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Abstract
Over the past decade, our understanding of the biology and pathophysiology of
renal cell carcinoma (RCC) has improved significantly. Insight into the disease
process has helped us in developing newer therapeutic approaches toward
RCC. In this article, we review the various genetic and immune-related
mechanisms involved in the pathogenesis and development of this cancer and
how that knowledge is being used to develop therapeutic targeted drugs for the
treatment of RCC. The main emphasis of this review article is on the most
common genetic alterations found in clear cell RCC and how various drugs are
currently targeting such pathways. This article also looks at the role of the
immune system in allowing the growth of RCC and how the immune system
can be manipulated to reactivate cytotoxic immunity against RCC.
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Introduction
Renal cell carcinoma (RCC) is a heterogeneous group of  
cancers arising from renal tubular epithelial cells that encom-
passes 85% of all primary renal neoplasms1,2. The most common  
subtypes of RCC are clear cell RCC (ccRCC), papillary RCC, 
and chromophobe RCC1. The remaining 15% of tumors of the  
kidney consist of transitional cell carcinoma (8%), nephroblas-
toma or Wilms’ tumor (5–6%), collecting duct tumors (<1%), renal 
sarcomas (<1%), and renal medullary carcinomas (<1%). The  
incidence of RCC varies widely in different parts of the world, 
and the highest incidences are in North America and the Czech  
Republic2. In the US, there are 64,000 new cases of RCC and 
14,000 RCC-related deaths each year3. Age, race, and gender 
also play a role in this disease. RCC is more common in males 
above the age of 60 (median age for RCC is 65), and the highest  
incidence is in the sixth to eighth decades of life4. Within the 
US, Caucasians, African-Americans, Hispanics, and Native  
Americans have a higher incidence of RCC as compared with 
Asian-Americans or Pacific Islanders5,6.

Multiple risk factors for RCC along with their pathophysiologic 
mechanisms have been described. These include both genetic 
and acquired risk factors. The two most common genes involved 
in the pathogenesis of RCC are the Von Hippel–Lindau (VHL) 
gene and the protein polybromo-1 (PBRM-1) gene. These will be  
discussed separately in this article. The most common acquired 
risk factors for RCC are smoking, hypertension, obesity, chronic  
analgesic use, and diabetes7.

Genetic alterations in renal cell carcinoma
The most common genetic alteration associated with the  
development of ccRCC is loss of the short arm of chromosome 
3 (loss of 3p). This alteration is seen in approximately 95% of  
cases of ccRCC. The most common genes involved in the  
pathogenesis of ccRCC include VHL, PBRM-1, SETD2, BAP-1, 
KDM5C, and MTOR1,8. Other genetic alterations include gain  
of 5q (69%), partial loss of 14q (42%), 7q gain (20%), 8p deletion 
(32%), and 9p loss (29%)8.

Von Hippel–Lindau gene
VHL is a tumor suppressor gene that plays a pivotal role in the 
development of ccRCC. VHL can be altered and transmitted in 
an autosomal dominant fashion (VHL disease) or in a sporadic  
manner. Although inherited VHL disease is rare, understanding 
the molecular basis of VHL disease and the identification of the  
VHL suppressor gene have provided great insight into the  
pathogenesis of sporadic disease. It is estimated that 50–60% of 
patients with sporadic ccRCC have an abnormality of the VHL  
gene9–11. Other, more sophisticated studies have suggested that  
VHL gene alterations through genetic and epigenetic mechanisms 
can be found in up to 90% of ccRCC cases12.

A “two-hit” hypothesis has been described and validated in  
patients with VHL disease-related development of RCC (and other 
tumors). Based on this hypothesis, individuals with VHL disease 
are born with one inactivated copy of the VHL gene in all cells 
while the other copy of the gene is normal. For tumorigenesis to 
take place, there must be a loss of function of the second gene  

copy as well. This “second hit” usually takes place as a result 
of somatic mutation or deletion of the allele. In patients with  
sporadic RCC, inactivation of both VHL alleles usually takes place 
via somatic mutations.

