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Abstract

Dynamic simulation models provide vector abundance estimates using only meteorological data. However,

model outcomes may heavily depend on the assumptions used to parameterize them. We conducted a sensitiv-

ity analysis for a model of Aedes aegypti (L.) abundance using weather data from two locations where this vec-

tor is established, La Margarita, Puerto Rico and Tucson, Arizona. We tested the effect of simplifying

temperature-dependent development and mortality rates and of changing development and mortality thresh-

olds as compared with baselines estimated using biophysical models. The simplified development and mortal-

ity rates had limited effect on abundance estimates in either location. However, in Tucson, where the vector is

established but has not transmitted viruses, a difference of 5 �C resulted in populations either surviving or

collapsing in the hot Arizona mid-summer, depending on the temperature thresholds. We find three important

implications of the observed sensitivity to temperature thresholds. First, this analysis indicates the need for

better estimates of the temperature tolerance thresholds to refine entomologic risk mapping for disease

vectors. Second, our results highlight the importance of extreme temperatures on vector survival at the

marginal areas of this vector’s distribution. Finally, the model suggests that adaptation to warmer temperatures

may shift regions of pathogen transmission.
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Aedes aegypti (L.) is one of the primary vectors for (re)emerging

arboviruses causing diseases like dengue, chikungunya, and Zika.

To estimate the risk of disease transmission occurring in new areas,

presence of a disease vector is necessary. Moreover, the vector must

be present in sufficient abundance, survive long enough to become

infected, and and have enough human contact to successfully trans-

mit virus. When coupled with human travel information, entomo-

logic risk is helpful in the early stages of an outbreak to quickly

delineate the regions where disease transmission may occur. Such

approaches may rely on the presence of the vector (Khan et al.

2014) or on more sophisticated models of vector abundance

(Bogoch et al. 2016, Monaghan et al. 2016). However, incomplete

understanding of the interactions and susceptibilities of vectors,

hosts, and pathogen continues to hamper the development of early

warning systems (Louis et al. 2014).

Entomologic risk, with respect to modeling disease transmission,

involves understanding both the seasonal population dynamics (be-

cause vectors must be sufficiently abundant for hosts to incur an

infectious bite) and adult female longevity (because they must live

long enough to become infectious and successfully find another

host). Previous sensitivity analyses have shown that survival thresh-

olds associated with temperature extremes were most influential in

patterns of Ae. aegypti population dynamics and dengue transmis-

sion (Xu et al. 2010, Ellis et al. 2011). Specifically, temperature may

influence the survival of adult females beyond the extrinsic incuba-

tion period (Brady et al. 2013). However, the implication of these

temperature thresholds has not been evaluated in regions along the

periphery of the vector’s established range.

With summer high temperatures exceeding 38�C and winter low

temperatures <4 �C, Tucson, Arizona provides a testing ground for

the influence of extreme temperatures on a model of Ae. aegypti

abundance. The vector is established but the viruses transmitted by

this vector are not (Fink et al. 1998). This situation differs from La

Margarita, Puerto Rico, where the vector is present year-round due

to temperature and precipitation patterns (Barrera et al. 2011), and

dengue is endemic (Barrera 2010), with recent outbreaks of
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chikungunya and Zika (Sharp et al. 2014, Adams et al. 2016).

Herein, we conduct a sensitivity analysis to evaluate the effect of

temperature on the predictions of an Ae. aegypti abundance model

in these two climates. We assess how the estimated vector abun-

dance changes when simplifying modeling assumptions and which

factors, e.g., temperature thresholds, development and mortality

rates, are most influential.

Materials and Methods

Study Area
We compare modeled vector abundance between two locations

where Ae. aegypti are established. Weather data at a single point for

each location for the study period (3 October 2011–18 November

2014) were derived from a HOBO meteorological station (HOBO

Data Loggers, Onset Computer Corporation, Boume, MA) in La

Margarita, a tropical environment in southern Puerto Rico

(17.9716667�, �66.3027778�), and from the National Climatic

Data Center for Tucson, an arid city in southern Arizona

(32.221667�, �110.9263389�). Over the 2 yr of the study period,

for which we have a complete year’s weather data (2012 and 2013),

the median monthly total precipitation in La Margarita was

41.52 cm (range 2.27–199.4 cm) and an average mean temperature

of 27.2�C (maximum high temperature recorded was 35.5 �C and

minimum low temperature was 18.6 �C), whereas Tucson experi-

enced a median monthly total of 0.86 cm (range 0–10.5 cm) of pre-

cipitation and an average mean temperature of 21.8 �C (maximum

high temperature recorded was 44.4 �C and minimum low tempera-

ture was �8.3 �C).

