 32 weeks of age and at about 48 weeks of age develop an overt motor phenotype 

(tremor, loss of extension reflex in hind-limbs, reduced grip strength), muscle wasting, 

axonal degeneration and neuronal loss, leading to paralysis and reduced life span.

Material and Methods

Animals

hSOD1WT mice (B6.Cg-Tg(SOD1)2Gur/J) (Gurney et al., 1994) were obtained from The 

Jackson Laboratory and maintained in hemizygosis. C57BL/6J-GCLM (−/−) mice have been 

previously described (Yang et al., 2002). Both lines were kept in C57BL/6J background. In 

order to generate the animals for this study, hemizygous hSOD1WT males were mated with 

GCLM(−/−) females to obtain breeders with the following genotype GCLM(+/−)/

hSOD1WT+ and GCLM(+/−)/hSOD1WT−. Then, GCLM(+/−)/hSOD1WT+ males were 

mated with GCLM(+/−)/hSOD1WT− females to obtain the four genotypes analyzed in this 

study. The survival data in Figure 1D corresponds to 8 ♂/2 ♀ GCLM(+/+)/hSOD1WT−, 9 

♂/5 ♀ GCLM(+/+)/hSOD1WT+, 6 ♂ /3 ♀ GCLM(−/−)/hSOD1WT− and 5♂/2♀GCLM(−/

−)/hSOD1WT+. Additional animals were bred and euthanized at specific time points. 

Through the duration of the studies, animals that developed clinical conditions common in 

mice (ulcerative dermatitis, cataracts with eye inflammation, etc.) and sudden death events 

were excluded from the survival study. No apparent genotype-specific increase in the 

incidence of common clinical conditions was noted. End-stage was determined by the 

inability of the animal to right itself within 20 seconds when placed on its side. This is a 

widely accepted and published endpoint for life span studies in ALS-mice and guarantees 

that euthanasia occurs prior to the mice being unable to forage for food or water. Mice that 

were unable to right themselves within 20 seconds were euthanized immediately and 

recorded as dead for the purpose of life span studies. Hind-limb grip strength was 

determined using a grip strength meter (San Diego Instruments). Tests were performed by 

allowing the animal to grasp the grid with both hind-limbs and pulling the animal straight 

away from the grid until it released the platform. Grip strength was measured once a week, 

in each session the average peak force of three attempts was recorded. All animal procedures 

were carried out in strict accordance with the recommendations in the Guide for the Care 

and Use of Laboratory Animals of the NIH. The Animal Care and Use Committee of MUSC 

(Animal Welfare Assurance number is A3428-01) approved the animal protocol pertinent to 

the experiments reported in this publication.
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Histochemistry and immunofluorescence

Mice were transcardially perfused with 0.1 M PBS, followed by 4% paraformaldehyde in 

PBS (pH7.4). Spinal cords were removed, dehydrated, and paraffin embedded. Antigen 

retrieval was performed in a microwave oven in 0.01 M sodium citrate (pH 6.0) and serial 5 

μm sections were stained with anti-GFAP (1:500, Thermo Scientific) or anti-Mac2 (1:250, 

Abcam). All sections were permeabilized with 0.1% Triton X-100 in PBS and non-specific 

binding was blocked with 10% goat serum, 2% bovine serum albumin, 0.1% Triton X-100 

diluted in PBS for 1 h at RT. Sections were incubated with primary antibodies diluted in 

blocking solution overnight at 4 °C. Secondary antibodies diluted in blocking solution were 

incubated for 1 h at RT. Sections were mounted with Fluoro-Gel (EMS). Controls were 

performed replacing the primary antibody with pre-immune IgG or serum. Quantification of 

the relative optical density of GFAP staining in the grey matter of the ventral horn of the 

spinal cord was performed in GFAP-immunolabeled sections imaged at 40X using ImageJ 

software. Measurements were performed in at least 5 spinal cord sections per genotype. 

Mean relative optical densities values were reported as percentage of GCLM(+/+)/

hSOD1WT-mice.

