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The increasing availability of electronic health data presents a major opportunity in healthcare for both discovery and practical 
applications to improve healthcare. However, for healthcare epidemiologists to best use these data, computational techniques that 
can handle large complex datasets are required. Machine learning (ML), the study of tools and methods for identifying patterns in 
data, can help. The appropriate application of ML to these data promises to transform patient risk stratification broadly in the field 
of medicine and especially in infectious diseases. This, in turn, could lead to targeted interventions that reduce the spread of health-
care-associated pathogens. In this review, we begin with an introduction to the basics of ML. We then move on to discuss how ML 
can transform healthcare epidemiology, providing examples of successful applications. Finally, we present special considerations for 
those healthcare epidemiologists who want to use and apply ML.
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INTRODUCTION

Increasingly, healthcare epidemiologists must process and inter-
pret large amounts of complex data [1]. As the role of healthcare 
epidemiologists has expanded, so too has the pervasiveness of 
electronic health data [2]. The availability of large quantities 
of high-quality patient- and facility-level data has generated 
new opportunities. In particular, these data could lead to an 
improved understanding of risk factors for development of 
healthcare-associated infections (HAIs), improved patient risk 
stratification, and identification of pathways for intra- and 
interfacility spread of infectious diseases—all of which would 
allow for targeted prevention approaches.

In the past, a large fraction of clinical data were ignored (or 
not collected at all). This limitation was due to both the size and 
complexity of the data and the absence of techniques for collect-
ing and storing such data. These data are frequently underused 
and undervalued; however, new and improved methods for data 
collection and storage (eg, electronic health records) provide 
opportunities to tackle the issue of analysis. In particular, machine 
learning (ML) has begun to infiltrate the clinical literature broadly. 
The appropriate application of ML in healthcare epidemiology 
(HE) promises returns on the field’s investment in data collection.

In this review, we begin by describing the basics of ML and 
then move on to discuss how it applies to HE, providing examples 

of successful research applications. Finally, we describe some of 
the practical considerations for design and implementation of 
ML applied to HE.

WHAT IS MACHINE LEARNING?

The definition of ML is broad. ML is the study of tools and 
methods for identifying patterns in data. These patterns can 
then be used to either increase our understanding of the current 
world (eg, identify risk factors for infection) or make predic-
tions about the future (eg, predict who will become infected). 
ML draws on concepts from many fields including computer 
science, statistics, and optimization. At their core, almost all 
ML problems can be formulated as an optimization problem 
with respect to a dataset. In such settings, the goal is to find 
(or “learn” in ML parlance) a model that best explains the data 
(Figure 1). While there are many different types of ML, most 
applications fall into 1 of 3 categories: supervised, unsuper-
vised, or reinforcement learning.

Here, we focus on supervised learning, a setting in which the 
data are “labeled” according to a specific outcome of interest (eg, 
patients are either infected or not infected). The algorithm then 
learns a mapping from a set of covariates (eg, patient demo-
graphics) to the outcome. This part is performed on the train-
ing data. Once learned, this mapping can be applied to new test 
data either for identification or prediction tasks. For example, 
given a dataset of patients described by their demographics and 
admission details, one can try to predict the specific outcome of 
30-day readmission.

Many different learning algorithms exist to accomplish 
this task (eg, logistic regression, decision trees, ensemble 
approaches, and deep neural networks). These techniques differ 
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in their underlying objective function and constraints. While 
closely tied to traditional statistics, ML-based analyses often 
seek nonlinear relationships among hundreds or thousands 
of covariates. Unsurprisingly, such techniques do best when a 
large amount of “training” data is available (ie, when there are 
many examples to learn from). Here, one aims to learn a model 
that will generalize beyond the data one has already seen. The 
goal is generalization not memorization. In many cases, espe-
cially in settings with hundreds or thousands of covariates (ie, 
high-dimensional settings), it may be straightforward to learn 
a model that works well when applied to the training data but 
fails when applied to never-before-seen data. In such cases, the 
model is said to have “overfit” the training data (ie, it has simply 
memorized the data). Different regularization methods exist to 
deal with such issues and depend on the underlying learning 
framework. For example, in a least squares regression setting, 
L2 regularization is commonly applied (ie, ridge regression). 
These techniques push algorithms toward simpler models. The 
optimization loosely follows Occam’s razor, preferring simpler 
models over more complex ones.

