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Background. Artemisinin-based combination therapies (ACTs) have been widely adopted as first-line agents to treat uncom-
plicated falciparum malaria due to their activity against multidrug resistant parasites. ACTs may also disrupt transmission through 
a direct antigametocyte effect, but the extent of this effect is uncertain. We assessed the evidence for and estimated the effects of 
the most widely-deployed ACT, artemether-lumefantrine (AL), relative to non-ACTs on gametocyte clearance and transmission 
interruption.

Methods. We searched electronic databases for randomized controlled trials comparing AL to non-ACTs that reported gameto-
cyte counts or results of mosquito-feeding assays. Two authors working independently assessed eligibility, extracted data, and eval-
uated the risk of bias. We conducted meta-analyses using a random-effects model.

Results. We identified 22 eligible trials. The pooled odds of gametocytemia at 1 week were lower in AL- compared to non-ACT-
treated participants (odds ratio [OR] 0.09; 95% confidence interval [CI], 0.06–0.15; I2 = 0.60, P < .01; 15 trials). The odds of trans-
mission to mosquitoes were also lower in AL treatment groups (OR 0.06; 95% CI, 0.00–0.47, P < .01 at 7 days post-treatment; 1 trial; 
OR 0.56; 95% CI, 0.36–0.88, P = .01 at 14 days post-treatment; 1 trial).

Conclusion. AL is superior to non-ACTs in reducing gametocytemia, and, based on limited evidence, abating transmission to 
mosquitoes. The transmission-limiting benefit of AL has relevance for policymakers planning optimal utilization of control strate-
gies, including use of ACTs for malaria treatment and chemoprevention.
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Malaria caused an estimated 212 million infections and 
429 000 deaths in 2015, predominantly in children in sub-Sa-
haran Africa [1]. Recently, there has been a renewed call for 
malaria eradication, building on substantial gains made in the 
last 15 years [2]. Control and elimination currently center on 
case management with artemisinin-based combination ther-
apy (ACT) and vector control with insecticide-treated bed nets. 
Less widely deployed, due to cost and technical constraints, are 
indoor spraying of insecticides, mass drug administration, and 
chemopreventive use of drugs. As long as a highly effective 

malaria vaccine remains unavailable, drugs that reduce human-
to-mosquito transmission offer a vital contribution to control 
and elimination programs.

Malaria is transmitted by gametocytes in host blood. 
Following ingestion by mosquito vectors, malaria parasites 
migrate to the insect midgut and proceed through sporogony, 
developing from ookinetes to oocysts that contain infectious 
sporozoites. Few antimalarials possess antigametocyte activity, 
and individuals may remain infectious for several weeks after 
treatment [3, 4]. ACTs are more potent than non-ACTs against 
asexual parasites and have activity against immature gameto-
cytes [5–11]. Some artemisinin derivatives may also possess 
sporonticidal activity, thereby limiting transmission from 
mosquitoes to humans [12]. The resultant transmission-limit-
ing benefit of ACTs has relevance for policymakers planning 
optimal use of control and elimination approaches as stepping 
stones toward eradication.

Among ACTs, artemether-lumefantrine (AL) is the most 
widely adopted. Moreover, AL appears to be superior to most 
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other widely-used ACTs for reducing gametocyte carriage and 
disrupting transmission [13–16]. The objective of this review is 
to systematically identify and synthesize the evidence for and 
quantify the effects of AL relative to non-ACTs on gametocyte 
carriage and transmission interruption in individuals with 
uncomplicated falciparum malaria.

METHODS

Eligibility Criteria

We included randomized controlled trials (RCTs) that com-
pared AL (6-dose regimen) to one or more non-ACT regimens 
for gametocyte clearance or mosquito infectivity. We included 
studies in endemic regions of participants of any age with a diag-
nosis of uncomplicated falciparum malaria. We excluded stud-
ies of severe malaria and non-falciparum malaria, and trials in 
migrants, displaced peoples, travelers, and military personnel.

Outcomes

The primary outcomes were the proportion of study partic-
ipants with circulating gametocytes 7  days after initiation of 
treatment, measured by microscopy, and the proportion of 
mosquitoes that developed gut oocysts in feeding studies at 
any day. Secondary outcomes included the proportion of study 
participants with circulating gametocytes at post-treatment day 
14, mean duration of gametocyte carriage, mean gametocyte 
density, area under the curve (AUC) of gametocyte density, and 
proportion of participants in feeding studies who were infec-
tious to mosquitoes.