Motor neuron numbers were determined in 10 μm serial sections across the lumbar spinal 

cord stained with cresyl violet. Two independent observers blinded to the genotype of the 

samples counted every fifth section and a total of 32 sections per animal were analyzed. For 

motor root morphology, lumbar spinal cord root cross sections were stained overnight with 

0.1% luxol fast blue, rinsed in 95% ethanol and water followed by differentiation in lithium 

carbonate for 10 seconds.

Western blot and real-time PCR analysis

Western blot analysis was performed as previously described (Pehar et al., 2014). A human 

specific rabbit anti-hSOD1 (clone EPR1726, Epitomics) was used to probe for hSOD1. 

Densitometric analyses were performed using ImageJ software and normalized against the 

signal obtained by re-probing the membrane with anti-actin (clone AC-15, Sigma-Aldrich). 

RNA extraction, RNA retrotranscription and real-time PCR were performed as previously 

described (Pehar et al., 2016). Specific primers were as follows: Chrna1/5′: 5′-

GGTCGGCTCATTGAGTTACA-3′, Chrna1/3′: 5′-CCTTCCTCTCTTCCATCTTTCC-3′, 

Chrng/5′: 5′-CTACGAAGGCCTGTGGATATTG-3′, Chrng/3′: 5′-

CACGAGGACATTGCAGTAGAG-3′, Tbp/5′:5′-CTACCGTGAATCTTGGCTGTAA-3′, 

Tbp/3′: 5′-GTTGTCCGTGGCTCTCTTATT-3′.

Glutathione assay

Total glutathione levels (GSH and GSSG) were determined using the Tietze method as 

previously described (Vargas et al., 2006). Tissues were lysed in 5 volumes of 5% 

sulfosalicylic acid. Glutathione content was corrected by protein concentration determined 

by BCA protein assay (Thermo Scientific).

Statistical analysis

Groups of at least three animals were used for biochemical analysis and all data are reported 

as mean ± SD. Survival and onset data was analyzed with Kaplan-Meier curves and log rank 
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test. Multiple group comparison was performed by one-way ANOVA with Tukey’s post-test 

and differences were declared statistically significant if p< 0.05. All statistical computations 

were performed using GraphPad Prism 6.0 (GraphPad Software).

Results

Lack of GCLM decreased survival in hSOD1WT mice

We have previously shown that total and mitochondrial glutathione content in different 

regions of the central nervous system (CNS) is reduced by 70–80% in GCLM(−/−) mice 

(Vargas et al., 2011). GCLM(−/−) mice are viable and appear overtly healthy up to 24 

months of age. However, the decrease in glutathione levels accelerates neurological deficits 

and mitochondrial pathology in the familial ALS-linked hSOD1G93A mouse model (Vargas 

et al., 2011). When crossed with mice over-expressing hSOD1WT, the survival of GCLM(−/

−)/hSOD1WT mice was unaffected during the duration of the aforementioned study (8–9 

months). However, some GCLM(−/−)/hSOD1WT mice were aged to investigate a possible 

long-term deleterious effect of hSOD1WT expression in a glutathione deficient model. Here 

we show that a similar 70–80% reduction in total glutathione content is observed in 

GCLM(−/−)/hSOD1WT mice (Fig. 1A). Between 48–60 weeks of age (11–14 months) 

GCLM(−/−)/hSOD1WT mice developed overt neurological deficits characterized by 

spasticity, tremor, loss of hind limb extension reflex and paralysis (Fig. 1B, C), similar to the 

phenotype described in hSOD1G93A mice. When hind limb grip strength was analyzed, 

GCLM(−/−)/hSOD1WT mice showed a significant decrease in strength starting at 32 weeks 

of age (Fig. 1B). Grip strength continued to decrease between weeks 32 and 41 and then 

remained consistently lower until 52 weeks of age. A decrease in the life span was observed 

in GCLM(−/−)/hSOD1WT mice, with a median survival of approximately 68 weeks (477 

days) (Fig. 1D). The data in figure 1D correspond to animals that were euthanized due to 

their inability to right themselves within 20 seconds after being placed on their side. 

Common clinical health conditions of laboratory mice were equally observed in all genotype 

groups and those animals were excluded from the study. No difference in hSOD1WT 

expression levels was observed between GCLM(+/+)/hSOD1WT and GCLM(−/−)/hSOD1WT 

mice (Fig. 1E, F).