As a field, ML has experienced a number of successes in recent 
years and continues to have an impact across several disciplines. 
The common thread across these disciplines is the availability of 
data. For example, the computer vision community (ie, the field of 
computer science focused on image-related tasks) has benefited 
tremendously from recent advances in ML. For many image rec-
ognition tasks, the performance of ML algorithms has approached 
or even surpassed that of humans [3, 4]. These advances have, in 
part, been driven by large image databases (eg, “ImageNet” con-
sists of more than 14 million images [5]). In addition to providing 
training data, such databases serve as a resource against which 
researchers can benchmark their proposed algorithms. ML has 
also led to recent breakthroughs in machine translation [6, 7]. 
Models that take an input sequence (eg, an English sentence) 
and generate the target sequence (eg, the sentence translated to 
French). Such models are trained on tens of millions of sentence 
pairs. Here, the success came from training “deeper” models 
(ie, more complex models) capable of capturing context within 
sequences.

With the recent increase in availability of clinically relevant 
datasets, researchers have applied ML techniques to a wide range 

of clinical tasks [8–22], from identification/diagnostic tasks (eg, 
automatic classification of skin lesions or arrhythmia detection 
[23, 24]) to prediction tasks (eg, predicting 30-day readmissions 
[25]). While more research is required before we will under-
stand the full clinical impact of this work, efforts are already 
underway to integrate ML tools into clinical practice [26–29]. 
As we continue to amass more data in HE, we will be better 
positioned to take advantage of these data and recent advances 
in ML. Below, we describe the impact ML is beginning to have 
on the field of infectious disease and HE more specifically.

HOW WILL ML AFFECT INFECTIOUS DISEASE (AND 
MORE SPECIFICALLY HE)?

The applications of ML in infectious disease are diverse and 
include risk stratification for specific infections (eg, specific 
HAIs), identifying the relative contribution of specific risk fac-
tors to overall risk, understanding pathogen–host interactions, 
and predicting the emergence and spread of infectious diseases. 
Here, we review 4 recent projects that highlight the diversity of 
applications in HE and infectious disease.

Predicting Risk of Nosocomial Clostridium difficile Infection 
(CDI) [30–33]

Despite efforts to reduce incidence, HAIs remain prevalent, 
in part, because we lack an effective clinical tool for accur-
ately measuring patient risk. Along these lines, researchers 
have sought to develop models for predicting patient risk of 
CDI. ML-driven approaches can successfully leverage the 
entire contents of the electronic health record (EHR). These 
clinical data contain information regarding medications, pro-
cedures, locations, healthcare staff, lab results, vital signs, 
demographics, patient history, and admission details. ML 
techniques learn to map these data to a value that estimates 
the patient’s probability of CDI. Although more complex than 
low-dimensional tools for calculating patient risk, models that 
leverage the richness of the EHR can be significantly more 
accurate [33]. Such models, based on thousands of variables, 
have been extended to change over the course of an admis-
sion, capturing how risk factors change over time [34]. These 
time-varying models could be incorporated into an EHR sys-
tem, using streaming data to generate daily risk estimates for 
each inpatient.

Predicting Reservoirs of Zoonotic Diseases [35]

Zoonotic diseases account for billions of human infections 
and millions of deaths per year globally [36]. Researchers have 
applied ML to datasets that contain information on rodent 
species that carry zoonotic pathogens [35]. Using nearly 100 
predictor variables (eg, lifespan, habitat), the authors identi-
fied reservoir status with high accuracy. Furthermore, their 
model predicted new hyperreservoir species (ie, those identi-
fied as harboring 2 or more zoonotic pathogens). The ability to 
identify geographic areas with higher likelihood of harboring 

Figure 1.  Traditional vs. machine learning (ML) approach. In a traditional 
approach to data analysis, one starts with the model as input to the machine. In an 
ML (or data-driven) approach, one starts with the data and outputs a model that can 
then be applied to new data.
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rodent reservoirs of new or emerging zoonoses could help dir-
ect surveillance, vector control, and research into vaccines and 
therapeutics.

Predicting Clinical Outcomes in Ebola Virus Disease (EVD) 
Infection Using Initial Clinical Symptoms [37]

Though ML is often applied to large datasets, one recent study 
successfully applied ML techniques to a limited clinical data-
set from a small patient cohort. The authors learned a model 
to predict clinical outcomes in patients presenting with Ebola 
Virus Disease during the 2013–2016 West African epidemic. 
Using a publicly available de-identified dataset, they accurately 
predicted outcome of infection with only a few clinical symp-
toms and laboratory results.

