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Abstract

Inference of how evolutionary forces have shaped extant genetic diversity is a cornerstone of modern comparative
sequence analysis. Advances in sequence generation and increased statistical sophistication of relevant methods now
allow researchers to extract ever more evolutionary signal from the data, albeit at an increased computational cost. Here,
we announce the release of Datamonkey 2.0, a completely re-engineered version of the Datamonkey web-server for
analyzing evolutionary signatures in sequence data. For this endeavor, we leveraged recent developments in open-source
libraries that facilitate interactive, robust, and scalable web application development. Datamonkey 2.0 provides a care-
fully curated collection of methods for interrogating coding-sequence alignments for imprints of natural selection,
packaged as a responsive (i.e. can be viewed on tablet and mobile devices), fully interactive, and API-enabled web
application. To complement Datamonkey 2.0, we additionally release HyPhy Vision, an accompanying JavaScript appli-
cation for visualizing analysis results. HyPhy Vision can also be used separately from Datamonkey 2.0 to visualize locally
executed HyPhy analyses. Together, Datamonkey 2.0 and HyPhy Vision showcase how scientific software development
can benefit from general-purpose open-source frameworks. Datamonkey 2.0 is freely and publicly available at http://
www.datamonkey.org, and the underlying codebase is available from https://github.com/veg/datamonkey-js.
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Since its introduction in 2005, Datamonkey (Kosakovsky
Pond and Frost 2005a) has been a leading resource for a broad
research community of evolutionary biologists and biomed-
ical researchers. Datamonkey’s primary role is to provide a
free and open web platform for researchers to conduct com-
parative analyses of sequence alignments using statistical
models developed in HyPhy (Kosakovsky Pond et al. 2005).
These analyses can take anywhere from minutes to hours to
complete depending on specific analysis being conducted
and the size of the data set.

Using a dedicated computing cluster, Datamonkey has
processed nearly 1,000,000 jobs and contributed approxi-
mately a millennium of cluster CPU time to molecular evo-
lutionary research. The original Datamonkey was written
using the then-prevailing paradigm of web application devel-
opment: Custom scripts in Perl and other languages, all proc-
essing done on the server, site styling assuming a desktop
client, and many third-party dependencies for visualization.
Dramatic advances in modern web application development
have rendered this design obsolete and, as a consequence, not
maintainable.

Sophisticated modern web platforms have conditioned
users to expect certain features that are frequently lacking
from scientific software: Professional interface design, snappy
interactivity and full functionality within a browser, seamless
performance across desktop, tablet, and mobile devices, and
applications without page reloads. In parallel, sequence

analysis methodology has continued its relentless march for-
ward, with improved methods for studying natural selection
(Smith et al. 2015; Murrell et al. 2013; Wertheim et al. 2015)
often superseding older methods (Kosakovsky Pond and
Frost 2005b; Kosakovsky Pond et al. 2010).

Here, we describe the complete re-engineering process
leading to Datamonkey 2.0, available at http://www.data-
monkey.org, which adopts modern web application design
patterns and provides the most recent analytical tools for
studying the evolution of coding sequences. We have
exploited the explosive growth of JavaScript (following the
V8 open source JavaScript engine release in 2008) to offer a
much improved user experience in Datamonkey 2.0. The
Datamonkey 2.0 codebase therefore eases module develop-
ment by recognizing and standardizing design patterns
common to web applications, and better accommodates
long-running job processes and increasingly large data sets.
By incorporating modern software features, we have made
Datamonkey more intuitive to users, who will in turn be able
to make more efficient use of the underlying data analysis
methods.

New Approaches

Software Engineering
Datamonkey 2.0 is written almost entirely in JavaScript (JS,
specifically the node.js framework), which has become the
world’s most widely used programming language when
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counting the number of projects using it as the primary lan-
guage (O’Grady 2017). The JS development ecosystem has
rapidly matured (Wittern et al. 2016), and computational
benchmark performance gains have been similarly dramatic
(Gouy 2017). Key benefits to developing in JS are that the
exact same code can run both on the server side and the
client side, that JS is natively supported on virtually all popular
devices and operating system platforms, and that sophisti-
cated user interfaces are incredibly easy to develop. We con-
duct dependencies management via webpack, ensuring that
installation and updates can be carried quickly and efficiently.

