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Abstract

Supertree methods merge a set of overlapping phylogenetic trees into a supertree containing all taxa of the input trees.
The challenge in supertree reconstruction is the way of dealing with conflicting information in the input trees. Many
different algorithms for different objective functions have been suggested to resolve these conflicts. In particular, there
exist methods based on encoding the source trees in a matrix, where the supertree is constructed applying a local search
heuristic to optimize the respective objective function. We present a novel heuristic supertree algorithm called Bad Clade
Deletion (BCD) supertrees. It uses minimum cuts to delete a locally minimal number of columns from such a matrix
representation so that it is compatible. This is the complement problem to Matrix Representation with Compatibility
(Maximum Split Fit). Our algorithm has guaranteed polynomial worst-case running time and performs swiftly in practice.
Different from local search heuristics, it guarantees to return the directed perfect phylogeny for the input matrix,
corresponding to the parent tree of the input trees, if one exists. Comparing supertrees to model trees for simulated
data, BCD shows a better accuracy (F1 score) than the state-of-the-art algorithms SuperFine (up to 3%) and Matrix
Representation with Parsimony (up to 7%); at the same time, BCD is up to 7 times faster than SuperFine, and up to 600
times faster than Matrix Representation with Parsimony. Finally, using the BCD supertree as a starting tree for a
combined Maximum Likelihood analysis using RAxML, we reach significantly improved accuracy (1% higher F1 score)
and running time (1.7-fold speedup).

Key words: phylogeny, supertree, phylogenetics, matrix representation with parsimony, split fit, MRC, MRP,
supermatrix, divide-and-conquer.

Introduction
When reconstructing large scale phylogenies from molecular
data, it is common practice to combine multiple loci (e.g.
genes); as not every loci is available for every taxon, methods
have to deal with incomplete data. Doing so is possible on
different levels (Schmidt 2003; Kupczok et al. 2010): Low-level
approaches (total evidence, supermatrix, superalignment,
combined analysis) combine multiple genes on the sequence
level by concatenating the alignments of the different genes;
gaps in the resulting data matrix correspond to missing data.
The resulting supermatrix can be analyzed by conventional
tree reconstruction methods such as Maximum Parsimony
(MP) (Fitch 1971), Maximum likelihood (ML) (Felsenstein
1981) or Bayesian inference (Yang and Rannala 1997).
Medium-level strategies combine the loci on a further proc-
essed analysis stage than concatenating the raw sequence
data, but do not estimate a complete tree for each locus.
Such stages can e.g. be quartets (Strimmer and von
Haeseler 1996; Schmidt et al. 2002) or distance matrices
(Criscuolo et al. 2006). High-level approaches estimate a
phylogenetic tree for each gene independently, and these
gene trees are combined using a supertree method. These
methods assemble phylogenetic trees with nonidentical but
overlapping taxon sets into one supertree that contains all