The product of the VHL gene is a protein called pVHL, which 
acts as a tumor suppressor protein. VHL protein forms com-
plexes with several other proteins in the cell, including elongin B, 
elongin C, and cellulin 2. The resulting complex (called the VBC  
complex) helps in the proteasomal degradation of several intra-
cellular proteins. One of the major functions of the VHL gene 
product is regulating the levels of several intracellular proteins, 
including hypoxia-inducible factor 1 alpha and 2 alpha (HIF1A 
and HIF2A)13,14. These intracellular proteins, when bound with 
each other, serve as transcription factors by binding to the DNA, 
resulting in upregulation of messenger RNA (mRNA) that codes 
for several growth factors, including vascular endothelial growth 
factor (VEGF), platelet-derived growth factor beta (PDGFB), 
and transforming growth factor alpha (TGFA). These growth  
factors play a vital role in the development of highly vascular 
tumors (such as ccRCC) associated with VHL gene alterations. 
The mRNA also codes for other proteins and enzymes responsible  
for controlling proteins in the extracellular matrix.

Under normal oxygen tension, HIF1A and HIF2A are hydrox-
ylated on proline residues and bind the pVHL, resulting in 
polyubiquitination of HIFA, which targets it for proteasomal  
degradation (Figure 1)15,16. Under conditions of hypoxemia or 
in the absence of pVHL, hydroxylation of HIF1A and HIF2A 
does not occur and HIFA accumulates in the cell and dimerizes 
with hypoxia-inducible factor beta (HIFB). The HIFA–HIFB  
complex then migrates to the nucleus and acts as a transcrip-
tion factor, resulting in increased mRNA levels coding for 
VEGF, PDGFB, TGFA, erythropoietin, and extracellular matrix  
proteins14,17.

From a therapeutic standpoint, inhibitors of VEGF are typically 
used as first-line therapy for the treatment of metastatic  
ccRCC. Sunitinib and pazopanib are two commonly used  
tyrosine kinase inhibitors that target and block vascular epider-
mal growth factor receptor (VEGFR)18,19. Axitinib, cabozantinib,  
lenvatinib, and sorafenib are other tyrosine kinase inhibitors that 
block VEGFR. Bevacizumab, a monoclonal antibody that directly 
targets VEGF, is also a treatment option for ccRCC. In addition,  
drugs that block HIFA would theoretically block this pathway, 
resulting in a decrease in the production of angiogenic factors  
(such as VEGF and PDGFB) and a decrease in tumor growth. 
Selective HIF2 antagonists PT2399, PT2385, and PT2977 
are under investigation20–22. PT2399 has been shown to cause  
regression in preclinical models (cell line and tumorgraft/ 
patient-derived xenograft) of pVHL-defective ccRCC20,21. PT2385 
has been evaluated as monotherapy in a phase 1 study in patients 
with metastatic ccRCC and has been shown to have a favorable 
safety profile and early evidence of efficacy22. PT2977, a more 
potent HIF2a antagonist, is being investigated in phase 1 clinical 
trials for the treatment of solid tumors and ccRCC and in a phase  
2 clinical trial for the treatment of patients with VHL disease.
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Protein polybromo-1 gene
PBRM-1 is also a tumor suppressor gene that plays an impor-
tant role in the pathogenesis of ccRCC. It encodes a protein  
called BAF180, which is a subunit of the nucleosome  
remodeling complex. The nucleosome remodeling complex is a 
complex group of proteins that control the expression of certain 
genes by accessing the condensed part of the DNA. It is unclear 
how BAF180 acts as a tumor suppressor protein; however,  
several animal studies have shown that it plays a role in control-
ling the cell cycle and replicative senescence. Re-introduction  
of PBRM-1 in PBRM-1-deficient cell lines typically produces  
cell cycle arrest. Thus, a mutated PBRM-1 gene would result in 
an abnormal/malfunctioning BAF180, which would result in 
unchecked cell growth and subsequent tumorigenesis23,24.