To accommodate hundreds of long-running jobs daily, the
Datamonkey 2.0 web application is divided into two indepen-
dent components (fig. 1). The web application component
performs model-view-controller (Leff and Rayfield 2001)
duties and is hosted on a standard webserver. Key duties
include accepting and managing job submissions from users,
displaying progress and result pages, and maintaining a per-
sistent database of jobs and results. The second component is
the High Performance Computing (HPC) Job Provisioner, which
is tasked with scheduling, running, and monitoring jobs (e.g.
via job managers such as Torque), and reporting status
updates to the web application. This component is hosted
on an HPC cluster, which is generally distinct from the device
running the web application. Importantly, by maintaining
these components separately, Datamonkey 2.0 can distribute
computationally intensive jobs across multiple or alternative
HPC resources with minimal effort. Our current implemen-
tation can easily scale to thousands of jobs (typical
Datamonkey 2.0 queue size is on the order of tens to hun-
dreds jobs with average wait times of only a few minutes for
the job to start running), and is limited by the available hard-
ware and the backend task schedulers. The reason for devel-
oping a custom job provisioning module, instead of adopting
an existing framework (such as Galaxy, described in Goecks
et al. 2010), was the requirement of providing complex con-
tinuous user feedback on long running jobs, and maintaining
an all-JS framework.

The two components communicate via a publish-
subscribe pattern, implemented using Websockets and
Redis. Through this setup, the web application subscribes
to events that are published by the job provisioner, for ex-
ample, “job progress update available.” The publish-subscribe
pattern is computationally lightweight: The subscriber
receives a notification only after the event has been published
(as opposed to the polling model, where the web application
would be periodically pinging the job provisioner for
updates), and is robust to network communication issues.

Persistent unique analysis identifiers allow users to access
long-running or past jobs. Documented web routes, for exam-
ple, www.datamonkey.org/method/job-id enable program-
matic scripting of analyses. Because all job requests and
analysis results are represented in JSON (JavaScript Object
Notation) format, users can prepare requests and process
results in nearly every common programming language (e.g.
Python, JavaScript, R). Importantly, our use of monolithic
JSON files fosters reproducibility by storing a complete record
of a given analysis in a single file. For example, a single analysis

output file would contain information including test P-values,
model parameter estimates, site-specific reports, and trees
with estimated selective regimes.

We implement result visualization (described below) as a
JS application using react.js as a high-level framework for in-
tegrating various reusable encapsulated page components in
a single cohesive document. We use d3.js for data visualiza-
tion (e.g. charts, trees), and bootstrap for styling and standard
user interface elements (e.g. buttons, menus).

User Experience
Datamonkey 2.0 offers a streamlined interface that aims to
relieve users of “option glut” and to guide them to the most
appropriate statistical analysis based on the biological ques-
tion they are seeking to answer (fig. 2). Once the user uploads
a valid multiple sequence alignment and a corresponding
phylogeny, and selects any analysis-specific options, the job
is submitted to the computing cluster. The user can either
directly watch analysis in a browser window or return at any
later point to the stable job URL where the current status is
shown. Once a job has completed, the computing cluster
returns a single JSON file containing a complete description

FIG. 1. Component architecture of Datamonkey 2.0.
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of all relevant results to the web application component of
Datamonkey 2.0.

At this stage, HyPhy Vision, maintained in the hyphy-vision
(https://github.com/veg/hyphy-vision) repository, parses and

reveals results in an analysis-specific manner (fig. 2D). Users
can take advantage of HyPhy Vision directly to view JSON
results from any compatible HyPhy analysis, whether exe-
cuted locally or in Datamonkey 2.0, at http://vision.hyphy.
org. The relationship between Datamonkey 2.0 and HyPhy
Vision highlights the ease with which JS components can be
included in other applications or used on their own.