taxa of the source trees. Constructing a supertree from non-
conflicting source trees is easy (Aho et al. 1981), whereas
resolving such conflicts in a reasonable way, usually results
in NP-hard optimization problems. Many supertree
approaches have been proposed over the years; some of
them may return multiple supertrees which than have to
be combined (Baum 1992; Ragan 1992), or may return super-
trees not containing all taxa (Scornavacca et al. 2008). See
Bininda-Emonds (2004) for early methods, and (Ross and
Rodrigo 2004; Chen et al. 2006; Criscuolo et al. 2006;
Cotton and Wilkinson 2007; Holland et al. 2007;
Scornavacca et al. 2008; Steel and Rodrigo 2008; Bansal
et al. 2010; Ranwez et al. 2010; Snir and Rao 2010;
McMorris and Wilkinson 2011; Swenson et al. 2012; Berry
et al. 2013; Brinkmeyer et al. 2013; Markin and Eulenstein
2016; Vachaspati and Warnow 2016) for recent ones. One
basic principle that many supertree methods share is a Matrix
Representation of the source trees. A Matrix Representation
(MR) encodes inner nodes (or branches) of all source trees as
partial binary characters in a matrix, which is then analyzed
using an optimization or agreement criterion to yield the
supertree. Matrix Representation with Parsimony (MRP)
(Baum 1992; Ragan 1992) was among the earliest methods
proposed but remains the most frequently used. Despite its
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computational complexity (Foulds and Graham 1982), heu-
ristics have been developed that allow data sets with several
hundred taxa to be analyzed in reasonable time. On the the-
oretical side, MRP has certain undesirable properties, such as
introducing clades into the supertree that are contradicted by
all source trees (Bininda-Emonds and Bryant 1998; Pisani and
Wilkinson 2002; Wilkinson, Pisani, et al. 2005), and its non-
convergence to the true tree for arbitrarily large sets of input
trees (Steel and Rodrigo 2008). Matrix Representation with
Flipping (MRF) (Chen et al. 2006) tries to resolve incompati-
bilities by flipping “0/1”-entries in the matrix. Finding a tree
that with a minimum number of flips is again NP-hard but
also W[2]-hard, and has no constant factor approximation
unless P¼NP (Böcker et al. 2011). Brinkmeyer et al. (2013)
introduced a top-down heuristic FLIPCUT for MRF, which has
guaranteed polynomial running time, and outperformed
other polynomial-time supertree methods (Semple and
Steel 2000; Page 2002; Willson 2004; Scornavacca et al.
2008) with regards to supertree accuracy and running time
(Brinkmeyer et al. 2010, 2013). Matrix representation with
Compatibility (MRC) (Purvis 1995; Rodrigo 1996; Ross and
Rodrigo 2004), also known as Maximum Split Fit (SFIT)
(Creevey and Mcinerney 2005), searches for the largest com-
patible subset of matrix columns in the MR. The MRC prob-
lem is again NP-hard, and it is likely that no PTAS exists
(Badger et al. 2004; Böcker et al. 2011). MRC can be reduced
to the Maximum Clique problem on the compatibility graph,
or to the Maximum Independent Set problem on the incom-
patibility graph of the matrix. MRC (SFIT) generalizes asym-
metric median consensus methods Wilkinson, Cotton, et al.
(2005). Swenson et al. (2012) introduced the meta-method
SuperFine which uses the Greedy Strict Consensus Merger
(GSCM) (Huson, Vawter, et al. 1999; Roshan et al. 2003) as
preprocessing to improve an arbitrary supertree method.
SuperFine with MRP was superior to the other evaluated
SuperFine variants, namely SuperFine with Quartets
MaxCut (QMC) (Snir and Rao 2010) and SuperFine with
Matrix Representation with Likelihood (MRL) (Nguyen et al.
2012). To this end, “SuperFine” will refer to the “SuperFine
with MRP” method throughout the rest of this paper.

Conflicts in the source trees are either caused by estimation
(sampling) errors, or by differing evolutionary processes of the
combined genes. The later problem is known as the gene tree
species tree reconciliation problem. Classical supertree and
supermatrix methods where complemented by methods that
incorporate evolutionary processes such as the coalescent
process (Liu et al. 2009, 2010; Larget et al. 2010; Liu and Yu
2011; Mirarab et al. 2014; Whidden et al. 2014; Allman et al.
2016). Reconciliation approaches model the evolutionary
process more thoroughly than standard supermatrix and
supertree methods, but do not scale well with the number
of taxa.

For NP-hard tree reconstruction methods (e.g. ML and
MP), local search heuristics, such as hill climbing, have to
be used to estimate phylogenetic trees in reasonable time.
The starting tree for a local search heuristic is crucial for its
accuracy and running time. ML implementations, which are

widely used for the supermatrix approach commonly use
Neighbor Joining and related methods to quickly find a start-
ing tree of sufficient quality.

For large scale phylogenies, these local search heuristics
may no longer converge in reasonable time. Furthermore,
Sievers et al. (2013) observed that the quality of multiple
sequence alignments decreases with increasing number of
taxa. Combining overlapping input data with supertree meth-
ods does not require a multiple sequence alignment nor a ML
analysis for all taxa simultaneously. In this context, supertree
methods can be used as part of divide-and-conquer meta-
techniques (Huson, Nettles, et al. 1999; Huson, Vawter, et al.
1999; Roshan et al. 2004; Nelesen et al. 2012), which break
down a large phylogenetic problem into smaller subproblems
that are computationally easier to solve. The subproblem
results are combined using a supertree method. Different
from combining incomplete gene-based source trees, con-
flicts between the source trees will mainly result from sam-
pling errors for this approach.

New Approach
Here, we introduce the Bad Clade Deletion (BCD) supertree
algorithm, a polynomial time top-down heuristic that mini-
mizes the number of column (character) deletions of a MR
(Baum-Regan encoding), so that the resulting matrix allows
for a directed perfect phylogeny (Pe’er et al. 2004). Minimizing
the number of columns to delete (minimum vertex cover on
the incompatibility graph) is complementary to maximizing
the number of characters to keep (maximum independent
set), which is the objective function of MRC (SFIT). Hence, the
optimal solution for one of these problems is also an optimal
solution for the other one; both optimization problems are
NP-hard, but not identical with respect to parameterized
complexity and approximability. BCD modifies FLIPCUT for
this objective function and inherits its worst-case running
time (O(mn3)), but is even faster in practice. We integrate
meta-information (bootstrap values, branch lengths) and re-
liable clades into BCD, to further improve its speed and ac-
curacy. In detail, we use the Greedy Strict Consensus Merger
Fleischauer and Böcker (2016) to calculate the set of reliable
clades.

