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Abstract

We propose an improved Aedes aegypti (L.) abundance model that takes into account the effect of relative hu-

midity (RH) on adult survival, as well as rainfall-triggered egg hatching. The model uses temperature-

dependent development rates described in the literature as well as documented estimates for mosquito survival

in environments with high RH, and for egg desiccation. We show that combining the two additional compo-

nents leads to better agreement with surveillance trap data and with dengue incidence reports in various munic-

ipalities of Puerto Rico than incorporating either alone or neither. Capitalizing on the positive association

between disease incidence and vector abundance, this improved model is therefore useful to estimate inci-

dence of Ae. aegypti-borne diseases in locations where the vector is abundant year-round.
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Aedes aegypti (L.) continues to be an important arboviral vector

worldwide. The 2013–2014 chikungunya and the 2015–2016 Zika

outbreaks indicate how quickly new viruses can spread throughout

a region where this vector is established (Cauchemez et al. 2014,

Bogoch et al. 2016). As diseases like these emerge, the community

responds with an effort to predict the spread and eventual size of

each outbreak (Bogoch et al. 2016, Lega and Brown 2016).

The association between mosquito abundance and the preva-

lence of mosquito-borne diseases has been shown for multiple Aedes

species (Ryan et al. 2006, Guo et al. 2014, Barrera et al. 2016). To

augment labor-intensive mosquito surveillance data, simulation

models can create synthetic estimates of mosquito abundance based

on the weather experienced in specific locations as well as extend

predictions into the future (Morin and Comrie 2013, Brown et al.

2015). Moreover, the capacity to accurately estimate mosquito

abundance has been suggested as a means for targeting vector con-

trol (Yang et al. 2009).

The accuracy of model predictions are, however, heavily depend-

ent upon modeling assumptions and limited by available parameter

estimates (May 2004, Wearing et al. 2005, Keeling and Danon

2009). In particular, the uncertainty around weather-dependent esti-

mates of adult female survival has been shown to be a critical com-

ponent of mosquito abundance models (Xu et al. 2010). Threshold

values for survival at temperature extremes are only supported by a

limited number of empirical studies and yet have been shown to

have large effects on population dynamics (Eisen et al. 2014, Brown

et al. 2017).

For Ae. aegypti, resistance to desiccation has been suggested as a

means of between-season survival, and the accumulation of eggs in

the absence of precipitation has been associated with population

growth once rainy season commences (Trpis 1972, Barrera et al.

2014a, b). Climatic conditions and size of mosquito population

have been shown to effect the survival (measured as hatch rate) of

eggs when > 30 d old (Juliano et al. 2002). In recent experiments,

we observed hatch rates near 16% for eggs of Ae. aegypti collected

in Tucson maintained in an incubator for 290–298 d (Brown et al.

2016), whereas field experiments show hatch rates of �33% among

eggs stored 120 d in Dar es Salaam and �69% among eggs stored

for 105 d in Queensland, Australia (Trpis 1972, Faull and Williams

2015).

In this paper, we describe the improvements to a dynamic mos-

quito simulation model achieved through the incorporation of a bin-

ary association between relative humidity (RH)-dependent adult

mortality and an egg-hatching rate that varies with the amount of

precipitation. These modifications are necessary to more accurately

simulate the dynamics of the number of Ae. aegypti females in trop-

ical climates. Indeed, we compare simulations of the unimproved

Ae. aegypti abundance model with simulations in which each
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improvement is incorporated separately, and in which both are

incorporated together. Whereas the unmodified model barely cap-

tures the onset of peaks and troughs observed in surveillance traps,

the additions extend the duration and relative height of abundance

peaks and more accurately describe gravid trap data from multiple

locations in Puerto Rico (PR), where Ae. aegypti is established and

abundant. Using extrinsic incubation period (EIP) information for

dengue, we also show a positive association between the number of

infected mosquitoes predicted by the improved model and the num-

ber of reported cases of dengue in San Juan between 2010 and 2013.

Materials and Methods

Model
Mosquito abundance is estimated by means of a stochastic agent-

based computer model (modified from Morin and Comrie 2010,

Brown et al. 2015, hereafter referred to as DyMSiM), which follows

the life of each egg laid during the time span of the simulation.

Although DyMSiM was designed for Culex species, it can easily be

reparametrized to accommodate additional species like Ae. aegypti

(Brown et al. 2017). Herein, we argue that two important additional

components need to be included to capture the dynamics of this vec-

tor in areas like PR. First, as Ae. aegypti eggs resist desiccation, large

numbers (thousands in our simulations) can hatch on a single day

after rainfall (Barrera et al. 2014a, b). Second, the number of eggs

laid into the system depends on how long female mosquitoes sur-

vive, which itself depends on RH.

The model is initialized with 1,000 eggs on the first day. As in

previous models like DyMSiM, each of these eggs must complete

five immature stages before emerging as an adult, with temperature-

dependent development rates calculated daily. A novelty of the pre-

sent model is that the probability of surviving to the next day, which

previously depended on current development stage and daily tem-

perature, now also depends on RH for adults. Each simulation re-

turns the expected number of gravid and arbovirus-infected females

as a function of time (measured in days), obtained by averaging the

output of 10 runs. The number of female mosquitoes in each run is

proportional to the amount of water available in permanent as well

as in rain-filled containers, needed for eggs to hatch and immatures

to develop. We choose these parameters so that simulations taking

into account egg hatching and RH each have on an average between

10,000 and 20,000 adult female mosquitoes per day. Because of

such a large number of simulated mosquitoes, averaging over 10

runs leads to abundance predictions that are highly reproducible be-

tween simulations.