Predicting Patients at Greatest Risk of Developing Septic  
Shock [18]

Prediction holds the promise of early intervention. In sepsis, 
early intervention can reduce mortality in patients who go on to 
develop septic shock [38]. Using publicly available data stored 
in the MIMIC-II Clinical Database (described more below), 
researchers learned to predict with high sensitivity which 
patients were likely to develop septic shock. Importantly, the 
prediction could be made at a median of more than a day prior 
to onset of septic shock, providing clinicians sufficient time to 
potentially prevent disease or mitigate its severity.

These applications of ML could, in theory, facilitate the tar-
geting of specific interventions to high-risk groups. However, 
the potential positive impact of ML on the field of infectious 
disease goes well beyond facilitating targeted interventions. In 
particular, such models could be used to design more efficient 
clinical trials. Often, clinical trials can be underpowered and 
inconclusive because a small fraction of the study population 
experiences the outcome of interest. ML-based risk stratifica-
tion models could help identify patients at several times the 
baseline risk, making it possible to have adequately powered 
efficacy results with fewer enrolled patients. ML models can 
also be used to help generate testable hypotheses. Although 
the relationships uncovered by ML models are not necessarily 
causal, study of the model can generate hypotheses. Further 
investigation of such hypotheses could then lead to new find-
ings related to disease risk.

MACHINE LEARNING IN HE: A USER’S GUIDE—SPECIAL 
CONSIDERATIONS, CHALLENGES, AND PITFALLS

Technical and methodological details about performing ML 
analyses is beyond the scope of this review. For an in-depth 
introduction to ML, we refer the reader to several excellent 
resources [39–42]. Rather than presenting a detailed user’s 
guide, here, we focus on a few special considerations/require-
ments in the context of patient risk stratification and HE (ie, for 
settings in which the goal is to map patient data to a continuous 
value representing patient risk for a specific outcome).

It Starts with Data

Data may come from a number of sources. The examples men-
tioned in the section above are not specific to one particular 
dataset or even one data type. Researchers have successfully 
applied ML to clinical notes [20], physiological waveforms [10, 
43], structured EHR data [44], radiologic images [45], and even 
unstructured data from publications [13]. Clinicians interested 
in using EHR data for ML may engage leadership within their 
institution to both obtain access to institutional data and to 
establish the resources to organize the data. Clinicians should 
not underestimate the amount of time required for this step and 
should also be aware that clinical insight throughout the pro-
cess is essential.

Sharable Data Are Key

Shared datasets serve an important purpose by facilitating com-
parison of different ML approaches to specific clinical prob-
lems. Without a shared dataset, it becomes difficult to compare 
methods in a meaningful way.

The Data Will Be Messy

Healthcare practitioners are well aware of the extent of inconsist-
encies, inaccuracies, and errors present in health data, in particu-
lar, clinical notes. Often, the vast majority of such projects are 
dedicated to “data wrangling,” that is, data extraction and pre-
processing. While the adage “garbage in garbage out” still holds, 
no amount of ML can identify relationships not present in the 
data. When the size of the data grows, in particular, the number 
of examples, it can still be possible to identify a signal, despite the 
presence of noise. Techniques like regularization (see above) and 
a held-out test set (see below) can help identify whether or not 
there’s enough of a signal to learn meaningful relationships.

Choose the Right Target

When choosing the target (ie, outcome of interest), it is impor-
tant that one has access to accurate data regarding that target. 
For example, if predicting the development of CDI is the tar-
get, one must know which patients developed CDI in order to 
develop the model. Sometimes, it is impossible to obtain com-
plete certainty (eg, not all laboratory tests are 100% accurate). 
ML techniques can, however, handle the presence of some 
uncertainty in the data. In addition, it is important to remem-
ber that the outcome used during training is the outcome that 
the model is learning to predict. For example, we may want to 
predict risk of CDI. However, since not all patients are tested, in 
reality we are predicting risk of a positive laboratory result for 
CDI. This distinction is subtle but important. In particular, if 
the hospital were to change its testing protocol, then the predic-
tive performance of an existing model may change.