Lack of GCLM causes motor neuron death and muscle denervation in hSOD1WT mice

A significant decrease in the number of large neurons in the ventral horn and degeneration of 

lumbar spinal cord root axons was observed in 60 weeks old GCLM(−/−)/hSOD1WT mice 

when compared to age-matched GCLM(+/+)/hSOD1WT mice (Fig. 2A, B, C). The typical 

astrogliosis that accompanies motor neuron degeneration in ALS was also observed in 

GCLM(−/−)/hSOD1WT mice (Fig. 2D, E). However, we did not observe a marked increase 

in microglia presence in the ventral horn of the spinal cord from symptomatic mice (not 

shown).

Motor neuron death in GCLM(−/−)/hSOD1WT mice was accompanied by marked muscle 

denervation as reflected by increased mRNA expression of the nicotinic acetylcholine 

receptor gamma (Chrng) and alpha 1 (Chrna1) subunits in the gastrocnemius muscle (Fig. 

3A and B). Decreased muscle mass was also evident in symptomatic GCLM(−/−)/hSOD1WT 
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mice when compared to age-matched GCLM(+/+)/hSOD1WT mice (Fig. 3C, D). 

Histological analysis of the gastrocnemius muscle showed fibers with both smaller and 

larger than usual fiber diameter size in symptomatic GCLM(−/−)/hSOD1WT mice (Fig. 3E).

Discussion

Moderate overexpression of hSOD1WT (hemizygous B6.Cg-Tg(SOD1)2Gur/J) does not 
cause overt motor neuron disease in transgenic mice

However, the lack of GCLM and the concomitant reduction in total glutathione content 

significantly impact motor neuron survival, leading to an overt motor phenotype and a 

significant decrease in the survival of GCLM(−/−)/hSOD1WT mice. Our results are in line 

with previously published data indicating that oxidative stress modifies the progression of 

motor neuron degeneration in hSOD1-linked ALS models (Andrus et al., 1998; Gurney et 

al., 1996; Hall et al., 1998; Vargas et al., 2011).

In principle, decreased glutathione levels could cause a motor phenotype in GCLM(−/−)/

hSOD1WT mice if during development it alters the baseline number of spinal cord motor 

neurons. However, this possibility is unlikely because over-expression of the neurotoxic 

mutant hSOD1G93A enzyme in a GCLM(−/−) background does not cause changes in the 

baseline number of spinal cord motor neurons in 21 days old animals (Vargas et al., 2011). 

Moreover, we did not observe an increase in the expression of hSOD1WT. Therefore, the 

overt motor phenotype and decreased life span of GCLM(−/−)/hSOD1WT mice indicate that 

motor neurons were more susceptible to a toxic action of hSOD1WT over-expression.

SOD1 is localized predominantly in the cytoplasm, but it is also found in other cellular 

compartments including the nucleus, endoplasmic reticulum and mitochondria (Crapo et al., 

1992; Okado-Matsumoto and Fridovich, 2001; Sturtz et al., 2001). Interestingly, increased 

oxidative damage to lipids has been found in the CNS of hSOD1WT mice (Bruijn et al., 

1997), and aged hSOD1WT mice display swelling and vacuolization of mitochondria 

(Jaarsma et al., 2000). Since glutathione is a key component of the mitochondrial antioxidant 

defenses and decreased glutathione levels accelerated mitochondrial pathology in 

hSOD1G93A mice, this could be a potential mechanism that precipitates motor neuron death 

in GCLM(−/−)/hSOD1WT mice. Redox changes can also potentially affect protein 

aggregation. However, protein aggregation is not a prominent feature observed in models of 

hSOD1WT over-expression (Wang et al., 2002; Wong et al., 1995). Thus, it is unlikely to be 

a contributing factor in the motor neuron toxicity observed GCLM(−/−)/hSOD1WT mice.