Mosquito Development
As in previous models, each run follows the development of individ-

ual mosquitoes, as well as each female gonotrophic cycle, by means

of a clock taking values between 0 and 1. The clock value C is

updated daily according to the formula C(nþ1)¼C(n)þ d C(Tn),

where n is the current day, Tn is the average temperature in degrees

Kelvin on day n, and the daily increment d C(T) depends on the cur-

rent development stage (Wagner et al. 1984):

d C Tð Þ ¼ vðT1;T2ÞrðTÞ and rðTÞ

¼ rH
T

298:15
exp HA

1
298:15� 1

T

1:987

� �
= 1þ exp HH

1
TH � 1

T

1:987

� �� �
:

The function v(T1,T2) is equal to 1 inside the interval [T1, T2] and

zero outside. The values of all of these parameters are given in

Table 1 for each development stage of Ae. aegypti (Rueda et al.

1990, Otero et al. 2006).

Survival Rates
The daily probability of survival (PS) of a mosquito depends on the

average temperature on that day. Table 2 gives the value of PS for

each development stage (based on Otero et al. 2006 and Eisen et al.

2014 for temperature dependence). In the present model, adult sur-

vival was increased when the RH was between 72% and 95%

(Canyon et al. 1999, Fouque et al. 2006). In Table 2, SL (which

stands for “survivor percentage from egg to emergence”) is given by

SL ¼
(

1� ð0:01þ 0:9725 exp ð�T=2:7035ÞÞ

0:1554

if 13 C < T < 38C

otherwise;

where DT¼1/r(Tþ273) is the development time from egg to adult,

T is in degrees Celsius, and the parameters that enter the expression

for r(Tþ273) are rH¼0.15460, HA¼33255.57, HH¼50543.49,

and TH¼301.67 (Rueda et al. 1990).

Sex and Gonotrophic Cycle
As in previous models, when a mosquito finishes the pupal stage, it

has a 50% chance of becoming an adult female. In that case, its gon-

otrophic clock is started �2 d after emergence. The gonotrophic

clock is advanced daily by a temperature-dependent increment,

which is calculated using the values in the last row of Table 1. When

the gonotrophic clock reaches the value 1, the female mosquito adds

63 eggs (Otero et al. 2006) to the pool of “available eggs,” the gono-

trophic clock is reset to 0, and will restart �2 d later. This cycle is re-

peated until the mosquito dies. Only a fraction of the eggs available

on a given day starts to develop, depending on the carrying capacity

of the system. In the present model, some of the remaining eggs will

independently hatch on rainy days.

Development Landscape
Our simulations involve a large number of mosquitoes (10,000–

20,000 females per day on an average) and need to handle the

significant increases in simulated mosquitoes that occur when thou-

sands of eggs simultaneously hatch after rainfall. The large number

of computations involved in following the individual lives of all of

these simulated mosquitoes can quickly overwhelm a desktop com-

puter. To avoid this problem, we accelerated the code by reducing

the life of each mosquito to a sequence of random numbers uni-

formly distributed between 0 and 1; each entry in this sequence is

used to decide whether the mosquito survives to the next day. This

simplification is possible for the following reasons. Because dC(T)

(see formula above) is the same for all mosquitoes in a given stage,

Table 1. Aedes aegypti-specific parameter and threshold values for

the various development stages and for the gonotrophic cycle,

with the corresponding temperature thresholds

Stage rH HA HH TH T1 (C) T2 (C)

Egg 0.24 10798 100000 14184.5 10 36

IS1 0.68007 28033.83 72404.07 304.33 11.8 39

IS2 1.24508 36400.55 81383.14 301.78 11.8 39

IS3 1.06144 41192.69 60832.62 301.29 11.8 39

IS4 0.57065 34455.89 45543.49 301.44 11.8 39

Pupa 0.74423 19246.42 5954.35 302.68 10.3 39

Gono. cycle 0.372 15725.23 1756481.07 447.17 18 36
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all of the eggs laid on the same day develop in exactly the same fash-

ion. The only difference between them is the random determination

of survival from one day to the next, as well as the sex of each mos-

quito as it emerges as an adult. As a consequence, one can define a

development landscape, L (d1, d2) that specifies the stage an egg laid

on day d2 would reach d1 days later (Fig. 1), which is calculated

only once in the simulation. The life of each mosquito, which ends

the first time an entry in the associated random sequence is below

the survival probability for that day, is then represented as a hori-

zontal line segment (corresponding to the day d2 the egg was laid)

across this landscape. We call this approach Mosquito Landscape

Simulation (MoLS).

Extrinsic Incubation Period (EIP)
To compare model predictions with dengue incidence data in San

Juan, PR, the code calculates the number of infected female mosqui-

toes. The EIP is temperature-dependent, according to the formula

(Chan and Johansson 2012)

daily rate ¼ exp ð�8 þ 0:2 TÞ:

All female mosquitoes are assumed to have human bloodmeals, and

the likelihood of becoming infectious from a bloodmeal is set at 0.79.