The HyPhy Vision engine structures analysis-specific visu-
alization as interactive reports with graphical components. All
visualization apps include a precise, publication-ready sum-
mary statement of the primary analysis results. Analysis-
specific graphical components include annotated tree render-
ings that can be manipulated and exported, filterable tables of
site-level results, charts showing statistical evidence of selec-
tion at a specific site or branch, and rate distribution plots. We
emphasize that all of the interactivity is implemented in JS,
runs entirely in the browser, has responsive design (i.e. can be
viewed on tablet and mobile devices), and is compatible with
all modern browsers. Specific graphical components (charts,
trees, etc.) can be exported as image files, and other data can
be downloaded in machine- and human-readable formats
such as CSV or JSON.

Methods Available
Datamonkey 2.0 includes statistical tests to characterize evo-
lutionary forces that have acted on sequence alignment. We
offer both methods designed for exploratory analyses (e.g.
generate a list of individual sites subject to episodic diversify-
ing selection) and targeted testing (e.g. test to see if an a priori
designated lineage or set of lineages has experienced higher or
lower selective pressures compared with a reference lineage).
The analyses available with the initial release are described
below, and we emphasize that more analyses will be contin-
ually added to Datamonkey 2.0 as we (and others) publish
new or improved tools that address similar evolutionary ques-
tions. Whenever possible, our analyses account for the con-
founding effect of recombination via data partitioning
(Scheffler et al. 2006), and allow synonymous substitution
rates to vary across sites (Kosakovsky Pond and Muse 2005).

SLAC
Single Likelihood Ancestor Counting, or SLAC (Kosakovsky
Pond and Frost 2005b) is a substitution counting-based
method for identifying sites that may have experienced per-
vasive diversifying or purifying selection. It is able to handle
larger data sets (e.g.>1,000 sequences), but generally has the
lowest statistical power of all site-specific methods. For exam-
ple, Banke et al. (2009) used SLAC to screen a large number of
viral sequence isolates for selection and found that positive
selection was driving secondary mutations in the gag gene of
HIV-1 in the presence of drug resistance mutations in the
protease gene.

FEL
Fixed Effects Likelihood, or FEL (Kosakovsky Pond and
Frost 2005b) is a maximum likelihood method used for
identifying sites that may have experienced pervasive

FIG. 2. Key stages of the Datamonkey 2.0 user interface, using BUSTED
as an example. (A) The landing page with analysis guidance tools, or
direct selection of a method. (B) Data upload and preliminary con-
figuration page (data-independent). (C) Continued analysis configu-
ration which is data-dependent, for example, which tree branches to
test for selection. (D) The final results page, which is a fully interactive
JS application, showing in this case a plot of sites that indicate support
for dN=dS > 1:
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diversifying or purifying selection by individually testing
whether or not dN=dS 6¼ 1 at each site in the alignment.
As an example, Brault et al. (2007) ran FEL to screen the
genome of the West Nile virus for evidence of positive
selection, and then used functional assays to confirm that
the single site identified by FEL conferred increased viro-
genesis in American crows.

FUBAR
Fast Unconstrained Bayesian AppRoximation, or FUBAR
(Murrell et al. 2013) is a method designed to identify sites
that may have experienced pervasive diversifying or purifying
selection. It uses a principled statistical approximation to limit
the number of expensive likelihood evaluations and is suitable
for large data sets (e.g. >1,000 sequences). For example,
Ladner et al. (2015) used FUBAR to analyze a data set of
920 complete Ebola Virus genomes, identifying 11 sites sub-
ject to pervasive positive selection.

MEME
Mixed Effects Model of Evolution, or MEME (Murrell et al.
2012) includes a likelihood ratio test for detecting individual
sites subject to episodic diversifying selection. Unlike SLAC,
FEL, and FUBAR, MEME is able to identify sites where only
some of the branches have experienced selective pressure.
With a sufficiently large data set, MEME provides the most
power in Datamonkey 2.0 for detecting site-level selection.
For small numbers of sequences (e.g.<30) FEL may instead be
more powerful. One example of an analysis using MEME is
from Neverov et al. (2014), who employed MEME to detect
sites subject to episodic selection in Influenza A virus (H3N2)
and understand how reassortment events modulate adaptive
evolution of the virus.

aBSREL
The adaptive Branch-Site Random Effects Likelihood method,
or aBSREL (Smith et al. 2015) assesses evidence of positive
selection affecting individual branches, which can be specified
a priori or examined exhaustively. The method also deter-
mines which branches support more complex evolutionary
models, and can therefore be used for more accurate estima-
tion of branch lengths in heterotachous coding-sequences for
molecular clock dating (Wertheim and Kosakovsky Pond
2011). As an example, Zhou et al. (2015) applied aBSREL to
examine patterns of lineage-specific selection in hymenoptera
and found that increased episodes of positive selection cor-
relate with the transition to a eusocial lifestyle.