BCD computes supertrees without branch length, but
reports the weighted split fit for each clade in a supertree.
This cannot be interpreted as evolutionary distance, but pro-
vides information about confidence of a clade. For a fixed
supertree topology, branch length can be estimated using,
for example, the method of Binet et al. (2016).

In our in-depth evaluation using simulated data, BCD out-
performs MRP (up to 7%) and SuperFine (up to 3%) with
respect to F1 score. At the same time, BCD is up to 7 times
faster than SuperFine and up to 600 times faster than MRP;
this combination of accuracy and speed has never before
been achieved by a supertree method. Finally, using a BCD
supertree as the starting tree for a combined ML analysis can
improve results: In our evaluation, the ML analysis was 1.7
times faster and reached a 1% higher F1 score when using the
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BCD starting tree instead of the default starting tree, resulting
in the most accurate trees over all evaluated methods.

Results

Evaluation Setup
To thoroughly evaluate BCD Supertrees, we compare it under
multiple criteria, on different simulated and biological data
sets, against commonly used (low- and high level) tree recon-
struction approaches. We further compare multiple
Combined Analysis runs with different supertrees
(SuperFine, MRP and BCD) as starting tree, to demonstrate
that supertrees can improve a Combined Analysis.

In our method evaluation, we ignore the roots for all ac-
curacy measurements, comparing the induced splits (and not
the induced clades).

Evaluation Criteria for Simulated Data
For simulated data, we can compare estimated trees to the
known, true model tree. Estimating false negative (FN) rates
and false positive (FP) rates is common practice to measure
the accuracy of estimated trees: FN splits are not in the
estimated tree but should be; and FP splits are in the esti-
mated tree but not in the model tree. Splits present both in
the model tree and the estimated tree are true positives (TP).
Given a fully resolved model tree, FN and FP rates provide
information about the resolution of the estimated trees. For a
fully resolved tree, FN¼ FP.

A tree estimation method may return a tree with many FPs
but few FNs, or vice versa. To compare different methods, we
use the well-known F1 score (harmonic mean of precision and
recall) as a single criterion to evaluate accuracy,

F1 ¼
2TP

2TPþ FPþ FN
:

To visualize results for multiple data replicates, we use
boxplots. Data replicates are independent and may have
highly varying complexity; even for highly overlapping boxes,
it is possible that one method constantly outperforms an-
other one for every data replicate. To evaluate whether qual-
ity differences are significant, we compare ranks of F1 scores
using the Wilcoxon signed-rank test with a¼ 0.05. We cal-
culate pairwise significance for up to 16 different methods/
configurations, resulting in 120 significance tests. To correct
for multiple testing, we accept difference with P values below
0:05
120 � 0:0004 (Bonferroni correction). Full tables are available
in the Supplementary Material online. For data sets with a
small number of replicates, the Wilcoxon signed-rank test
may reject significant differences. In these cases (e.g.
SMIDGenOG-5500 with only 10 replicates), we report the
absolute number of “wins”; see also the Supplementary
Material online.

Evaluation Criteria for Biological Data
For biological data, the “true tree” to compare against is un-
known; to this end, we resort to other evaluation criteria: For
supermatrix data sets, we evaluate the estimated trees against
the sequence data (supermatrix), using both the parsimony

score) and the log-likelihood score. We use RAxML to optimize
branch length and calculate the log-likelihood. For nonbinary
trees, we resolved all polytomies randomly; this may discrim-
inate against methods that return highly unresolved trees.

The supertree data sets do not even contain sequence data
to compare against. To this end, we compare estimated
supertrees against the source trees. It is common practice
to compute the sum of false negatives/positives ratios over
all source trees:

SFNrate ¼
P

T2T jSðTÞnSðT0ÞjP
T2T jSðTÞj

SFPrate ¼
P

T2T jSðT0ÞnSðTÞjP
T2T jSðT0Þj

where T0 is the supertree, T is the set of source trees, and S
ðTÞ is the set of splits induced by some tree T. Note that
optimal values of SFN rate and SFP rate depend on the source
trees: For conflicting source trees, it is not possible to find a
supertree with both SFN rate¼ 0 and SFP rate¼ 0.