This value, which combines vector competence with the likelihood of

an infected bloodmeal, assumes a large number of humans are infected

by the virus. It is within the range of vector competence (0.24–0.83)

observed for populations of Ae. aegypti from the United States and

Mexico to dengue-2 (Bennett et al. 2002), and a slightly higher estimate

than the 0.10–0.62 observed among field-collected Ae. aegypti from

PR tested across all four serotypes (Poole-Smith et al. 2015).

Carrying Capacity
In DyMSiM, the carrying capacity C0 of the model limits the num-

ber of eggs allowed to develop, based on water levels available in

simulated containers. We set the latter so that C0 has a maximum

value of 11,500 developing eggs and immatures per day. The actual

value of C0 varies owing to evaporation and rainfall, but this vari-

ation is minimal and our simulations show it is <2%. Consequently,

small variations in evaporation do not lead to significant changes in

mosquito abundance.

Egg Hatching
The second addition described in this article is the inclusion of

precipitation-dependent egg hatching. To this end, the carrying cap-

acity is artificially raised above its base value C0 after intensive rain-

fall, thereby taking into account the creation of new habitat. On

each day which records precipitation, the code calculates the num-

ber of eggs E that were laid >4 d prior (this is the minimum number

of days it takes eggs to hatch; see Fig. 1), but did not develop. Eggs

that are >360 d old are not included in this count. Moreover, it is

assumed that large rainfall events (larger than 3 �R; where
�R ¼ 13 cm of rain represents 10� the average daily precipitation in

the area of study) overflow most containers, and thereby make all

eggs that did not develop and are >2 wk old unviable; the latter are

thus not taken into account in the calculation of E. The number of

eggs that hatch on a day with rainfall R (in cm) is then increased by

HE, according to the formula

HE ¼ min 1:5 P D
R
�R
; E

� �
;

The corresponding agents are added to the system and subsequently

go through the same development stages as other mosquitoes. The

additional number of eggs that hatch (HE) is no larger than the

number of available eggs (E), is limited by local capacity (through

the maximum density of immatures per cc, D), and is proportional

to the amount of rainfall R= �R as well as to the permanent amount

of water in the system (P). This last condition assumes that

areas inundated during rainfall are proportional in volume to

P. Parameter values can be set by the user and were chosen to

match observed trap data (in this article, D¼1 and P¼1500 cc).

Changing the multiplier (1.5) or the chosen value of �R in a way

that reduces (respectively increases) HE generically affects the

number of adult mosquitoes that will emerge from these eggs and,

therefore, shrinks (respectively broadens) the corresponding peaks

in abundance predictions.

Table 2. Probability of survival (PS) as a function of development stage, temperature (T), and relative humidity (RH).

Egg 0 if T� 10 �C 0.9 if 10 < T< 33 �C 0.48 if 33 �C � T� 36 �C 0 if T> 36 �C

IS 1–4 0.05 if T� 13 �C SL1/DT 0.05 if T� 36 �C

if 13 �C < T< 36 �C

Pupa 0.05 if T� 12 �C SL1/DT 0.05 if T� 38 �C

if 12 �C < T< 38 �C

Adult 0 if T< 4 �C 0.91 otherwise 0.98 if 4 �C � T� 41 �C

& 0.72 < RH< 0.95

0 if T> 41 �C

Fig. 1. Development landscape (background color) and temperature (red

curve) for days 400–500 of the Villodas simulation. The vertical dashed line in-

dicates the mean temperature during this period of time, approximately equal

to 26.08 �C. The horizontal axis measures both temperature and the number

of days since eggs were laid. Changes in color along a horizontal line of y-co-

ordinate d2 correspond to transitions between development stages (egg, IS

1–4, pupa, and adult) of an egg laid on day d2. Note that higher temperatures

(bottom part of the plot) result in faster development, leading to fewer days

between the egg and adult stages.
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Scaling
The number of females in surveillance traps, which recruit from a

limited area, varies by trap type and is an unknown fraction of the

actual number of mosquitoes (Brown et al. 2008, Gong et al. 2011).

To compare with simulation results, the number of gravid mosqui-

toes has to be scaled to match the order of magnitude of the trap

data. This scaling factor is model-dependent and determined by

plotting the average number of females caught per trap each week as

a function of the corresponding number of gravid females predicted

by the simulation; then, the best linear fit through these points is se-

lected, as shown in Fig. 2. Specifically, if the N points to be fitted

have coordinates ðxi; yiÞ, the line through the origin has slope a ob-

tained by least square minimization:

a ¼
P

i yi xiP
i x2

i

:

The scaling factor a is determined according to the above formula

for each location and for each model, both in the presence and ab-

sence of vector control. For instance, in Fig. 2, a ffi 19.19 � 10�5 in

the left panel and a ffi 3.98 � 10�5 in the right. (The decrease in the

value of a is a consequence of the decreased abundance of mosqui-

toes owing to a vector-control intervention in Villodas).

Analysis
Data were smoothed (15-d smoothing for the model applied twice

and 3-wk smoothing for the trap data, applied once) to soften the ef-

fects of individual traps. Both RMSE and normalized RMSE

(NRMSE), defined below, were used to assess fit between model

predictions and trap data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

a xi � yið Þ2
s

NRMSE ¼ RMSE

max a xið Þ �min a xið Þ ;

where a is the model scaling factor, a xi represents the model pre-

diction for week i ði ¼ 1 . . . NÞ, and yi is the corresponding trap

data. These quantities were calculated after a 5-wk period from the

beginning of each simulation and until week 159 (20 October

2014). A smaller NRMSE favors model predictions that have a

broad range. In the present case, this measure is a better assessment

of fit than RMSE only because as we will see below, the aim is to re-

produce the large variations observed in the trap data.