Keep a Held-Out Test Set

As mentioned above, because such analyses often deal with a 
large number of covariates, one can easily overfit, obtaining a 
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model that works well on the training set but does not general-
ize. Thus, it is important to split one’s data into separate training 
and test sets (eg, 80% of the data is used for training and 20% 
for testing). Use the training set for model selection, and hold 
the test set aside for final model evaluation. One may split the 
data multiple times at random or choose a temporal split (eg, 
training on data from 2010–2014, testing on data from 2015). 
By splitting the data temporally, one can estimate how changes 
over time may affect predictive performance.

Beware of Data Leakage

Beware of results that are too good to be true. In cases where 
the discriminative power is well beyond that of humans, there 
is often some form of “data leakage.” For example, one of the 
covariates may accidentally encode the outcome (eg, receipt of 
empiric oral vancomycin probably indicates that a clinician has 
already diagnosed CDI). This type of potential pitfall makes it 
important to “look inside” the model to try to understand why 
it is making the predictions it is or test the model prospectively.

Good Accuracy Isn’t Enough

When evaluating predictive performance, it is important to 
keep in mind the clinical task of interest. For example, if the 
goal is to learn a model to predict daily risk of CDI, then the 
model should be applied daily to the test data, rather than just 
prior to the event of interest. In addition, both calibration (ie, 
how well the estimate risk maps to actual risk) and discrim-
inative performance (ie, how well the model distinguishes 
high-risk from low-risk patients) are important to consider. 
Finally, the transparency (ie, interpretability) of one’s model 
can be as important as its accuracy. A black-box model that 
only tells a user who is at risk may be less actionable than a 
transparent model that tells a user why the patient is at risk. 
A model’s ability to explain its predictions can help identify 
“bugs” or data leakage. In addition, it can point researchers to 
testable hypotheses that have biological plausibility.

Hospital-specific Models Using Generalizable Methods

In the past, researchers have most often aimed to learn mod-
els that generalize across hospitals or healthcare settings. Such 
models may do well on average but can perform poorly when 
applied to specific institutions. This limitation is, in part, 
because of institutional differences in the way data are collected 
and stored [46]. Rather than seeking models that generalize 
across all hospitals, we should seek generalizable methods that 
can be used to generate institution-specific models. Such an 
approach allows institutions to train models specific to their 
data collection practices and patient populations.

It Takes a Team

Finally, and most importantly, applied ML in HE requires teams 
composed of experts from a variety of disciplines. Leadership 

of these teams is likely to comprise individuals with expertise 
in infectious disease, statistics, optimization, and computer sci-
ence. For studies that use EHR data, individuals with expertise 
in clinical data architecture are essential to team success. Such 
work cannot take place in the isolation of a single department 
or discipline. ML experts are unlikely to make a meaningful 
clinical contribution using ML without close collaboration with 
a clinical expert. Conversely, although open-source ML tools 
exist, without a good understanding of the underlying algo-
rithms, the misapplication of ML to clinical data can lead to 
misleading results and incorrect conclusions.

While the increased availability of data and ML tools holds 
the promise of improved patient outcomes, we should pro-
ceed cautiously. To date, ML has featured more prominently in 
research than in practice. At the point at which ML has proven 
efficacy in HE, additional questions will remain in translation 
to practice. These include training and education of healthcare 
epidemiologists and creation and maintenance of ML tools and 
applications. Barriers to implementation may be expected to 
vary by institution size, resources, and interest in the technol-
ogy. More research is required before we will fully understand 
the good, the bad, and the unintended consequences of ML in 
HE [47].

CONCLUSIONS

ML has resulted in important contributions to a number of 
disciplines in recent years, including vision and natural lan-
guage processing. In these fields, more complex models can 
take advantage of the large amount of existing training data (eg, 
images in vision or sentences in natural language). Similarly, we 
are on the verge of a major shift in HE. Through the appropri-
ate application of ML to increasingly available electronic health 
data—including genomic data—healthcare epidemiologists will 
be able to better understand the underlying risk for acquisi-
tion of infectious diseases and transmission pathways, develop 
targeted interventions, and reduce HAIs. While powerful, it is 
important to remember that ML cannot identify relationships 
that are not present in the data. Moreover, ML does not replace 
the need for standard statistical analyses or randomized, control 
trials. Instead, ML can serve as a tool to augment HE’s current 
toolbox. Going forward, the greatest impact will come from 
interdisciplinary teams that work together to make sense of the 
data.
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