Search Strategy

We designed an electronic search strategy using terms related 
to “malaria” and “antimalarial drugs” (Supplementary Table 1). 
We applied a filter for RCTs to electronic databases for which 
that feature was available. We searched PubMed, the Cochrane 
Central Register of Controlled Trials (CENTRAL), and 
ClinicalTrials.gov on February 5, 2016, and manually searched 
references of relevant papers. The search was not limited by year 
or language.

Data Extraction

We extracted data pertaining to study design, eligibility criteria, 
baseline characteristics of the study groups, co-administered 
interventions, features of the study setting including trans-
mission intensity and locale (rural, urban, peri-urban), dura-
tion of follow-up, and attrition. We extracted gametocyte and 
mosquito-feeding outcomes from text or tables, or estimated 
them from figures when necessary. At time points for which 
a denominator was not reported, we estimated it as the sam-
ple size at the previous time point if available, otherwise as the 
initial sample size. Where continuous variables were presented 
as medians, we assumed a normal distribution and converted 
medians to means. One trial included a 4-dose AL group, but 

only the standard 6-dose AL group was considered in analy-
ses [17]. For the single study that performed polymerase chain 
reaction (PCR) for gametocytes [18], we only extracted results 
of microscopy in order to maintain comparability across trials.

Assessment of Risk of Bias

We used the Cochrane Collaboration tool for risk of bias assess-
ments of individual studies [19]. We considered selection, per-
formance, detection, attrition, and reporting biases, graded 
independently by two authors as low risk, high risk, or unclear 
risk.

Analysis

We qualitatively assessed the comparability of characteristics 
and designs of included trials. We assessed statistical hetero-
geneity among the included trials through visual inspection of 
forest plots and computation of the I2 statistic. By convention, 
I2 values of 0.3–0.6 were interpreted as evidence of moderate 
heterogeneity, and values >0.6 as considerable heterogeneity 
[20]. When no substantial clinical, methodological, or statis-
tical heterogeneity was present, we conducted meta-analyses 
using a random-effects model in RevMan 5.0 (The Cochrane 
Collaboration).

We conducted prespecified subgroup analyses by age (≤5 and 
>5 years of age), comparator drug (amodiaquine plus sulfadox-
ine/sulfalene-pyrimethamine, AQ-SP; and chloroquine plus 
sulfadoxine-pyrimethamine, CQ-SP), and geographic region 
(Africa and South/Southeast Asia). We assessed small-study 
effects by visual inspection of funnel plots for asymmetry. We 
performed a sensitivity analysis excluding studies with high or 
unclear risk of detection bias, based on whether study micros-
copists were masked.

RESULTS

Study Selection

We identified 7602 unique records from our searches and 
included 22 RCTs in the systematic review (Figure 1). Fifteen 
studies reported sufficient data for inclusion in meta-analyses.

Study Characteristics

Of the 22 included RCTs, only 2 were designed explicitly to 
evaluate malaria transmission [18, 21]. All others reported 
gametocyte and mosquito infectivity results as secondary out-
comes. The trials were predominantly done in children; only 
3 included adults [22–24]. Eight recruited children <5 years of 
age [25–32]. Most trials were conducted in sub-Saharan Africa 
(17 out of 22), the remainder in South and Southeast Asia.

The trials examined a total of 60 treatment groups, of which 
23 groups received AL, 10 groups ACTs other than AL, and 27 
groups non-ACTs (Table  1). Non-ACT regimens mainly com-
prised mono- or combination therapies of AQ (10 trials), CQ 
(7 trials), and SP (18 trials). Dosing schedules for the non-ACT 
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groups were standard. Two trials reported co-interventions: 1 
administered iron supplementation [33], and 1 administered the 
gametocytocide primaquine to study participants with gameto-
cytemia at any follow-up visit, which resulted in a greater number 
of participants in the non-ACT group receiving the drug [22].