Data Collection
Meteorological data (temperature, precipitation, and RH) were col-

lected daily by weather stations placed in the municipality of Salinas,

PR—Arboleda (from 25 January 2013 to 18 November 2014),

Villodas and La Margarita (both from 3 October 2011 to 18

November 2014). Trap data were collected weekly in these three loca-

tions (from 25 October 2011 in La Margarita and Villodas, and from

16 January 2013 in Arboleda), as well as in a fourth location, Playa

(from 30 January 2013), as part of a previous study (Barrera et al.

2014a, b). As Playa and La Margarita are a few hundreds of meters

apart, the same weather data were used for both locations in the

simulations. In December 2011, source reduction and larviciding

were conducted in both Villodas and La Margarita, and three to four

CDC autocidal gravid ovitraps (AGO traps; Mackay et al. 2013)

were placed in >81% of households in La Margarita. Thus, Villodas

became the control (nonintervention) community and La Margarita

the (AGO trap) intervention site. In February 2013, source reduction

and larviciding were conducted in Villodas, and three traps were

placed around each house (in patios or gardens), to test the hypothesis

that Ae. aegypti density in Villodas would converge to the low values

observed in La Margarita (original intervention study). Surveillance

was also initiated at about the same time in two nearby commun-

ities—Playa and Arboleda—to compare these areas with the two that

then had control traps (Villodas and La Margarita).

Temperature and precipitation data for San Juan, PR, were

downloaded from the supplementary material of Morin et al.

(2015). Relative humidity data for the same period were provided

by Howard Diamond at NOAA. Confirmed dengue case data in San

Juan were obtained from the dengue database kept at the Centers

for Disease Control and Prevention—Dengue Branch.

Results

To measure the effect of the two additions on the model, we 1) com-

pared the fit of the original version to the observed data from

Fig. 2. Scatter plots of trap versus model data for Villodas, before (left) and after (right) the vector-control intervention. The solid line represents the best linear fit

through the points and the origin.
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multiple locations in PR and 2) compared model predictions with

dengue incidence reports in San Juan. We then compared each add-

ition separately, 1) RH-dependent adult morality, and 2) precipita-

tion-associated egg accumulation and hatching. Finally, we

compared the model with both additions. We also assessed how pre-

dictions from the models compare with measures of vector-control

efficacy estimated in a previous study (Barrera et al. 2014a, b).

Model Comparison Before any Vector-Control

Intervention
Figures 3–5 show model predictions with and without egg hatching

(EH) and with or without humidity-dependent adult survival (H),

compared with trap data collected in three locations (Arboleda,

Playa, and Villodas; Barrera et al. 2014a, b). In each of these figures,

the thicker, shaded line shows the observed data, which were aver-

aged over three consecutive weeks to dampen trap fluctuations. In

Arboleda, the available meteorological and trap data start in the

middle of the period of study. In Playa, trap data start at the same

time as in Arboleda, but the meteorological data is the same as for

La Margarita, whose collection started on 03 October 2011. During

this time period, there was no intervention in Arboleda or in Playa.

Predictions by the improved model, with RH and egg laying, are

shown in the figures as a solid black line. The scaling used for each

time series, as well as values of the RMSE and NRMSE are displayed

in Table 3. In this climate, where Ae. aegypti is abundant

Fig. 3. Model versus data (number of gravid females) comparison for Arboleda, with simulated data starting on 25 January 2013.

Fig. 4. Model versus data (number of gravid females) comparison for Playa, with simulated data starting on 03 October 2011.
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year-round, the improved model outperforms the relatively flat be-

havior (solid orange curve) of the base model (compare NRMSEs of

0.279 and 0.631 in Arboleda, 0.199 and 0.639 in Playa). Improving

the model by just adding RH (dotted green curves) produces similar

results but with peaks and troughs of different relative heights. By it-

self, accumulated egg hatching (dash-dotted purple curve) captures

some of the dynamics (increases and decreases), but fails to ad-

equately capture the width of the peaks, as well as their timing.

The vertical dashed line in Figs. 5 and 6 indicates the onset of

vector-control activities in Villodas and La Margarita, wherein

three to four 4 AGO traps were placed around households to re-

duce vector populations (Barrera et al. 2014a, b). In Villodas, the

improved model (solid black curve in Fig. 5) fits the trap data be-

fore the vector-control intervention extremely well, with a

NRMSE (ffi 0.202) at least 25% smaller than that of the other three

models (Table 3).

Model Comparison After Vector-Control Interventions
Model predictions are also in good agreement with trap data ob-

tained after vector-control interventions in La Margarita and

Villodas (Figs. 5 and 6 and Table 4). In Fig. 6, model predictions for

La Margarita are scaled to trap data observed after the intervention

(Table 5). Here again, the NRMSE of the improved model is smaller

than that of all of the other models (Table 4).