Model Description
We used DyMSiM, an established mosquito abundance model that

uses daily temperature and precipitation data to simulate the devel-

opment of individual mosquitoes from egg to adult, yielding a daily

estimated adult mosquito population for a given location (Morin

and Comrie 2010, Brown et al. 2015, Morin et al. 2015). Our ver-

sion of DyMSiM is implemented in MATLAB R2013b

(MathWorks, Natick, MA) and was parameterized for Ae. aegypti

using specific temperature-dependent development and mortality

rates, as well as minimum and maximum temperature thresholds for

each immature and adult stage, obtained from published empirical

studies (Otero et al. 2006, Eisen et al. 2014).

Because the model has a stochastic component (random

events include, e.g., whether a specific mosquito survives until

the next day or whether a specific gravid female lays eggs), differ-

ent simulations with identical initial conditions and climate input

lead to different daily estimates but to consistent seasonal trends.

The standard deviation of daily predictions from individual runs

changes as a function of time and location. On average, it is

about 13% of the mean in PR and 26% of the mean in Tucson

(this latter number increases to 49% when values for which the

mean is near zero are included). To obtain a low-variability esti-

mation of the expected abundance on any given day, we therefore

average the output of the code over a fixed number of simula-

tions (set to N¼30; see Model Optimization in the Results sec-

tion for details).

Analysis
For each life stage, the development and mortality rates, and the

temperature thresholds for development and survival were changed

serially (one value changed per life stage and rate per threshold

combination), and then concurrently across all stages. For the devel-

opment and mortality rates, we tested whether a simplified model (a

uniform or a linear dependence on temperature, Table 1) would sig-

nificantly alter the estimates from current biophysical models (Otero

et al. 2006). For the development and survival thresholds, incre-

ments of 5 �C above and below the maximum and minimum thresh-

olds were individually tested by life stage and then tested

concurrently across all life stages. The value of the increment (5 �C)

is about 10% of the annual temperature range in Tucson and about

a third of the annual temperature range in Puerto Rico, and is there-

fore, significant in both areas. Temperature tolerance thresholds

were derived from a recent review of Ae. aegypti bionomics (Eisen

et al. 2014).

Daily estimated abundance for baseline (using original param-

eters) and adjusted models were compared visually, and root mean

square error (RMSE) was calculated by comparing the daily differ-

ence between baseline and adjusted model. Root mean square error

should be low when the estimated daily mosquito abundance be-

tween simulations are close. Calculation of RMSE and graphing was

performed in Excel 2010 (Microsoft, Redmond, WA).

Results

Model Optimization
Averaging over 30 independent runs resulted in stable sample mean

estimates of the expected value (mean) of predicted daily mosquito

abundance. Specifically, the variability of these estimates, measured

as the time average of the daily standard deviation scaled to the daily

mean, was 2.3% in PR and 4.7% in Tucson. The Tucson average is

only over values for which the mean is significant; including winter

estimates, when the mean abundance is near zero, increases the aver-

age variability to 8.5% (see panel B of each figure below). Changing

the coefficient for the environmental suitability of immature habitat

had little effect on the dynamics of the abundance but, as expected

given the nature of this parameter, scaled the number of mosquitoes

predicted. Thus, we set the environmental suitability at 1 for all

analyses.

Mean Development Rates
First, we evaluated the effect of using the average development rate

from egg to adult rather than stage-specific development rates

(Otero et al. 2006). Then, stage-specific development rates were

replaced with their average calculated between 5�C and 38 �C.