Seventeen trials reported the proportion of participants with 
gametocytemia at post-treatment day 7 and/or 14, and 2 reported 
results of mosquito feeding assays. Additional gametocyte-re-
lated measures included mean or median gametocyte den-
sity [21–23, 34–36], cumulative prevalence of gametocytemia 
[22, 37], mean duration of gametocytemia [21], probability of 
remaining gametocyte-free [34], gametocyte clearance rate [31], 
AUC of gametocyte density [34], ratio of means of gametocyte 
density [21], total person-time with gametocytes [21, 30], and 
mean gametocyte sex ratio [34]. One trial restricted its fol-
low-up gametocyte measurements only to participants who were 
gametocytemic at baseline [34]. Every trial included genotyping 
(e.g., pfmsp1 and pfmsp2 alleles) to distinguish reinfection from 
recrudescence in participants with recurrent parasitemia, but 
none provided information relating new or recrudescent asexual 
parasitemia to the presence of gametocytes.

Risk of Bias of Included Trials

There was an overall low risk of bias within trials (Table  2, 
Supplementary Table 2). Outcome assessments were unmasked 
in 2 trials [25, 38] and not described in 8 others [17, 21, 24, 
27, 33, 35, 37, 39]. Attrition bias was low, with retention rates 

>90% in nearly all trials; 3 trials reported losses to follow-up 
>20% in one or more treatment groups [21, 26, 33]. A funnel 
plot of effect estimates from studies that reported 7- and 14-day 
gametocyte prevalence displayed a near-symmetric distribution 
about the pooled estimate, indicating low evidence of small-
study effects (Figure 2).

Relative Effects of Artemether-lumefantrine

We found that AL significantly reduced the odds of gameto-
cyte carriage one week after treatment compared to non-ACTs 
(OR 0.09; 95% confidence interval [CI], 0.06–0.15, I2  =  0.60, 
P  <  .01; 15 trials) (Figure  3). The proportion of participants 
with gametocytemia at one week ranged from 0–19% in the 
AL groups to 1–83% in the non-ACT groups. High statistical 
heterogeneity precluded pooled analysis of results at two weeks 
(I2 = 0.75; 15 trials), but 9 of the 15 trials showed AL to be sig-
nificantly better than non-ACTs and, among the remainder, 
all except 2 trended toward AL (Figure 4). Trials that reported 
other gametocyte outcomes all showed fewer gametocytes or 
faster clearance of gametocytes among AL treatment groups 
than non-ACT groups, though not all results attained statisti-
cal significance (data not shown). The only trial that examined 
gametocyte sex ratios was limited by small sample size, and 
did not detect a statistically significant difference between AL 
and the non-ACT comparator [33]. We performed a sensitiv-
ity analysis including only trials that reported a procedure for 
masking study microscopists during gametocyte assessments. 

Figure 1. Flowchart of inclusions and exclusions from the systematic review. Abbreviation: AL, artemether-lumefantrine.
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The sensitivity analysis showed similar results to the primary 
meta-analysis (OR 0.07; 95% CI, 0.04–0.13; I2 = 0.52, P < .01; 
8 trials).

We identified 2 trials that carried out mosquito feeding 
assays [18, 21]. One trial performed assessments on post-treat-
ment day 7 in participants treated with either AL or CQ-SP 
[21], the other on day 14 in participants receiving AL, SP, or 
AQ-SP [18]. Both demonstrated significantly fewer infected 
mosquitoes among those fed on blood from AL-treated par-
ticipants compared to non-ACT-treated participants (day 7: 
OR 0.06; 95% CI, 0.00–0.47; P < .01; day 14: OR 0.56; 95% CI, 
0.36–0.88; P = .01).

Subgroup Analyses

We performed subgroup analyses by participant age, com-
parator drug, and geographic region (Table  3). We found 
no detectable difference in gametocyte clearance between 

Table 2. Summary of Risk of Bias of Included Trials

Type of Bias

Risk of Bias, No. of Studies

Low High Unclear

Random sequence generation 
(selection bias)

16 3 3

Allocation concealment (selec-
tion bias)

10 4 8

Blinding of participants and 
personnel (performance bias)

2 15 5

Blinding of outcome assess-
ment (detection bias)

12 2 8

Incomplete outcome data (attri-
tion bias)

15 3 4

Selective reporting (reporting 
bias)

21 0 1

Intention-to-treat analysis (bias 
due to incomplete reporting)

19 0 3

Group similarity at baseline 
(selection bias)

17 4 1

Co-interventions (performance 
bias)

19 1 2

Compliance (performance bias) 16 2 4

Timing of outcome assessment 
(detection bias)