Comparison With Human Dengue Incidence
Recent works by Barrera and coworkers (Barrera et al. 2016,

Lorenzi et al. 2016) support the use of arbovirus prevalence in mos-

quitoes as a proxy for human infections. We therefore also tested

the model against dengue incidence data in San Juan. Figure 7 shows

model predictions for the scaled weekly number of infected female

mosquitoes (15-d averages applied twice) using meteorological data

for San Juan for 5 yr, from January 2009 to December 2013, and a

comparison with 4 yr of weekly human dengue incidence data, from

2010 to 2013, averaged over a 3-wk period. Scaling factors and

NRMSEs are provided in Table 6.

Both the improved model (humidity and egg hatching; solid

black curve) and the model with just humidity (green dotted curve)

adequately capture seasonal variations, but fail to predict the large

peak of human dengue incidence at the end of the fourth year

(2012). As in the previous simulations, the model that only includes

egg hatching (dash-dotted purple curve) tends to produce multiple

narrower peaks that qualitatively do not match the data, whereas

the base model (solid orange curve) shows annual variations of

smaller amplitude, although these differences are not as marked as

they are in time series for the number of gravid females (similar to

Figs. 3–6, but not shown for San Juan simulations) owing to the

temperature-dependence of the EIP.

Discussion

Although daily adult Ae. aegypti survival usually is about 91%, fluc-

tuations as low as about 50% have been associated with decreased

Fig. 5. Model versus data (number of gravid females) comparison for Villodas, with simulated data starting on 03 October 2011. Vector control started on 15

February 2013 (indicated by the vertical dashed line).

Table 3. Scaling factor (a), RMSE, and NRMSE for three locations

before vector-control intervention

Location/Model Scaling (a) RMSE NRMSE

Arboleda

H, EH 43.38 � 10�5 3.92 0.279

H, no EH 58.49 � 10�5 2.92 0.278

No H, EH 110.26 � 10�5 3.80 0.297

No H, no EH 139.43 � 0�5 3.25 0.631

Playa

H, EH 56.19 � 10�5 4.93 0.199

H, no EH 79.30 � 10�5 4.12 0.247

No H, EH 131.08 � 10�5 4.45 0.188

No H, no EH 167.56 � 10�5 4.88 0.639

Villodas

H, EH 19.19 � 10�5 1.59 0.202

H, no EH 25.91 � 10�5 1.74 0.267

No H, EH 48.07 � 10�5 2.31 0.399

No H, no EH 60.50 � 10�5 2.50 0.647
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humidity in dry seasons (Fouque et al. 2006). Canyon et al. (1999)

found that daily survival was near 91–95% when humidity was near

84%, and much lower (60–69%) at low humidity (35% RH). We

show that by incorporating RH in ways that are consistent with

these studies, the fit of the model is improved. Specifically, when

RH is between 72% and 95%, the daily probability of adult survival

is increased in the model from .91 to .98 (Table 2), thereby extend-

ing the duration of periods of increased mosquito abundance as well

as periods of increased numbers of gravid females. This can be seen

in Figs. 3–6 by comparing predictions of the improved model (EH,

H; solid black curve) with those of the model with only egg hatching

(EH, no H; dashed-dotted purple curve), or by comparing the base

model (no EH, no H; solid orange curve) with the model with hu-

midity only (EH, no H; green dotted curve)—abundance is higher

(scaling factors in Tables 3 and 4 are lower) when humidity is taken

into account, and the peaks are wider, indicating longer periods of

sustained abundance.

By comparison, including egg hatching on rainy days leads to

high, localized peaks: compare the base (solid orange) and EH only

(dash-dotted purple) models, and to some extent, the full (EH & H,

solid black) and H only (dotted green) models. This pulsing action

of rains hatching eggs that accumulated over dry periods has been

previously described in the literature for Ae. aegypti (Trpis 1972).

The correlation between increased abundance and cumulative rain-

fall in the 2–3 wk preceding data collection was emphasized in

Barrera et al. (2014a, b).

By including precipitation-associated egg-hatching and

humidity-driven adult survival, the present modeling approach illus-

trates the separate effects of these two factors, which are both corre-

lated to rainfall. Our results are based on simple and reasonable

estimates for the number of eggs hatching on rainy days, as well as

for the effect of humidity on adult survival rates. They would how-

ever benefit from careful experimental studies aiming at quantifying

the dependence of these numbers on amount of rainfall (for the

number of eggs hatching) and on both RH and temperature (for

adult survival rates). In the absence of such information, however,

the present model provides an effective way to estimate relative mos-

quito abundance in places like PR where the weather is suitable to

mosquito development year-round.

The improved model is helpful in assessing the role of vector-

control interventions. Two effects are noticeable from both Figs. 5

and 6. First, the improved model continues to capture the general

increasing and decreasing trends even after vector-control interven-

tion, suggesting that the main effect of the latter is reduction of the

number of mosquitoes in proportion to their abundance. Second,

the variability of the trapping data is much smaller than that of

model predictions, indicating that the trapping scheme is reducing

expected peaks in vector abundance. In Figs. 5 and 6, the difference

between the observed (shaded) and modeled abundance after the

intervention (vertical dotted line) represents the overall trapping effi-

cacy. A measure for the effectiveness of the intervention may thus be

obtained by monitoring how the scaling factor that needs to be

applied to each model to match the trap data changes through the

intervention, as summarized in Table 5 for Villodas. These numbers

compare well with estimates for vector-control reduction owing to

Fig. 6. Model versus after-intervention (number of gravid females) data comparison for La Margarita, starting on 03 October 2011. Vector control was initiated on

28 December 2011 (indicated by the vertical dashed line).

Table 4. Scaling factor (a), RMSE, and NRMSE for two locations

after vector-control intervention

Location/Model Scaling (a) RMSE NRMSE

Villodas

H, EH 3.98 � 10�5 0.374 0.182

H, no EH 5.98 � 10�5 0.422 0.367

No H, EH 10.89 � 10�5 0.418 0.230

No H, no EH 15.36 � 10�5 0.546 0.848

La Margarita

H, EH 6.14 � 10�5 0.588 0.213

H, no EH 8.45 � 10�5 0.469 0.250

No H, EH 14.17 � 10�5 0.596 0.232

No H, no EH 18.04 � 10�5 0.560 0.667
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AGO traps, as discussed in Barrera et al. (2014a, b), in which they

estimated that trapping led to reductions of 60–80%.