Motor symptoms (tremor and loss of extension reflex in hind-limbs, reduced grip strength 

and paralysis), muscle wasting (reflected by muscle weight loss), neuronal loss (with axonal 

degeneration) and astrogliosis characteristic of late stage hSOD1G93A mice were obvious in 

GCLM(−/−)/hSOD1WT mice. In our study, hemizygous hSOD1WT mice in a GCLM(+/+) 

background do not show reduced lifespan, as previously reported (Graffmo et al., 2013; 

Jaarsma et al., 2000). However, previous studies have shown that aged hemizygous 

hSOD1WT mice display some neurodegenerative changes, including glial activation (75 

weeks of age) and moderate motor neuron loss (2 years of age) (Jaarsma et al., 2000). In 

addition, as evidenced by the increased expression of denervation markers in the muscle 
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(Witzemann et al., 1991), we found evidence of neuromuscular junction denervation/

remodeling in 60 weeks old GCLM(+/+)/hSOD1WT mice. In contrast, hSOD1WT mice in a 

GCLM(−/−) background display significant motor neuron loss, increased glial activation and 

muscle denervation at an earlier age (60 weeks). These changes lead to an overt ALS-like 

phenotype starting at around 48 weeks of age in GCLM(−/−)/hSOD1WT mice. Pathological 

analysis of two GCLM(−/−)/hSOD1WT and two GCLM(+/+)/hSOD1WT mice (one of each 

sex) found that GCLM(−/−)/hSOD1WT mice displayed significant cardiomegaly (based on 

heart:body weight ratio), while the cardiac muscle histology appeared normal. Although 

GCLM(−/−)/hSOD1WT animals displayed cardiomegaly, the death events reported in this 

study (in figure 1D) originated from mice that were examined weekly and euthanized when 

they were unable to right themselves within 20 seconds after being placed on their side. The 

death events reported are not the result of sudden deaths without obvious motor phenotype. 

We did not observe any evidence of increased incidence of sudden death events or swelling 

(symptoms typically associated with cardiomegaly) in GCLM(−/−)/hSOD1WT mice. 

However, we cannot rule out the possible contribution of this observation to the shortened 

lifespan observed in GCLM(−/−)/hSOD1WT mice.

In addition, pathological examination of GCLM(−/−)/hSOD1WT mice ruled out the 

possibility of other major abnormalities that could contribute to the overt motor phenotype. 

This observation highlights a critical role for glutathione in the CNS in the context of ALS 

and suggests that under conditions that deplete glutathione content, alterations in hSOD1WT 

expression can be toxic to motor neurons. Taken together our data suggest that models 

expressing ALS-linked mutant SOD1 at endogenous levels could provide more significant 

insights in the context of the human pathology.

The level of hSOD1WT overexpression can affect its neurotoxic properties, as reflected by 

the results obtained when these animals are maintained in hemizygosis (late moderate 

pathological defects) versus homozygosis (overt phenotype with shortened life span) (Dal 

Canto and Gurney, 1995; Graffmo et al., 2013; Jaarsma et al., 2000). However, as 

demonstrated by strategies aimed at manipulating the metal content of SOD1 (Roberts et al., 

2014; Son et al., 2007), it is unlikely that this effect is simply due to the levels of hSOD1 

expression. These studies suggest that the metal content of hSOD1 may be a greater 

determinant of its toxicity than the changes in expression levels per se. Thus, the increased 

toxicity associated with higher hSOD1 expression levels could be directly linked to altered 

metal loading of the enzyme (Roberts et al., 2014). Whether glutathione depletion affects the 

levels of metal-deficient toxic forms of hSOD1 is an interesting possibility to explore.
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GCLM glutamate-cysteine ligase modifier subunit

SOD1 Cu/Zn-superoxide dismutase
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ALS amyotrophic lateral sclerosis

CNS central nervous system
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Highlights

GCLM(−/−) mice display a 70–80% reduction in total glutathione levels.

GCLM(−/−) mice overexpressing hSOD1WT display overt motor neuron 

degeneration.