20 0 2

Figure 2. Funnel plot of gametocyte clearance effect measures.S
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children ≤5 years (OR 0.07; 95% CI, 0.04–0.11; I2 = 0, P < .01; 
5 trials) and children >5 years (OR 0.04; 95% CI, 0.01–0.10; 
I2 = 0.36, P <  .01; 3 trials). We found a smaller effect size in 
trials comparing AL to AQ-SP (OR 0.22; 95% CI, 0.12–0.40; 
I2 = 0.17, P < .01; 6 studies) than those comparing it to CQ-SP 
(OR 0.06; 95% CI, 0.04–0.10; I2 = 0.15, P < .01; 3 trials) with 
non-overlapping CIs. AL appeared to exhibit greater effect in 
trials done in South and Southeast Asia (OR 0.04; 95% CI, 
0.03–0.07; I2 = 0, P <  .01; 3 trials) compared to sub-Saharan 
Africa (OR 0.12; 95% CI, 0.07–0.21; I2 = 0.50, P < .01; 12 tri-
als), but the association with geographic region is likely con-
founded by the exclusive use CQ-SP comparators in trials in 
Asia, whereas the African trials included a mix of comparators.

DISCUSSION

We assessed the body of evidence comparing the effects of 

AL and non-ACTs on P. falciparum gametocyte clearance and 

transmission interruption. We found a consistent, large effect 

favoring AL. At 1 week following treatment, AL reduced the 

odds of gametocyte carriage by 91% relative to non-ACTs and 

disrupted transmission to mosquitoes. The quality of the evi-

dence was judged to be good overall, with low risk of bias. Thus, 

an important advantage of AL over non-ACT regimens, in 

addition to better efficacy against clinical illness, is better ability 

to prevent transmission to mosquitoes.

Figure 3. Meta-analysis of trials comparing AL to non-ACTs for gametocyte clearance at post-treatment day 7. Abbreviations: ACT, artemisinin-based combination therapy; 
AL, artemether-lumefantrine; CI, confidence interval; M-H, Mantel-Haenszel.

Figure 4. Summary of results of trials comparing AL to non-ACTs for gametocyte clearance at post-treatment day 14. High statistical heterogeneity (I2 = 0.75) precluded 
meta-analysis of these trials. Abbreviations: ACT, artemisinin-based combination therapy; AL, artemether-lumefantrine; CI, confidence interval; M-H, Mantel-Haenszel.
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The combination of artemether’s direct antigametocyte action 
and faster killing of P. falciparum asexual stages likely explains 
the decreased gametocyte carriage and mosquito infectivity of 
AL-treated participants compared to non-ACT-treated partic-
ipants [9–11]. Direct activity against early-stage gametocytes 
precludes maturation to transmissible late-stage gametocytes, 
and clearance of asexual stages is hypothesized to deplete the 
pool from which gametocytes arise [40]. Artemisinins also may 
interrupt gametocyte progression through sporogony once they 
are taken up by vector mosquitoes [12]. The non-artemisinin 
component of AL, lumefantrine, also may have antigametocyte 
and sporonticidal action [41–43]. Subgroup analyses illustrated 
a hierarchy of antigametocyte efficacy among specific compar-
ators (AL > AQ-SP > CQ-SP), consistent with results previ-
ously reported in the literature [44]. The results of the trial that 
administered the gametocytocide primaquine to participants 
with gametocytemia at any follow-up visit were consistent with 
those observed in other trials despite more in the non-ACT 
group receiving primaquine, offering a conservative estimate of 
the relative effect of AL [22].

Gametocytemia is an imperfect marker of infectivity; 
infected individuals can remain infective after gametocytes fall 
below microscopically detectable concentrations, and factors 
in addition to absolute counts, such as gametocyte sex ratios, 
may modulate transmission [45–47]. Mosquito feeding assays 
remain the most direct means of assessment of transmissibility, 
but these are challenging to do. Only 2 trials included feeding 
assays [18, 21]. They showed that blood from AL-treated par-
ticipants reduced infectivity to mosquitoes on post-treatment 
days 7 and 14 compared to blood from those treated with non-
ACT regimens. The single trial that correlated treatment regi-
mens to gametocyte sex ratios found no difference between AL 
and the non-ACT comparator, AQ-SP, but its small number of 
gametocytemic individuals may have led to insufficient statisti-
cal power to detect a difference [34].