A previous study that correlated dengue cases with mosquito

abundance and SIR epidemiology (Morin et al., 2015) used a similar

mosquito abundance model for San Juan but without the additions

introduced here. By coupling a Susceptible-Infected-Removed (SIR)

model to the humidity and egg-hatching free abundance code, they

were able to capture interannual variability in dengue incidence, as

well as the presence of a large peak at the end of 2012 (fourth year

in Fig. 7). However, intraannual variability was not well captured:

peak predictions were shifted (15 wk later in year 2 [2010], 10 wk

later in year 3 [2011], and about 5 wk earlier in year 4 [2012]), and

oscillations in the number of reported cases were not captured. The

improved model discussed in this article, with the effect of humidity

and additional egg hatching when it rains, simulates infected Ae.

aegypti females and predicts relative increases in the number of in-

fected mosquitoes at the same time as increased numbers of dengue

cases were reported, and shows intraannual oscillations (see black

solid curve in Fig. 7). Future work should couple this model to an

SIR model and assess whether this can explain the height of the an-

nual peaks observed in human dengue incidence. Indeed, in 2010,

two dengue serotypes, DEN 1 and 4, returned after a decade of ab-

sence causing the largest dengue epidemic in PR history. This epi-

demic was also fueled by El Ni~no in 2009 and 2010, but La Ni~na set

in during Fall 2010 and stayed during 2011 and part of 2012,

thereby acting like a dam (since La Ni~na brings cooler conditions

that slow down transmission) to contain further spread of these

viruses. Then, by the end of 2012, there was a late DEN 1-4 epi-

demic that continued into 2013. The large peak of human dengue in-

cidence observed at the end of 2012, whose size is not adequately

captured by the models of Fig. 7, may indicate the continued suscep-

tibility of the population when DEN 1 and 4 returned to PR.

Taken on their own, each addition to the model improves agree-

ment with trap data—accumulated eggs that hatch on rainy days

lead to an increase in the number of adult mosquitoes 2–3 wk later,

whereas extended adult survival during periods of medium-high RH

prolongs the duration of periods of the year during which high mos-

quito abundance is observed (Barrera et al. 2011). These improve-

ments seem necessary in regions where the vector is abundant

year-round and do not significantly affect abundance predictions in

climates that lead to population collapses in the winter (Brown et al.

2017). With both additions, the improved model is in good agree-

ment with surveillance trap data in PR regardless of location—all

parameters used in the simulations presented herein are the same;

Table 5. Scaling factors for model predictions before and after the vector-control intervention in Villodas, as well as corresponding

estimates of reductions in vector abundance

Model Scaling before intervention Scaling after intervention Ratio Abundance reduction

H, EH 19.19 � 10�5 3.98 � 10�5 4.82 79.2%

H, no EH 25.91 � 10�5 5.98 � 10�5 4.33 76.9%

No H, EH 48.07 � 10�5 10.89 � 10�5 4.41 77.3%

No H, no EH 60.50 � 10�5 15.36 � 10�5 3.94 74.6%

Fig. 7. Model (scaled number of infected female mosquitoes per week) versus weekly human dengue incidence comparison for San Juan, starting on 01 January

2009. Dengue data (thick shaded blue curve) is available starting week 1 of 2010. Vertical lines separate calendar years.

Table 6. Scaling factors and NRMSE for model predictions in San

Juan

Model Scaling factor NRMSE

H, EH 14.77 � 10�5 0.490

H, no EH 33.75 � 10�5 0.495

No H, EH 122.97 � 10�5 0.424

No H, no EH 255.18 � 10�5 0.621
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only the input (temperature, precipitation, and RH data) and the scal-

ing factor depend on location. This new model can therefore be used

as a tool to estimate changes in Ae. aegypti abundance in regions of

similar tropical climate, wherever suitable input data is available.

Each simulation presented herein took a few minutes to run on a

recent single-processor laptop, thanks to the development landscape

approach presented in the Methods section, which significantly short-

ens the duration of each run while providing robust, reproducible pre-

dictions. As a consequence, as currently developed, the improved

model may be used in real time to predict local Ae. aegypti abundance

based on a year or so of historical climate data coupled to available

weather forecasts. Such information could potentially be utilized for

disease prevention purposes in areas where mosquito surveillance pro-

grams are scarce. As already mentioned above, accuracy of the predic-

tions depends on model parameters and would be improved by

careful studies of the effect of RH on adult survival and better quanti-

fication of the number of eggs hatching after rainfall.

Further work will consist of removing increasing fractions of

gravid females from the model to simulate the effect of control traps.