These temperature values were selected to capture the widest range

Table 1. The linear development rates including the temperature

range for which the formula was applied for each life stage

Range (�C) Formula R2

Egg 5–49 0.0171*T � 0.102 0.90

IS1 4.7–30 0.0379*T � 0.1908 0.89

30–38 �0.0784*T þ 3.3396 0.98

IS2 4.7–28 0.0575*T � 0.5439 0.82

28–39 �0.1166*T þ 4.6635 0.99

IS3 4.7–30 0.0497*T � 0.5012 0.85

30–39 �0.0544*T þ 2.8747 0.96

IS4 4.7–33 0.0258*T � 0.2472 0.92

33–39 �0.0118*T þ 1.0303 0.94

Pupal 17–39 0.0345*T � 0.3252 0.88

The coefficient of determination (R2) is reported for the linear fit to the

empirical data.
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of temperature-dependent development data. This was performed

for each individual life stage separately, and then concurrently for

all life stages together.

La Margarita. All of the above simplifications had a negligible

impact on the estimated daily abundance, with RMSEs of about

10% of the total daily abundance (Fig. 1A).
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Fig. 1. Comparison of abundance using average development rates. (A) La Margarita. (B) Tucson. Baseline (BASE), egg (EggDev_ave), 1–4 larval instars (#IS_ave)

and pupal (P_ave) and egg to adults (6*TotalDev).
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Fig. 2. Comparison of abundance using linear development rates. (A) La Margarita. (B) Tucson. Baseline (BASE), egg (Egg_Linear), 1–4 larval instar development

rates (#IS_Tent), pupal (P_Linear), all stages (All_Linear).
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Fig. 3. Comparison of abundance when minimum and maximum development thresholds were changed by 5 �C across all life stages. (A) La Margarita. (B)

Tucson. Baseline (BASE), thresholds reduced (Dev_Min5Low; Dev_Max5Low), thresholds increased (Dev_Min5High; Dev_Max5High), range for suitable develop-

ment increased (Dev_5Increase: minimum threshold lowered and maximum threshold raised), suitable development range decreased (Dev_5Decrease: minimum

threshold raised and maximum threshold lowered).
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Tucson. Likewise, in Tucson using average development rates

led to fairly similar estimates, with RMSEs of about 10% (Fig. 1B).

Linear Development Rates
Next, the stage-specific development rates were replaced with a lin-

ear fit of temperature-dependent development rates. For the larval

stages, the temperature-dependent development rates increase and

then decrease as the temperature increases. Thus, the data were div-

ided and a linear fit applied to pre- and postpeak data independ-

ently. For eggs and pupae, a single linear fit was used. For each, only

one stage was changed at a time, and the model was reset to the ori-

ginal values between tests. The linear fit of each life stage was then

used for all stages.

La Margarita. Applying a linear fit provides an estimate within

the same range as the originally parameterized model (Fig. 2A), still

capturing the seasonality, and is a reasonably close approximation

with low RMSE (<6.6 mosquitoes per day, where the daily average

is around 60; i.e., �10%). Changing the egg and third-instar devel-

opment rates had the greatest effect (RMSE¼6.41 and 6.0, respect-

ively), one overestimating (mean number of females¼65, SD¼7)

and the other underestimating (mean number of females¼60,

SD¼6) the average number of mosquitoes (baseline model¼62 fe-

males, SD¼7). When replacing all fits with a linear approximation,

the estimated total was still around 60 adult females (62, SD¼5)

compared with the baseline model, with an average of 60 adult fe-

males (SD¼6).

Tucson. Applying a linear fit provides an estimate within the

same range as the originally parameterized model, still capturing the

seasonality, and is a reasonably close approximation (Fig. 2B).

Changing all development rates to their linear approximation had

the greatest effect (RMSE¼10.13), though still providing similar es-

timates of average number of female mosquitoes (N¼38, SD¼26)

as the baseline (N¼36, SD¼26).

Thresholds Associated With Development
Minimum and maximum temperature development thresholds were

lowered and raised by 5 �C yielding increased and decreased suitable

temperature ranges. First, all stages were evaluated individually, and

then all stages jointly. Only the estimates obtained when all stage-

specific values were changed concurrently are presented in Fig. 3.