BRCA1-associated protein-1
BRCA1-associated protein-1 (BAP-1) is a tumor suppressor  
gene located on 3p. This gene is mutated in approximately 15% 

of ccRCC cases. BAP-1-mutated tumors tend to be more aggres-
sive and are generally related to a worse prognosis25. Like other  
tumor suppressor genes, BAP-1 plays a role in the suppression 
of cell proliferation. It does so by interacting with a transcription  
protein called host cell factor-1 (HCF-1). HCF-1 in turn binds 
with several transcription factors, resulting in the inhibition of cell  
proliferation. A mutated BAP-1 protein is unable to interact  
with HCF-1; as a result, the inhibitory effects of HCF-1 on cell 
proliferation are lost26.

The mTOR pathway
The mammalian target of rapamycin (mTOR) is a protein  
kinase that is encoded by the MTOR gene. It plays an important 
role in the regulation of the cell cycle and has been a therapeutic 
target of interest in many other cancers as well. The mTOR–PI3K  
pathway starts with the binding of several growth factors to the 
cell surface, resulting in the activation of phosphatidylinositol- 
3-kinase (PI3K) protein (Figure 2). Activated PI3K in turn  

Figure 1. VHL/HIF axis. Under normal oxygen tension, HIF1A and HIF2A are hydroxylated on proline residues and bind the pVHL, resulting 
in the polyubiquitination of HIFA, which targets it for proteasomal degradation. Under conditions of hypoxemia or in the absence of pVHL, 
hydroxylation of HIF1A and HIF2A does not occur and HIFA accumulates and dimerizes with HIFB and acts as a transcription factor, resulting 
in increased mRNA levels coding for VEGF, PDGFB, TGFA, erythropoietin, and extracellular matrix protein. HIFA, hypoxia-inducible factor 
alpha; HIFB, hypoxia-inducible factor beta; MMP, matrix metalloproteinase protein; mRNA, messenger RNA; PDGFB, platelet-derived growth 
factor beta; pVHL, protein of Von Hippel–Lindau gene; TGFA, transforming growth factor alpha; VEGF, vascular endothelial growth factor.
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Figure 2. The mTOR–PI3K pathway. Binding of cell surface growth factors activates phosphatidylinositol-3-kinase (PI3K) protein, which 
in turn activates mTOR, creating mTOR complexes 1 and 2 (mTORC1 and mTORC2), resulting in the phosphorylation of P70S6K and 4E-
BP1/eIF4E and increased production of angiogenic proteins such as VEGF, PDGF, and TGFB, leading to cell growth and tumor progression. 
4E-BP1, 4E-binding protein 1; eIF-4E, eukaryotic initiation factor-4E; HIF, hypoxia-inducible factor; HIFA, hypoxia-inducible factor alpha; 
MMP, matrix metalloproteinase; mRNA, messenger RNA; mTOR, mammalian target of rapamycin; PDGFB, platelet-derived growth factor 
beta; PI3K, phosphatidylinositol-3-kinase; PKB, protein kinase B; TGFA, transforming growth factor alpha; VEGF, vascular endothelial growth 
factor.
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activates mTOR, creating mTOR complexes 1 and 2 (mTORC1 
and mTORC2), which lead to the phosphorylation of P70S6K  
and 4E-BP1/eukaryotic translation initiation factor 4E (4E-BP1/
eIF4E). The phosphorylated P70SK migrates to the nucleus and 
initiates the transcription of mRNA coding for the HIFA protein, 
which, as mentioned above, has the ability to increase the  
production of angiogenic proteins such as VEGF, PDGF, and  
TGFB27–29. Phosphorylation of the translational regulator 
eIF4E-binding protein 1 (4E-BP1) also mediates the effects of  
oncogenic Akt signaling on mRNA translation, cell growth, and 
tumor progression29.