Age-related immunity is believed to contribute to gameto-
cyte clearance [3], and we hypothesized it would influence 
the observed effect sizes in children of different age groups. 
However, in subgroup meta-analyses comparing trials of chil-
dren above and below 5 years of age, we found no significant 

difference in gametocyte clearance. This finding was unex-
pected, as older children have been shown to display increased 
immune responses directed against gametocytes compared 
to younger children [3, 48]. Surprisingly, field trials suggest 
gametocyte carriage may persist longer in older than younger 
children [49]. Immune-mediated clearance of gametocytes 
remains incompletely characterized, and age-related immunity 
appears to differ in regard to clearance of gametocytes and that 
of asexual parasites [49–51].

Impressive gains in malaria control and elimination made 
over the last decade are threatened by political instability, 
repercussions of climate change, stagnating funding, rising 
insecticide resistance, and the prospect of artemisinin-resistant 
parasites spreading to sub-Saharan Africa [2, 52]. These threats 
can be mitigated by optimizing our use of available tools. To 
this end, future trials of the relative effects of different ACTs on 
transmission of parasites to mosquitoes will be helpful. A net-
work meta-analysis that extends the scope of the present study 
to compare the relative effects of different ACTs to each other 
and to non-ACTs would be informative.

Beyond malaria case management, the relative transmission 
impacts of antimalarials may have relevance for other drug 
deployment strategies. Treated symptomatic cases continue to 
contribute to the infectious reservoir due to persistent circu-
lation of gametocytes for a duration that varies by therapy. But 
asymptomatic cases, a heterogeneous group, also contribute to 
the infectious reservoir [53–55]. Asymptomatic cases are tar-
geted by intermittent preventive therapy, mass drug administra-
tion, and screen-and-treat programs. Studies and mathematical 
models of the comparative effects of these interventions using 
different antimalarial drugs could further aid in optimizing 
malaria control strategies.

There were limitations to this review. We only included trials 
with an AL treatment group, limiting the generalizability of our 
results to other ACTs. We compared AL to a number of different 
regimens, limiting our ability to tease out effects of individual 
drugs. Only 2 trials were designed to assess treatment impact on 
transmission. Misclassification bias was potentially high, due to 
reliance mainly on microscopy rather than more sensitive PCR-
based methods of gametocyte detection. Although all included 

Table 3. Results of Subgroup Meta-analyses of AL vs. Non-ACTs for Gametocyte Clearance at Post-treatment Day 7

Subgroup Description No. Studies OR (95% CI) I2-Statistic P Value

All studies 15 0.09 (0.06–0.15) 0.60 <.01

Age Children ≤ 5 years 5 0.07 (0.04–0.11) 0.00 <.01

Children > 5 years 3 0.04 (0.01–0.10) 0.36 <.01

Comparator drug AQ-SP 6 0.22 (0.12–0.40) 0.17 <.01

CQ-SP 3 0.06 (0.04–0.10) 0.15 <.01

Geographic region Sub-Saharan Africa 12 0.12 (0.07–0.21) 0.50 <.01

South and Southeast Asia 3 0.04 (0.03–0.07) 0.00 <.01

Abbreviations: AQ, amodiaquine; CI, confidence interval; CQ, chloroquine; OR, odds ratio; SP, sulfadoxine/sulfalene-pyrimethamine.
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trials used genotyping to distinguish treatment failure from 
reinfection, none reported the association between gametocyte 
outcomes and reinfection or recrudescence; it was therefore not 
possible to distinguish among persistent gametocytemia fol-
lowing initial treatment, recrudescent gametocytemia, or new 
gametocytemia due to reinfection. Despite these limitations, the 
large effect size for AL strongly suggests that it offers benefit 
over non-ACT regimens in abating malaria transmission.

CONCLUSIONS

AL is superior to non-ACT regimens in reducing gametocyte car-
riage and interrupting transmission in individuals with uncompli-
cated falciparum malaria. In a meta-analysis of 15 trials, treatment 
with AL led to a 91% reduction in the odds of gametocytemia at 
one week compared to non-ACTs. Two trials showed reduction in 
transmission to mosquitoes at 1 and 2 weeks post-treatment. The 
benefit of transmission interruption conferred by ACTs has rele-
vance for policy makers planning optimal utilization of currently 
available control and elimination tools, including the use of ACTs 
for malaria treatment and chemoprevention.
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