La Margarita. In La Margarita, the mean temperature (27.2 �C)

is well within the development temperature thresholds and the

observed minimum and maximum (18.6�C, 35.5 �C) temperatures

also remain within baseline thresholds. As a consequence, the sen-

sitivity analysis showed negligible effect when compared with the

variance across baselines yielding a RMSE of <2 (Fig. 3A and

Table 2).

Tucson. For the time period of this study, the lowest minimum

temperature reported for Tucson was �8.3 �C and the maximum

was 44.4 �C. As with La Margarita, differences between baselines

for stage-specific changes, as well as when all values were changed,

were negligible with RMSE<3 (Fig. 3B and Table 2).

Changing Death Rates
We changed the immature death rate for temperatures between

4.85�C and 29.85 �C from the formula presented in Otero et al.

(2006), given by 1� ð0:01þ 0:9725�ðT=2:7035Þ), where T is tempera-

ture in �C, to a constant (1 � 0.970969). This value was calculated

as the average of the temperature-dependent death rate in degree in-

crements using the Otero et al. (2006) model. Using La Margarita

and Tucson data had a negligible effect when compared with the un-

changed model, with a RMSE for La Margarita of 2.08 and a mean

of 60 females (SD¼6), and a RMSE for Tucson of 2.04 with a mean

of 35 females (SD¼26). The other mortality rates were already con-

stant between temperature thresholds (Otero et al. 2006).

Changing Thresholds Associated With Survival
Fig. 4 presents the estimated abundance when all stage-specific val-

ues were changed simultaneously.

La Margarita. Changing the minimum temperature threshold by

5�C above or below the minimum temperature thresholds estimated

from the graphs in Eisen et al. (2014) for this species remained well

within the temperatures experienced in La Margarita (Table 3).

Thus, we saw little effect of changing the minimum temperature

thresholds, with an average number of females similar to the base-

lines and a RMSE <2.2 mosquitoes per day (Fig. 4A and Table 2).

While the highest maximum temperature reported during this time

period (35.5 �C) was closer to the stage-specific thresholds, these

high temperatures were infrequent and had negligible effect, with a

RMSE<2 mosquitoes per day (Fig. 4A and Table 2).

Tucson. Unlike La Margarita, the temperatures in Tucson reach

the minimum and maximum temperature thresholds during this

time series—lowest minimum �8.3 �C and highest maximum

44.4 �C. Reducing the range of temperatures in which this vector

Table 2. Error and estimates (mean daily abundance and standard deviation) associated with 5 �C changes in temperature tolerance

thresholds

Baseline Low widened Upper widened Both widened Low narrow Upper narrow Both narrow

Development

La Margarita RMSE – 1.70 1.69 1.86 1.75 1.90 1.82

Mean 60 60 60 60 60 60 60

SD 7 6 6 6 6 6 6

Tucson RMSE – 2.05 2.63 2.04 2.15 2.00 2.26

Mean 36 36 36 36 36 36 36

SD 26 26 26 26 26 26 26

Survival

La Margarita RMSE – 1.88 1.84 1.87 1.81 1.75 1.78

Mean 60 60 60 60 60 60 60

SD 7 6 6 6 6 7 6

Tucson RMSE – 1.88 2.65 2.09 11.99 31.03 29.80

Mean 36 36 36 36 31 18 17

SD 26 26 26 26 28 21 21
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Fig. 4. Comparison of abundance when survival thresholds were changed by 5 �C across all life stages. (A) La Margarita. (B) Tucson. Baseline (BASE), minimum

and maximum thresholds reduced (Surv_Min5Low; Surv_Max5Low), minimum and maximum increased (Surv_Min5High; Surv_Max5High), suitable survival

range increased (Surv_5Increase: minimum threshold lowered and maximum threshold raised), suitable survival range decreased (Surv_5Decrease: minimum

threshold raised and maximum threshold lowered).
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survives by lowering the maximum temperature thresholds caused

populations to collapse in the mid-summer with RMSE¼31.03 and

mean number of females¼18 (Fig. 4B). This collapse is primarily

driven by the effect of lowering the maximum survival threshold for

larvae from 36�C to 31 �C (outside of which the mortality is set to

0.05). We also observed an effect when the minimum threshold for

the daily survival rate for larvae and pupae was increased from

13�C to 18 �C and when the adult survival threshold was changed

from 4 �C estimated from Eisen et al. (2014) to 9 �C. This caused the

population to collapse about 20 d earlier in the fall.

