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The Kalman Filter commonly employed by control engineers and
other physical scientists has been successfully used in such diverse
areas as the processing of signals in aerospace tracking and
underwater sonar, and statistical quality control. More recently, it
has been used in some nonengineering applications such as short-
term forecasting, time series, survival analysis, and so on. In all of
these situations, we have a set of equations governing the true
state of a system and another set connecting the observations
made at any given time on the system with its true state. The
problem is that of predicting the true state of the system at any
given time point based on available observations. The solution
proposed in the vast literature of the subject depends on the
assumptions made on the initial state of the system. In this paper,
a method that is independent of the initial state is proposed. This
is useful when the a priori information on the initial state is not
available. The method is also applicable when some observations
are missing.

1. Dynamical and Observational Equation

There is extensive literature on Kalman Filtering (KF) and its
applications arising out of the seminal contributions by

Kalman (1) and Kalman and Bucy (2).
The general problem can be stated as follows. We have a time

sequence of p and q-vector valued random variables {x(t), y(t)},
t 5 1, 2, . . . related through structural equations

x~t! 5 Fx~t 2 1! 1 j~t! [1.1]

y~t! 5 Hx~t! 1 h~t!, [1.2]

where F and H are p 3 p and q 3 p matrices, respectively, and
the following hold, where E stands for expectation and C for
covariance.

E@j~t!# 5 0, E@h~t!# 5 0, C@j~t!, h~s!# 5 0

C@x~s!, j~t!# 5 0, t . s, C@x~s!, h~t!# 5 0, t $ s

C@j~t!, j~t!# 5 V, C~h~t!, h~t!! 5 W

C@j~t!, j~s!# 5 0, C@h~t!, h~s!# 5 0, t Þ s. [1.3]

We have observations only on y(1), . . . , y(t) up to time t, and
the problem is to estimate x(s) given y(1), . . . , y(t), or a subset
of them.

In the engineering literature, estimation of x(t) is called
smoothing if s , t, filtering if s 5 t, and prediction if s . t. An
excellent review of KF and its applications to a wide variety of
statistical problems can be found in refs. 1–5.

In the literature on KF, the conditions are usually stated in
terms of independence of the variables involved instead of zero
correlations as stated in 1.3. If we are interested in linear
estimates of observations, we need only require the knowledge
of the variances and covariances of the variables involved.

The theory described in the paper can be extended to the case
where the matrices F and H in 1.1 and 1.2 and V and W in 1.3
depend on time.

2. Reduction to Linear Equations
From 1.1,

x~t! 5 Fx~t 2 1! 1 j~t! 5 Ftx~0! 1 et [2.1]

with et 5 Ftjt, where

Ft 5 ~Ft21: Ft22 : . . . : Ip!, j9t 5 ~j9~1!, . . . ,j9~t!!,

and Ip is the identity matrix of order p. A simple calculation
yields

C@et, et# 5 Vtt 5 Ft~Ip ^ V!F9t

C@et, es# 5 Vts 5 FtS Is ^ V
0 DF9s, if t $ s

5 Ft~It ^ V:0!F9s, if t # s, [2.2]

where Is R V is the Kronecker product, and 0 is a null matrix of
appropriate order.

From 1.2,

y~t! 5 Hx~t! 1 h~t! 5 HFtx~0! 1 d~t! [2.3]

where d(t) 5 Het 1 h(t). A simple calculation gives

C@d~t!, d~t!# 5 Wtt 5 HVttH9 1 W,

C@d~t!, d~s!# 5 Wts 5 HVtsH9,

C@et, d~s!# 5 wts 5 VtsH9. [2.4]

Writing Y9(t) 5 (y9(1), . . . , y9(t)) and

Gt 5 SHF1

:

HFt
D , dt 5 Sd~1!

:

d~t!
D ,

we have the composite linear model for observations up to time t

Y~t! 5 Gtx~0! 1 dt . [2.5]

To estimate x(s) given Y(t) for any s and t, we need to consider
the equations

x~s! 5 Fsx~0! 1 es

Y~t! 5 Gtx~0! 1 dt [2.6]

with the variance-covariance matrix of (es, dt),

1
Vss ws1 . . . wst

w1s W11 . . . W1t

: z . . . z
wts Wt1 . . . Wtt

2 5 SVss u9
u UD say, [2.7]

where Vss, wrs, and Wij are as defined in 2.2 and 2.4, and u9 5
(ws1, . . . , wst) and U 5 (Wij).