RELAX
This is a specialized method that formally tests whether or
not selection has been relaxed or intensified on a collection of
a priori-specified branches in the tree relative to others
(Wertheim et al. 2015). RELAX is also more generally useful
for comparing selective regimes in different parts of the tree
as illustrated by Macqueen and Gubry-Rangin (2016), who
applied RELAX to identify convergent signatures of relaxed

selection pressures in microbes during early stages of transi-
tion to an acidophilic lifestyle.

BUSTED
Branch-Site Unrestricted Statistical Test for Episodic
Diversification, or BUSTED (Murrell et al. 2015) is a likelihood
ratio test for evidence of diversifying selection affecting some
(unspecified) sites in the alignment along some (unspecified)
branches in the tree. It is best suited for screening relatively
small alignments where site or branch-centric methods have
little statistical power to detect local selective events. By ag-
gregating signal over sites and branches, BUSTED can achieve
increased power in small data sets. As an example of such an
application, Enard et al. (2016) used BUSTED to comprehen-
sively screen mammalian orthologs for gene-wide selection
and discovered that viral-interacting proteins were enriched
for positive selection.

GARD
Genetic Algorithm for Recombination Detection (Kosakovsky
Pond et al. 2006) implements a genetic algorithm approach
to screen alignments for evidence of phylogenetic incongru-
ence, which is interpreted as a hallmark of recombination,
gene conversion, or similar processes. The output of GARD is
a partitioned alignment in NEXUS format, with partition-
specific trees, representing putatively nonrecombinant frag-
ments. This NEXUS output can be used directly as input to
SLAC, FEL, FUBAR, MEME, or BUSTED for a recombination-
aware selection analysis. For example, Khan et al. (2015) used
such an approach to find evidence of positive selection on
olfactory receptor (OR) ligand domains, and linked variation
in the OR genes with ecological adaptation in Sauropsida.

Concluding Remarks
Robust and modern software tools are increasingly being rec-
ognized as integral to scientific rigor and reproducibility
(Howison and Bullard 2016; List et al. 2017), and poor user
experience coupled with scientific developers’ tendency to
“reinvent the wheel” have been cited as barriers to scientific
progress and tool adoption (Prli�c and Procter 2012; Wilson
et al. 2014). The popularity of Datamonkey and its range of
applications attest to the strong demand for user-friendly
tools that pave access to sophisticated and computationally
intensive methods for sequence analyses. With Datamonkey
2.0, we have leveraged advances in rapid, complex, and robust
web application development to bring a modern user expe-
rience to comparative sequence analysis, and by doing so we
have eliminated learning-curve barriers and made it more
likely that users will use this cutting-edge methodology. The
“write-once, run everywhere” paradigm first popularized by
Java in the 1990s is finally a reality with JavaScript-based web
applications, and we hope that the Datamonkey 2.0 makes a
convincing case for this approach to scientific tool
development.

Further, the open-source components in Datamonkey 2.0
may facilitate future tool development by us and others by
accelerating development cycles, thereby enabling a rapid
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expansion of the available method toolkit for the evolutionary
and biomedical research community. For example, we have
developed a process that reduced the time needed to add a
HyPhy-based sequence analysis to Datamonkey 2.0 to only
one or two days of additional development effort. This ease of
implementation will make the barrier of developing user-
friendly interfaces for novel methods easily surmountable.
Finally, because Datamonkey 2.0 and HyPhy Vision are docu-
mented open-source projects, their components (e.g. manip-
ulable tree-viewers) may be of use to others working on
phylogenetic and molecular evolutionary analysis tools.
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