Discussion

We conducted a sensitivity analysis to assess the effect of simplified

development and mortality rates and to establish which parameters

are most critical in understanding vector dynamics. We compared

two very different regions (La Margarita and Tucson), which have

very different climates. While both have established Ae. aegypti

populations, their disease transmission profiles differ. Counter to

our expectations, replacing the development rates with their aver-

ages or linear approximations had a negligible (�10% error) effect

on the estimated daily abundance in either location. This sensitivity

analysis also shows the key role of temperature thresholds in mar-

ginal vector or extreme climate areas, and suggests these thresholds

may be important for understanding regional risks of disease

transmission.

The observation that simplified development rates have a negli-

gible effect (�10% error) on the predicted daily abundance suggests

that empirical studies aiming for better estimates of development

rates at constant temperatures may not be as necessary as addressing

other aspects of vector growth dynamics. However, we saw an effect

in Tucson when using the linear approximation concurrently for all

development rates, which was not observed with any stage-specific

change alone—a widening of the mosquito season with an earlier

start to the population growth. This widening was most noticeable

in the second yr of the study period, where the population began to

build from mid-March to early April 2013 and again early March

through early April 2014 (Fig. 2B). During these two periods, the

average maximum and mean temperatures were about 2 �C warmer

than the comparable period in 2012 (maximum temperature:

25.6�C, 27.7�C, and 27.0�C; mean temperature: 17.0�C, 19.4�C,

18.8�C in 2012, 2013, 2014, respectively) and the average minimum

temperature 2–3 �C warmer (8.4�C, 11.2�C, 10.6�C, in 2012, 2013,

2014, respectively). Understanding this effect has implications for

modeling disease transmission, as an extension of the activity season

may translate to increased probability of a mosquito acquiring an in-

fectious bloodmeal. Ginsberg et al. (2010) found earlier positive

pools were positively associated with later West Nile virus activity

in Culex species.

Although changing the thresholds associated with development

had little effect, changing the survival thresholds influenced vector

dynamics in Tucson. Cool temperatures are implicated in limiting

the distribution of Ae. aegypti (Eisen and Moore 2013). Similar

abundance modeling in cooler locations of Australia found the effect

of cool temperatures on adult activity may have explained Ae.

aegypti disappearance in marginal areas (Williams et al. 2010).

Changes to development or mortality rates or temperature tolerance

thresholds did not result in simulated populations surviving through

the winter collapses in Tucson. This finding is likely because of the

development at lower temperature ranges is near zero for immature

stages (Otero et al. 2006, Eisen et al. 2014). Thus, even with shifting

the cold temperature tolerance, unless the low-temperature develop-

ment rates are also changed, the populations are not sustained over

the winter.

This analysis suggests that the mid-summer heat is having an im-

pact on the seasonality of Ae. aegypti in Tucson at the periphery of

its geographic range. Our model does not include humidity related

mortality, which has been suggested by some as a factor in Ae.

aegypti survival in the arid Southwest (Hayden et al. 2010, Walker

et al. 2011). Nonetheless, this analysis indicates heat alone is nega-

tively impacting the populations. The modeled mosquito population

dynamics was most sensitive in Tucson, where the survival thresh-

olds reported in the literature for all immature stages were close to

the observed summer temperatures. When using thresholds from the

comprehensive summary provided by Eisen et al. (2014) as done

here, the simulated populations survived. However, when using the

thresholds estimated by Christophers (1960) and Otero et al.

(2006), the mid-summer population collapsed as observed in the

analysis reported here, with the reduction of the maximum tempera-

ture threshold. Simulated populations surviving or collapsing de-

pending on the empirically derived threshold used, together with

existing differences in reported development and survival thresholds,

highlights a need to better understand temperature thresholds for

Ae. aegypti. However, for estimating abundance in tropical regions

where the temperatures often do not reach the thresholds, a simpli-

fied fit of the development rates within the reported thresholds may

be sufficient to estimate vector abundance.