GCLM(−/−) mice overexpressing hSOD1WT display shortened life span.
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Figure 1. 
Overt clinical features and decreased life span in GCLM(−/−)/hSOD1WT+ mice. A) Total 

glutathione (GSH+GSSG) content in different tissues from 48–52 weeks old GCLM(+/+) 

and GCLM(−/−) mice in the presence or absence of hSOD1WT. CX, brain cortex; BS, 

brainstem; SC, spinal cord; Gastroc, gastrocnemius muscle. Each bar represents the mean

±SD, n=3–4 animals. *Significantly different from its respective GCLM(+/+) tissue 

(p<0.05). B) Hind-limb grip strength starting at 32 weeks of age. At all ages, the values 

recorded for GCLM(−/−)/hSOD1WT+ mice are significantly different from GCLM(+/+)/
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hSOD1WT+ mice (p<0.05, at least n=7 in each group). # Significantly different from 32 

weeks old GCLM(−/−)/hSOD1WT+ mice (p<0.05). C) Loss of hind limb extension reflex in 

a 52 weeks old GCLM(−/−)/hSOD1WT+ mice as compared with an aged-matched 

GCLM(+/+)/hSOD1WT+ mice. D) Lack of GCLM decreased the life span of hSOD1WT 

mice to a median survival of 477 days (aprox. 68 weeks) in GCLM(−/−)/hSOD1WT+ 

animals. Survival curves are significantly different p<0.0001. (At least n=7 in each group, 

see material and methods for details). E and F) hSOD1 protein expression in spinal cord 

extracts from 30 days old (E) and 48–52 weeks old (F) non-transgenic (NonTG), 

GCLM(+/+)/hSOD1WT+ and GCLM(−/−)/hSOD1WT+ mice. No difference was observed 

in hSOD1WT expression levels between GCLM(+/+)/hSOD1WT+ and GCLM(−/−)/

hSOD1WT+ mice when quantified and corrected by actin levels.

Killoy et al. Page 12

Exp Neurol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Motor neuron loss and astrogliosis in GCLM(−/−)/hSOD1WT+. A) Representative images 

from the lumbar ventral horn of 60 weeks old GCLM(−/−)/hSOD1WT+ mice and age-

matched controls stained with cresyl violet. Higher magnification images of the indicated 

areas are shown in the lower panel. Scale bars: 50 μm. B) Number of large neurons in the 

ventral horn of the lumbar spinal cord from 60 weeks old mice of the indicated genotype. 

Data are presented as percentage of GCLM(+/+)/hSOD1WT− animals (mean±SD; n=4–5. * 

p<0.05). C) Luxol fast blue staining in cross sections of lumbar spinal cord roots from 60 
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weeks old GCLM(−/−)/hSOD1WT+ and age-matched GCLM(+/+)/hSOD1WT+ mice. Scale 

bar: 50 μm. D) Immunofluorescence against GFAP (red) in the anterior horn of lumbar 

spinal cord sections from 60 weeks old mice of the indicated transgenic genotypes. Nuclei 

were counterstained with DAPI. Higher magnification images of the indicated areas are 

shown in the lower panel. Scale bars: 20 μm. E) Relative optical density (O. D.) 

quantification of GFAP immunoreactivity in the grey matter of the anterior horn of lumbar 

spinal cord sections from the indicated genotypes. Data are presented as percentage of 

GCLM(+/+)/hSOD1WT− sections (mean±SD; * p<0.05)
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Figure 3. 
Accelerated muscle denervation and wasting in GCLM(−/−)/hSOD1WT+ mice. Expression 

of the acetylcholine receptor gamma subunit (cholinergic receptor nicotinic gamma subunit, 

Chrng) (A) and acetylcholine receptor alpha1 subunit (cholinergic receptor nicotinic alpha 1 

subunit, Chrna1) (B) in the gastrocnemius muscle of 60 weeks old animals from the 

indicated genotypes. For A and B data are expressed as percentage of GCLM(+/+)/

hSOD1WT-animals (mean±SD; n=3–5). * Significantly different from GCLM(+/+)/

hSOD1WT− (p<0.05). # Significantly different from GCLM(+/+)/hSOD1WT+ (p<0.05). C) 
Gastrocnemius muscle weight from 60 weeks old GCLM(+/+)/hSOD1WT+ and GCLM(−/

−)/hSOD1WT+ mice (*p<0.05). D) Representative image of the gastrocnemius muscle from 

60 weeks old GCLM(+/+)/hSOD1WT+ and GCLM(−/−)/hSOD1WT+ mice. Scale bar: 1 

cm. E) Hematoxylin and eosin staining in gastrocnemius muscle sections from GCLM(+/+)/

hSOD1WT+ and GCLM(−/−)/hSOD1WT+ mice. Scale bar: 200 μm.
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