This should provide information on the linear or nonlinear nature of

the relationship between number of control traps and vector-control

efficacy, and thereby potentially guide vector-control interventions

aimed at lowering the number of mosquitoes to prevent the spread

of vector-borne diseases (Barrera et al. 2016).

Acknowledgments

We are grateful to Dr. Howard Diamond, Director of the Worlds Data Center

for Meteorology and NOAA’s National Centers for Environmental

Information, for providing the relative humidity data for San Juan, PR, used in

this study. We thank C. Morin and coworkers for making available online (as

supplementary material to Morin et al. 2015) the precipitation data for San

Juan used in the present study. We also acknowledge very helpful comments

from two anonymous reviewers. Research reported in this publication was sup-

ported in part by the National Institute of Allergy and Infectious Diseases of

the National Institutes of Health under Award Number K01AI101224. The

content is solely the responsibility of the authors and does not necessarily repre-

sent the official views of the National Institutes of Health.

References Cited

Barrera, R., M. Amador, and A. J. Mackay. 2011. Population dynamics of

Aedes aegypti and dengue as influenced by weather and human behavior in

San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5: e1378.

Barrera, R., M. Amador, V. Acevedo, B. Caban, G. Félix, and A. J. Mackay.

2014a. Use of the CDC autocidal gravid ovitrap to control and prevent out-

breaks of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 51: 145–154.

Barrera, R., M. Amador, V. Acevedo, R. R. Hemme, and G. Félix. 2014b.

Sustained, area-wide control of Aedes aegypti using CDC autocidal gravid ovi-

traps. Am. J. Trop. Med. Hyg. 91: 1269–1276. doi:10.4269/ajtmh.14-0426.

Barrera, R., V. Acevedo, G. Félix, R. R. Hemme, J. Vazquez, J. L. Munoz, and

M. Amador. 2016. Impact of autocidal gravid ovitraps on Chikungunya

virus incidence in Aedes aegypti (L.) (Diptera: Culicidae) in areas with and

without traps. J. Med. Entomol. 54 (2): 387–395.

Bennett, K. E., K. E. Olson, M. deL. Munoz, I. Fernandez-Salas, J. A. Farfan-

Ale, S. Higgs, W. C. Black, and B. J. Beaty. 2002. Variation in vector com-

petence for Dengue-2 virus among 24 collections of Aedes aegypti from

Mexico and the United States. Am. J. Trop. Med. Hyg. 67: 85–92.

Bogoch, I. I., O. J. Brady, M.U.G. Kraemer, M. German, M. I. Creatore, M.

A. Kulkarni, J. S. Brownstein, S. R. Mekaru, S. I. Hay, E. Groot, et al. 2016.

Anticipating the international spread of Zika virus from Brazil. Lancet 387:

335–336. http://dx.doi.org/10.1016/S0140-6736(16)00080-5.

Brown, H. E., M. Paladini, D. Kline, D. Barnard, and D. Fish. 2008.

Effectiveness of mosquito traps in measuring species abundance and com-

position. J. Med. Entomol. 45: 517–521.

Brown, H. E., A. Young, J. Lega, T. G. Andreadis, J. Schurich, and A.

Comrie. 2015. Projection of climate change influences on U.S. West Nile

virus vectors. Earth Interact. 19: 1–18. doi: http://dx.doi.org/10.1175/EI-

D-15-0008.1.

Brown, H. E., C. Smith, and S. Lashway. 2016. Influence of the length of stor-

age on Aedes aegypti (Diptera: Culicidae) egg viability. J. Med. Entomol.

54: 489–491.

Brown, H. E., R. Barrera, A. C. Comrie, and J. Lega. 2017. Effect of tempera-

ture thresholds on modeled Aedes aegypti population dynamics. J. Med.

Entomol. 54: 869–877.

Canyon, D. V., L. Hii, and R. Muller. 1999. Adaptation of Aedes aeygpti

(Diptera: Culicidae) oviposition behavior in response to humidity and diet.

J. Insect Physiol. 45: 959–964.

Cauchemez, S., M. Ledrans, C. Poletto, P. Quenel, H. de Valk, V. Colizza, and

P. Y. Bo€elle. 2014. Local and regional spread of chikungunya fever in the

Americas. Euro Surveill. 19: 20854. (http://www.eurosurveillance.org/

ViewArticle.aspx?ArticleId¼20854) (accessed 30 September 2014)

Chan, M., and M. A. Johansson. 2012. The incubation periods of dengue

viruses. PLoS ONE 7: e50972. doi:10.1371/journal.pone.0050972.

Eisen, L., A. J. Monaghan, S. Lozano-Fuentes, D. F. Steinhoff, M. H. Hayden,

and P. E. Bieringer. 2014. The impact of temperature on the bionomics of

Aedes (stegomyia) aegypti, with special reference to the cool geographic

range margins. J. Med. Entomol. 51: 496–516.

Faull, K. J., and C. R. Williams. 2015. Intraspecific variation in desiccation

survival time of Aedes aegypti (L.) mosquito eggs of Australian origin. J.

Vector Ecol. 40: 292–300.

Fouque, F., R. Carinci, P. Gaborit, J. Issaly, D. Bicout, and P. Sabatier. 2006.

Aedes aegypti survival and dengue transmission patterns in French Guiana.

J. Vector Ecol. 31: 390–399.

Gong, H., A. T. DeGaetano, and L. C. Harrington. 2011. Climate-based mod-

els for West Nile Culex mosquito vectors in the northeastern US. Int. J.