The development rates estimated for our model are based on

constant temperatures and do not include diurnal fluctuations which

have been shown to lengthen development time and reduce larval

survival (Carrington et al. 2013). The results of this manuscript sug-

gest that diurnal fluctuations may be simply accounted for by esti-

mating general trends and revising the average development rates

used in the model accordingly.

We observed an effect of maximum temperature thresholds

limiting populations in the periphery of the geographic limits of

Ae. aegypti. This study reinforces the need for better data to study

how this vector behaves at the extreme temperatures experienced

at the periphery of the vector’s range (Brady et al. 2013,

Eisen et al. 2014).
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Table 3. Development and survival thresholds (�C) estimated from

the graphs in Eisen et al. (2014)

Article I. Egg Hatch Larvae Pupa Adult

Development

Min 10 NA 11.8 10.3 NA

Max 36 39 (39)

Survival

Min 10 13 13 12 4

Max 36 38 36 38 41

876 Journal of Medical Entomology, 2017, Vol. 54, No. 4

Deleted Text: ays
Deleted Text:  
Deleted Text: stage 
Deleted Text: : 
Deleted Text: two 
Deleted Text: ea
Deleted Text: s
Deleted Text: -
Deleted Text:  
Deleted Text: WNV
Deleted Text: While 
Deleted Text: low 
Deleted Text: -


References Cited

Adams, L., M. Bello-Pagan, M. Lozier, K. R. Ryff, C. Espinet, J. Torres, J.

Perez-Padilla, M. F. Febo, E. Dirlikov, A. Martinez, et al. 2016. Update:

Ongoing Zika virus transmission-Puerto Rico, November 1, 2015–July 7,

2016. MMWR Morb. Mortal. Wkly. Rep. 65: 774–779.

Barrera, R. 2010. Dengue and Aedes aegypti dynamics in Puerto Rico. Rev.

Biomed. (Mexico) 21: 179–195.

Barrera, R., M. Amador, and A. J. MacKay. 2011. Population dynamics of

Aedes aegypti and dengue as influenced by weather and human behavior in

San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5: e1378.

Bogoch, I. I., O. J. Brady, M. U. Kraemer, M. German, M. I. Creatore, M. A.

Kulkarni, J. S. Brownstein, S. R. Mekaru, S. I. Hay, E. Groot, et al. 2016.

Anticipating the international spread of Zika virus from Brazil. Lancet 387:

335–336.

Brady, O. J., M. A. Johansson, C. A. Guerra, S. Bhatt, N. Golding, D. M.

Pigott, H. Delatte, M. G. Grech, P. T. Leisnham, R. Maciel-de-Freitas, et al.

2013. Modelling adult Aedes aegypti and Aedes albopictus survival at dif-

ferent temperatures in laboratory and field settings. Parasit. Vectors 6:

351–3305. 6–351.

Brown, H. E., A. Young, J. Lega, T. G. Andreadis, J. Schurich, and A. Comrie.

2015. Projection of climate change influences on U.S. West Nile virus vec-

tors. Earth Interact. 19: 1–18.

Carrington, L. B., S. N. Seifert, N. H. Willits, L. Lambrechts, and T. W.

Scott. 2013. Large diurnal temperature fluctuations negatively influence

Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol.

50: 43–51.

Christophers, S. R. 1960. Aedes aegypti (L.): The yellow fever mosquito.

Cambridge University Press, London, United Kingdom.

Eisen, L., and C. G. Moore. 2013. Aedes (Stegomyia) aegypti in the continen-

tal United States: A vector at the cool margin of its geographic range.

J. Med. Entomol. 50: 467–478.

Eisen, L., A. J. Monaghan, S. Lozano-Fuentes, D. F. Steinhoff, M. H. Hayden,

and P. E. Bieringer. 2014. The impact of temperature on the bionomics of

Aedes (Stegomyia) aegypti, with special reference to the cool geographic

range margins. J. Med. Entomol. 51: 496–516.

Ellis, A. M., A. J. Garcia, D. A. Focks, A. C. Morrison, and T. W. Scott. 2011.