Abbreviations: KF, Kalman Filter; CLP, constrained linear predictor.
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3. Different Assumptions on x(0)
3.1. Given Prior Distribution of x(0). Let x(0) have a prior mean m
and variance-covariance matrix P. Then we can write the model
2.6 as

x~s! 2 Fsm 5 a~s!

Y~t! 2 Gtm 5 b~t! [3.1]

with

C@a~s!, a~s!# 5 FsPFs9 1 Vss 5 R

C@a~s!, b~t!# 5 FsPG9t 1 u9 5 S

C@b~t!, b~t!# 5 GtPG9t 1 U 5 T. [3.2]

Then, using the least squares theory (ref. 6, pp. 544–547), the
estimate of x(s) is

x̂~s! 5 Fsm 1 ST21~Y~t! 2 Gtm! [3.3]

with the minimum dispersion error matrix

C@x~s! 2 x̂~s!, x~s! 2 x̂~s!# 5 R 2 ST21S9. [3.4]

3.2. x(0) Is a Known Constant m. The solution in this case is the same
as 3.4 with P in 3.2 replaced by the null matrix. Then the estimate
of x(s) is

x̂~s! 5 Fsm 1 u9U21~Y~t! 2 Gtm! [3.5]

with the minimum error dispersion matrix

C@x~s! 2 x̂~s!, x~s! 2 x̂~s!# 5 Vssu9U21u.

If x(0) is a constant, but its value is not known, then we may
estimate x(0) from the second equation in 2.6 using least squares
theory provided the rank of Gt is p. In such a case, the least
squares estimate of x(0) is

x̂~0! 5 ~G9tU21Gt!
21G9tU21Y~t!. [3.6]

Substituting x̂(0) for m in 3.5, we have the empirical estimate

x̂~s! 5 ~Fs 2 u9U21Gt!x̂~0! 1 u9U21Y~t!. [3.7]

The estimate 3.7 and its dispersion matrix are derived in a more
natural way in the next section.

3.3. No Information Is Available on x(0). Consider a linear function
L9Y(t) as an estimate of x(s) such that

E@x~s! 2 L9Y~t!# 5 0 independently of x~0!

f Fs 2 L9Gt 5 0. [3.8]

The variance-covariance matrix of x(s) 2 L9Y(t) is

Vss 2 L9u 2 u9L 1 L9UL, [3.9]

where Vss, u, and U are as defined in 2.7.
The minimum value of 3.9 subject to 3.8 is attained at

L* 5 U21~u 1 GtC!, C 5 ~G9tU21Gt!
21~Fs9 2 G9tU21u!, [3.10]

giving the same expression for the estimate of x(s) as the
empirical estimate derived in 3.7. The minimum dispersion error
matrix is

~Vss 2 uU21u9! 1 C9G9tU21GtC. [3.11]

The second expression in 3.11 is the extra error due to the
imposed condition 3.8. We call the estimate L9*Y(t) the con-
strained linear predictor (CLP) of x(s).

We prove the following result, which will be used in Section
4. Let M be a matrix such that E(M9Y(t)) 5 0 independently of
x(0), which implies that M9Gt 5 0. Then, with L* as defined in
3.10,

C@x~s! 2 L9*Y~t!, M9Y~t!#

5 u9M 2 L9*UM 5 ~u9 2 L9*U!M

5 u9 2 ~u 1 GtC!9M 5 2C9G9tM 5 0. [3.12]

4. Recursive Estimation
In the application of KF, it is customary to estimate x(s) using
the available observations (y9(1), . . . , y9(r)) 5 Y91 (say), up to a
time point r, and update the estimate when additional observa-
tions (y9(r 1 1), . . . , y9(t)) 5 Y92 (say) are acquired. The
methodology of such recursive estimation is well known in KF
theory when unconstrained estimates (such as those discussed in
Sections 3.1 and 3.2) are used.