Swenson et al. (2011) showed that SFN rate and SFP rate
do not correlate well with true FN rate andFP rate and, in
some cases, may actually be positively misleading. Here, we
made similar findings: For most simulated data sets, neither
the best estimated tree nor the model tree has the best SFN
rate or SFP rate. Furthermore, SFN rate and SFP rate behave
differently for each simulated data set (see supplementary
figs. S6–S8, Supplementary Material online). Therefore, results
of source tree-based evaluation criteria have to be interpreted
with some care. Finally, the “MRP score” is the parsimony
score of the supertree against the matrix representation of
the source trees; results for this score have the same qualita-
tive characteristics as to those for SFN and SFP rates, and are
deferred to the Supplementary Material online.

Simulated Data Sets
SMIDGen Outgroup
The simulated SMIDGen Outgroup (SMIDGenOG) data set
(Fleischauer and Böcker 2016) was generated following the
SMIDGen protocol (Swenson et al. 2010). Each replicate con-
sists of multiple clade-based source trees using a densely-
sampled subset of taxa from one clade of the model tree,
plus a single scaffold source tree which uses a sparsely-sampled
subset of taxa of the complete model tree. Taxa in the clade-
based source trees are closely related, whereas the scaffold
source trees contain a (possibly small) subset of taxa, among
all taxa in the model tree. For the clade-based source trees, the
subset of taxa was chosen using a birth-death process, so a
clade-based source tree does not necessarily contain all taxa
of that clade, and not every clade of the model tree necessarily
results in a clade-based source tree. Furthermore, one clade
may result in more than one source tree, or a clade and a
subclade may be chosen, potentially resulting in contradicting
information in the clade-based source trees, see below.
Different from the original SMIDGen protocol, source trees
are rooted using suitable outgroups. Following Swenson et al.
(2010), a different “evolution rate” (slow, medium, fast) was
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chosen for each clade-based source tree, resulting in a tree-
wide branch length multiplier of 0.1, 1.0 and 2.0. The scaffold
source tree always uses slow evolution rate. For each subset of
taxa, we simulated a multiple sequence alignment using
model tree branch lengths and Seq-Gen (Rambaut and
Grassly 1997). Finally, source trees and bootstrap values
were computed using RAxML. We generate 30 replicate
model trees with 1000 taxa. For each replicate and each scaf-
fold factor (20%, 50%, 75%, 100%), we generate 30 clade-based
source trees plus one scaffold source tree with the desired
percentage of taxa (scaffold factor) from the model tree. See
supplementary figure S1 and the Supplementary Material
online for details.

The resulting source tree sets contain between 8% and
15% contradicting clades compared with the model tree. A
single source tree contains between 0% and 35% contradict-
ing clades (see supplementary table S1, Supplementary
Material online, for details).

SMIDGenOG-5500
SMIDGenOG-5500 is a large-scale simulated data set. The 10
replicates contain an average number of 5,500 taxa in the
model tree, and between 37104 and 62495 clades in the
source trees. We again use densely-sampled clade-based
source trees, and sparsely-sampled scaffold source trees as
described earlier. Since computation time of source trees
using ML increases rapidly with the number of taxa, this
data set does not contain different scaffold factors. For each
replicate, we created 500 clade-based source trees with size
between 75 and 125 taxa, and 5 scaffold source trees with 100
taxa each. This corresponds to reasonable values for a divide-
and-conquer approach. We only generate 25 bootstrap rep-
licates, again due to running time constraints. See the
Supplementary Material online for details.

Biological Data Sets
We use data from three large-scale supermatrix studies on
bees (1,376 taxa, 19 source trees, see Hedtke et al. 2013),
saxifragales (950 taxa, 51 source trees, see Soltis et al. 2013),
and legumes (2,228 taxa, 38 source trees, see McMahon and
Sanderson 2006). To generate source trees for the superma-
trix data sets, we split the combined alignment into its com-
ponents. For every resulting alignment with more than three
taxa, we calculated an ML source tree with bootstrap values,
using RAxML with GTR-GAMMA default settings and 100
bootstrap replicates. Combined Analysis trees were calculated
using ML (CA-ML) for the bees (Hedtke et al. 2013) and
saxifragales data sets (Soltis et al. 2013), whereas the legumes
Combined Analysis tree is a Maximum Parsimony tree (CA-
MP) (McMahon and Sanderson 2006). Furthermore, we
evaluate methods on five supertree data sets, namely placen-
tal mammals (116 taxa, 726 source trees, see Beck et al. 2006),
marsupials (267 taxa, 158 source trees, see Cardillo et al. 2004),
seabirds (121 taxa, 7 source trees, see Kennedy and Page
2002), primates (203 taxa, 112 source trees, see Purvis 1995)
and mammalian phylogenomics (OMM, 33 taxa, 12,958
source trees, see Ranwez et al. 2010). Most of these data

sets where previously used to evaluate supertree methods;
all data sets have rooted source trees.