Everolimus and temsirolimus are mTOR inhibitors that are 
approved for the treatment of metastatic ccRCC30,31. Additionally, 
the combination of lenvatinib (VEGFR inhibitor) and everolimus 
(mTOR inhibitor) has been approved for the treatment of metastatic 
RCC in the second- and subsequent-line setting.

The role of the immune system in renal cell carcinoma
The cytotoxic component of the immune system plays a vital role 
in the recognition and subsequent rejection of several different  
types of cancer, including RCC. Unfortunately, this innate system 
is not always adequate in attacking and eliminating cancer. In  
order to survive the immune response, the cancer cells develop  
certain proteins on their cell surface, which help them fight off  
the cytotoxic T cells by certain pathways. One such pathway is  
the programmed death-1 (PD-1) pathway.

Under normal circumstances, the cytotoxic immune system 
is designed to recognize the “foreign antigens” present on the  
surface of cancer cells. This should lead to the activation of  
cytotoxic T lymphocytes, resulting in the release of cytokines 
such as interferons, interleukin-2, and tumor necrosis factor. 
These cytokines are directly responsible for the death of cancer 
cells. From a therapeutic standpoint, both interferon-alpha  
and interleukin-2 have historically been used for the treatment 
of ccRCC, although their use has diminished with the advent of 
effective and better-tolerated alternatives32,33. Immune T-cell 
infiltration is a prevalent characteristic of ccRCCs and rep-
resents an important target for immune checkpoint inhibitor  
therapy1,34.

The programmed death-1 receptor pathway
The PD-1 receptor is a cell membrane protein present on the  
surface of cytotoxic T lymphocytes (CD8 T cells). The proteins 
that activate PD-1 are also cell surface proteins called programmed 
death ligand-1 and -2 (PD-L1 and PD-L2). PD-L1 is present on 
the surface of antigen-presenting cells and certain malignant cells, 
including RCC cells. The major function of PD-1, after being 
activated by binding PD-L1, is to suppress the cytotoxic immune 
system by inducing apoptosis of the cytotoxic T lymphocyte. 
This normally prevents an uncontrolled and unchecked autoim-
mune response when the body is exposed to a foreign antigen  
(such as a virus or bacterium). Thus, PD-1 is an “anti-immune”  
protein, the stimulation of which suppresses the immune system 
and decreases the number of cytotoxic T cells attacking foreign 
antigens and cancer cells (Figure 3).

Several cancers, including ccRCC, express PD-L1 on their  
surface. The expression of PD-L1 allows these cancers to escape 
the cytotoxic immune response by inducing the apoptosis of  
cytotoxic T lymphocytes. This discovery has led to the devel-
opment of antibodies that target and block PD-1 and PD-L1.  
The PD-1-blocking antibodies currently available are nivolumab 
and pembrolizumab. Nivolumab is currently approved for the  
treatment of metastatic ccRCC in the second-line setting35,36. 
Atezolizumab and avelumab are PD-L1-blocking monoclonal  
antibodies that are also under investigation for metastatic ccRCC.

CTLA-4 is a protein receptor present on the surface of cytotoxic 
T lymphocytes, and the primary function is downregulation of 
the immune system (similar to the PD-1/PD-L1 pathway) but by  
a different mechanism. An inhibitor of this receptor, called  
ipilimumab, in combination with PD-1/PD-L1 inhibitors, is  
under investigation and has shown promising results for the  
treatment of metastatic RCC37.

OX-40 is another “pro-inflammatory” protein present on the  
surface of cytotoxic T lymphocytes. The stimulation of this  
receptor results in the activation of the immune system (similar 
to that seen with PD-1/PD-L1 inhibition). OX-40 agonists in  
combination with PD-1 inhibitors are under investigation for the 
treatment of RCC38.

Metabolic pathways and targets in renal cell 
carcinoma
Altered metabolic pathways in cancer cells play a key role in 
their survival. These pathways also help cancer cells escape  
different levels of stress imposed on them by the immune system 
as well as various drugs. Targeting various metabolic pathways  
in RCC is an active area of research in oncology39,40.