We develop a similar method when CLPs as derived in Section
3.3 are required.

Let L91*Y1 be the CLP of x(s) based on Y1, and L92*Y1 be the
CLP of Y2 based on Y1. We consider a general linear function of
Y1, Y2

M91Y1 1 M92~Y2 2 L92*Y1! [4.1]

and its deviation from x(s) as

~x~s! 2 L91*Y1! 2 ~M1 2 L1*!9Y1 2 M92~Y2 2 L92*Y1!

5 A 2 B 2 M92D say. [4.2]

The condition of unbiasedness of 4.1 independently of x(0)
implies E(B) 5 0, since E(A) and E(C) 5 0. Then by the
Condition 3.12,

C~A, B! 5 0, C~D, B! 5 0. [4.3]

Hence

C~A 2 B 2 M92D, A 2 B 2 M92D!

5 C~A 2 M92D, A 2 M92D! 1 C~B, B!. [4.4]

The second term in 4.4 vanishes if we choose M1 5 L1*. The best
choice of M2 which minimizes the first term is

M2* 5 @C~D, D!#21C~D, A!. [4.5]

To derive explicit expressions for A, D and their covariance, we
write the basic linear model 2.6 by splitting Y(t) into the two
components Y1 and Y2.

x~s! 5 Fsx~0! 1 es

Y1 5 G~1!x~0! 1 d~1!

Y2 5 G~2!x~0! 1 d~2! , [4.6]

where G(1), G(2) are partitions of Gt and d(1), d(2) are partitions
of dt. The corresponding covariance matrix of x(s), Y1, Y2 is

SVss u91 u92
u1 U11 U12

u2 U21 U22

D , [4.7]

obtained by partitioning the matrices u and U in 2.7.
Using the formula 3.10, the CLP of x(s) based on Y1 is
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L91*Y1 5 ~u1 1 G1C1!9U11
21Y1,

C1 5 ~G91U11
21G1!

2 1~Fs 2 u91U11
21G1!9. [4.8]

The CLP of Y2 based on Y1 is

L92*Y1 5 ~U21 1 G1C2!9U11
21Y1,

C2 5 ~G91U11
21G1!

21~G2 2 U21U11
21G1!9. [4.9]

Then

A 5 x~s! 2 L91*Y1 5 es 2 L91*d~1!

D 5 Y2 2 L92*Y1 5 d~2! 2 L92*d~1!

C~A, A! 5 Vss 1 L91*U11L1* 2 u91L1* 2 L91*u1

C~D, D! 5 U22 1 L92*U11L2* 2 U21L2* 2 L92*U12

C~A, D! 5 u92 2 L91*U12 2 u91L2* 1 L91*U11L2* . [4.10]

The updated CLP of x(s) is

L91*Y1 1 C~A, D!@C~D, D!#21~Y2 2 L92*Y1! [4.11]

with the minimum dispersion error

C~A, A! 2 C~A, D!@C~D, D!#21C~D, A!. [4.12]

Note 1: The second equation in 2.6 is in the form of a mixed linear
model, which enables us to estimate x(0), and also the matrices

V and W if they are unknown by using MINQE method described
in ref. 7.

Note 2: The linear model 2.6 is used when we want to estimate
x(s) based on the data y(1), . . . , y(t). A more general problem
is the estimation of x(s) based on y(r1), . . . , y(rn), observations
made at n time points r1, . . . , rn. A particular situation is when
observations on y are missing at certain time points, or some
observations on y are discarded as not reliable or outliers. The
linear equations appropriate for this is

x~s! 5 Fsx~0! 1 es

Y 5 Gx~0! 1 d [4.13]

where

Y9 5 ~y9~r1!, . . . , y9~rn!!, d9 5 ~d9~r1!, . . . , d9~rn!!

G9 5 ~Fr1H9 : . . . : FrnH9!

C@d~ri!, d~rj!# 5 HVrirj
H9

C@d~ri!, d~ri!# 5 HVriri
H9 1 W

C@es, d~ri!# 5 Vsri
H9,

where Vij are as defined in 2.2. Then the general methods of
Sections 3 and 4 apply.
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