Parameterization and sensitivity analysis of a complex simulation model for

mosquito population dynamics, dengue transmission, and their control.

Am. J. Trop. Med. Hyg. 85: 257–264.

Fink, M. T., B. Hau, B. L. Baird, S. Palmer, S. Kaplan, F. B. Ramberg, D. G.

Mead, and H. Hagedorn. 1998. Aedes aegypti in Tucson, Arizona. Emerg.

Infect. Dis. 4: 703.

Ginsberg, H. S., I. Rochlin, and S. R. Campbell. 2010. The use of early sum-

mer mosquito surveillance to predict late summer West Nile virus activity.

J. Vector Ecol. 35: 35–42.

Hayden, M. H., C. K. Uejio, K. Walker, F. Ramberg, R. Moreno, C. Rosales,

M. Gameros, L. O. Mearns, E. Zielinski-Gutierrez, and C. R. Janes. 2010.

Microclimate and human factors in the divergent ecology of Aedes aegypti

along the Arizona, U.S./Sonora, MX border. EcoHealth 7: 64–77.

Khan, K., I. Bogoch, J. S. Brownstein, J. Miniota, A. Nicolucci, W. Hu, E. O.

Nsoesie, M. Cetron, M. I. Creatore, M. German, et al. 2014. Assessing the

origin of and potential for international spread of chikungunya virus from

the Caribbean. PLoS Curr. Outbreaks 6: 10.1371/

currents.outbreaks.2134a0a7bf37fd8d388181539fea2da5.

Louis, V. R., R. Phalkey, O. Horstick, P. Ratanawong, A. Wilder-Smith, Y.

Tozan, and P. Dambach. 2014. Modeling tools for dengue risk mapping-A

systematic review. Int. J. Health Geogr. 13: 50–072X. 13–50.

Monaghan, A. J., C. W. Morin, D. F. Steinhoff, O. Wilhelmi, M. Hayden, D. A.

Quattrochi, M. Reiskind, A. L. Lloyd, K. Smith, C. A. Schmidt, et al. 2016.

On the seasonal occurrence and abundance of the Zika virus vector mosquito

Aedes aegypti in the contiguous United States. PLoS Curr. Outbreaks 8:

10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.

Morin, C. W., and A. C. Comrie. 2010. Modeled response of the West Nile

virus vector Culex quinquefasciatus to changing climate using the dynamic

mosquito simulation model. Int. J. Biometeorol 54: 517–529.

Morin, C. W., A. J. Monaghan, M. H. Hayden, R. Barrera, and K. Ernst.

2015. Meteorologically driven simulations of dengue epidemics in San Juan,

PR. PLoS Negl. Trop. Dis. 9: e0004002.

Otero, M., H. G. Solari, and N. Schweigmann. 2006. A stochastic population

dynamics model for Aedes aegypti: Formulation and application to a city

with temperate climate. Bull. Math. Biol. 68: 1945–1974.

Sharp, T. M., N. M. Roth, J. Torres, K. R. Ryff, N. M. Perez Rodriguez, C.

Mercado, M. D. Pilar Diaz Padro, M. Ramos, R. Phillips, M. Lozier, et al.

2014. Chikungunya cases identified through passive surveillance and house-

hold investigations–Puerto Rico, May 5–August 12, 2014. MMWR Morb.

Mortal. Wkly. Rep. 63: 1121–1128.

Walker, K. R., T. K. Joy, C. Ellers-Kirk, and F. B. Ramberg. 2011. Human

and environmental factors affecting Aedes aegypti distribution in an arid

urban environment. J. Am. Mosq. Control Assoc. 27: 135–141.

Williams, C. R., C. A. Bader, M. R. Kearney, S. A. Ritchie, and R. C. Russell.

2010. The extinction of dengue through natural vulnerability of its vectors.

PLoS Negl. Trop. Dis. 4: e922.

Xu, C., M. Legros, F. Gould, and A. L. Lloyd. 2010. Understanding uncertain-

ties in model-based predictions of Aedes aegypti population dynamics. PLoS

Negl. Trop. Dis. 4: e830.

Journal of Medical Entomology, 2017, Vol. 54, No. 4 877


	tjx041-TF1