The glutaminase pathway
Glutamine is an important amino acid in many cancer cells  
(including ccRCC cells) and is indirectly required by these cells 
for the synthesis of DNA. Cancer cells metabolize glutamine 
differently than do normal cells and require an enzyme called  
glutaminase. This enzyme converts glutamine to glutamate, which 
in turn increases the production of aspartate through the Krebs 
cycle. Aspartate plays a key role in the synthesis of pyrimidines 
in these cells and is required for maturation. In VHL-mutated/-
deficient cells, glutamine is also required for the synthesis of  
essential lipids, citrate, and glutathione, the latter of which is the 
key anti-oxidant molecule generated by cells to combat oxida-
tive stress41. Therefore, inhibition of this pathway results in both 
cell cycle arrest (by decreasing pyrimidine synthesis required  
for DNA formation) and an inability of these cells to fight  
oxidative stress. These findings have led to the development of 
drugs targeting this pathway, which are under investigation. For 
example, CB-839 is a glutaminase inhibitor that is being studied  
in clinical trials for several solid tumors, including ccRCC42,43.

Other metabolic pathways and targets
Glucose metabolism in cancer cells is also an area of clinical  
interest in this field. GLUT-1 is a glucose transporter that is  
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Figure 3. The programmed death-1 receptor pathway. Recognition of foreign or tumor antigens normally results in the activation of CD8 
T cells, leading to the killing of viruses or bacteria or the lysis of tumor cells. The programmed death-1 (PD-1) receptor is a cell membrane 
protein present on the surface of CD8 T cells, which, upon interacting with PD-L1 and PD-L2 on the surface of tumor cells, results in the 
suppression of the cytotoxic immune response, leading to tumor escape.IFN, interferon; IL-2, interleukin-2; MHC, major histocompatibility 
complex; PD-1, programmed death-1; PD-L1, programmed death ligand-1; TCR, T-cell receptor.
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responsible for the uptake of glucose by RCC cells. Several  
drugs blocking this transporter have been shown to be active in 
RCC44,45. Studies have demonstrated that, unlike in normal cells, 
glycolysis is the major source of glucose in cancer cells, even 
in the presence of sufficient oxygen (aerobic glycolysis)46. As a  
result, several inhibitors of glycolytic enzymes have been  
investigated because of their activity in cancer cells, including  
RCC cells47,48. Similarly, pyruvate dehydrogenase inhibitors  
have shown activity in preclinical RCC xenografts49,50.

Other novel approaches and combinations
Despite our extensive knowledge and understanding of the biology 
of this cancer, metastatic RCC continues to lead to a high number 
of deaths in the modern era. With the discovery of pathways  
outlined in this article, many research studies are now geared 
toward combining drugs that target different pathways in ccRCC.  
Combination studies in metastatic ccRCC that pair VEGF  
inhibition and checkpoint inhibition include bevacizumab plus 
atezolizumab, axitinib plus pembrolizumab, and nivolumab plus 
ipilimumab plus cabozantinib. There are also studies of combi-
nation immunotherapies targeting PD-1 and PD-L1 or targeting  
PD-L1 and OX40.

In addition, the glutaminase inhibitor CB-839 is being investi-
gated in combination with anti-PD-1 antibody nivolumab as well 
as with the mTOR inhibitor everolimus and the VEGFR/MET  
inhibitor cabozantinib in separate clinical trials.

A better understanding of the biology and pathogenesis of  
ccRCC has revolutionized the treatment approach. Novel targets 
and combination strategies are under investigation with the hope 
of achieving longer and more durable responses and improving  
survival.

In summary, with a greater understanding of the pathogenesis 
of RCC, many therapeutic advances for metastatic disease have 
been introduced in the last decade. Such progress has led to  
improved survival for patients with advanced RCC. Much of the 
recent therapeutic development has focused on inhibition of the 
VEGFR and the mTOR pathways. Current and ongoing areas of 
research include the additional development of new immunotherapy 
targets, metabolic targeting, and combinational approaches to treat 
the disease.
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