Biometeor. 55: 435–446.

Guo, S., F. Ling, J. Hou, J. Wang, G. Fu, and Z. Gong. 2014. Mosquito surveillance

revealed lagged effects of mosquito abundance on mosquito-borne disease trans-

mission: A retrospective study in Zhejiang, China. PLoS ONE 9: e112975.

Juliano, S. A., F. O’Meara, J. R. Morrill, and M. M. Cutwa. 2002. Desiccation

and thermal tolerance of eggs and the coexistence of competing mosquitoes.

Oecologia 130: 458–469.

Keeling, M. J., and L. Danon. 2009. Mathematical modelling of infectious dis-

eases. Brit. Med. Bull. 92: 33–42.

Lega, J., and H. E. Brown. 2016. Data-driven outbreak forecasting with a sim-

ple nonlinear growth model. Epidemics 17: 9–26.

Lorenzi, O. D., C. Major, V. Acevedo, J. Perez-Padilla, A. Rivera, B. J.

Biggerstaff, J. Munoz-Jordan, S. Waterman, R. Barrera, and T. M. Sharp.

2016. Reduced incidence of chikungunya virus infection in communities

with ongoing Aedes aegypti mosquito trap intervention studies - Salinas and

Guayama, Puerto Rico, November 2015-February 2016. MMWR Morb.

Mortal. Wkly. Rep. 65: doi:10.15585/mmwr.mm6518e3.

Mackay, A., M. Amador, and R. Barrera. 2013. An improved autocidal gravid ovi-

trap for the control and surveillance of Aedes aegypti. Parasites Vectors 6: 225.

May, R. M. 2004. Uses and abuses of mathematics in biology. Science 303:

790–793.

Morin, C. W., and A. C. Comrie. 2010. Modeled response of the West Nile

virus vector Culex quinquefasciatus to changing climate using the dynamic

mosquito simulation model. Int. J. Biometeor 54: 517–529. doi:10.1007/

s00484-010-0349-6.

Morin, C. W., and A. C. Comrie. 2013. Regional and seasonal response of a

West Nile virus vector to climate change. Proc. Nat. Acad. Sci. 110:

15620–15625.

Morin, C. W., J. Monaghan, M. H. Hayden, R. Barrera, and K. Ernst. 2015.

Meteorologically driven simulations of dengue epidemics in San Juan, PR.

PLoS Negl. Trop. Dis. 9: e0004002. doi:10.1371/journal.pntd.0004002.

Otero, M., H. G. Solari, and N. Schweigmann. 2006. A stochastic population

dynamics model for Aedes aegypti: Formulation and application to a city

with temperate climate. Bull. Math. Biol. 28: 1945–1974. doi: 10.1007/

s11538-006-9067-y.

Poole-Smith, B. K., R. Hemme, M. Delorey, G. Félix, A. L. Gonzalez, M.

Amador, E. A. Hunsperger, and R. Barrera. 2015. Comparison of vector

Journal of Medical Entomology, 2017, Vol. 54, No. 5 1383

Deleted Text: relative humidity 
Deleted Text: in order 
Deleted Text: vector 
Deleted Text: vector 
Deleted Text: in order 
http://dx.doi.org/10.1016/S0140-6736(16)00080-5
http://dx.doi.org/10.1175/EI-D-15-0008.1
http://dx.doi.org/10.1175/EI-D-15-0008.1
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20854
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20854
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20854


competence of Aedes mediovittatus and Aedes aegypti for dengue virus:

Implications for dengue control in the Caribbean. PLoS Negl. Trop. Dis. 9:

e0003462. doi:10.1371/journal. pntd.0003462.

Rueda, L. M., J. Patel, R. C. Axtell, and R. E. Stinner. 1990. Temperature-de-

pendent development and survival rates of Culex quinquefasciatus and

Aedes aegypti (Diptera: Culicidae). J. Med. Ent. 27: 892–898.

Ryan, P. A., D. Alsemgeest, M. L. Gatton, and B. H. Kay. 2006. Ross River

virus disease clusters and spatial relationship with mosquito biting exposure

in Redland Shire, Southern Queensland, Australia. J. Med. Entomol. 43:

1042–1059.

Trpis, M. 1972. Dry season survival of Aedes aegypti eggs in various breeding

sites in the Dar es Salaam area, Tanzania. Bull. WHO.

Wagner, T. L., H. Wu, P.J.H. Sharpe, R. M. Schoolfield, and R. N. Coulson.

1984. Modeling insect development rates: A literature review and applica-

tion of a biophysical model. Ann. Entomol. Soc. Am. 77: 208–220.

doi:10.1093/aesa/77.2.208.

Wearing, H. L., P. Rohani, and M. J. Keeling. 2005. Appropriate models for

the management of infectious diseases. PLoS Med. 2: e174.

Xu, C., M. Legros, F. Gould, and A. L. Lloyd. 2010. Understanding uncertain-

ties in model-based predictions of Aedes aegypti population dynamics. PLoS

Negl Trop. Dis. 4: e830.

Yang, G. J., W. Brook, and C. J. A. Bradshaw. 2009. Predicting the timing and

magnitude of tropical mosquito population peaks for maximizing control

efficiency. PLoS Negl. Trop. Dis. 3:

1384 Journal of Medical Entomology, 2017, Vol. 54, No. 5