Evaluated Methods
We evaluate the performance of our new BCD method by
comparing it to Matrix Representation with Parsimony
(MRP), SuperFine(þMRP), the novel FastRFS and the
Combined Analysis using ML (CA-ML) (see table 1). For
MRP, we use the majority consensus in those cases where
more than one most parsimonious tree is found, as this vari-
ant performed better than the strict consensus in our evalua-
tions. Previous evaluations clearly suggest that other supertree
methods (Semple and Steel 2000; Page 2002; Willson 2004;
Creevey and Mcinerney 2005; Chen et al. 2006; Criscuolo et al.
2006; Scornavacca et al. 2008; Bansal et al. 2010; Ranwez et al.
2010; Snir and Rao 2010; Swenson et al. 2012; Brinkmeyer et al.
2013) are inferior to MRP and SuperFine(þMRP) with respect
to supertree accuracy (e.g. FN-,FP rate and Robinson Foulds
Distance) and, in some cases, also running time (Kupczok
et al. 2010; Swenson et al. 2010, 2011, 2012; Brinkmeyer
et al. 2011, 2013). We do not evaluate weighted MRP
Ronquist (1996), as the above-mentioned evaluation studies
indicate that it is not more accurate than SuperFine but often
slower than CA-ML. Hence it is part of BCD and Superfine, we
also report results of the GSCM.

SMIDGenOG Results
We now describe results for the SMIDGen Outgroup data set
with 30 replicates and 1000 taxa in the model tree. We found
that using the GSCM “guide tree” consistently improves BCD
supertree accuracy (supplementary figs. S11–S13,
Supplementary Material online); on large data sets, it also
reduces running times. In the following, we omit results for
BCD without GSCM. We repeated our analysis for smaller
data sets with 500 and 100 taxa model trees, as well as the
original SMIDGen and the SuperTriplets data set, but found
no significant differences (supplementary figs. S11, S12, S2, S3
and S4, Supplementary Material online). Further we evaluated
BCD on the SuperTriplets data set (see supplementary figs.
S18–S20, Supplementary Material online). Finally, we found
that the FLIPCUT supertree method, being the predecessor of
BCD, performs considerably worse than BCD (supplementary
figs. S2–S4, Supplementary Material online); to this end, we
will not consider FLIPCUT in the following.

Accuracy
Using GSCM as an independent supertree method shows the
by far worst overall performance (F1 score) of all methods
(fig. 1), but shows best FP rate which qualifies it as a prepro-
cessing method (supplementary fig. S13c and d,
Supplementary Material online). BCD (Unit Weight and
Branch Length) already beats MRP for scaffold factors 20%
and 50%. For scaffold factor 75%, the difference to MRP is not
significant, and for scaffold factor 100% it performs worse
than MRP. The differences between BCD Unit Weight and
BCD Branch Length are not significant. BCD Bootstrap per-
forms significantly better than any other evaluated supertree
method, for all scaffold factors. CA-ML shows the overall best
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performance (significant for scaffold factors 20%, 50%, 75%).
For scaffold factor 100%, the difference between BCD
Bootstrap and CA-ML is not significant. Whereas SuperFine
has a significantly higher F1 score than MRP for scaffold fac-
tors 20% and 50%, it performs equally for scaffold factor 75%
and 100%. FastRFS results quality depends on the scaffold
factor: While it performs much worse than MRP for small
scaffold factors, it is almost on par with MRP and SuperFine
for scaffold factor 100%. Nevertheless, the small difference to
SuperFine and MRP is significant.

Comparing CA-ML with different starting trees demon-
strates that supertrees can be used to improve CA-ML trees
(see fig. 2). Here, all CA-ML trees show a significantly better F1

score than the supertree methods. We found that a better
starting tree results in a better CA-ML tree: CA-ML using the
BCD Bootstrap supertree as starting tree has a significantly
higher F1 score than the default CA-ML tree, for all scaffold

factors. The trees with the overall best F1 score on the
SMIDGenOG data set were estimated using CA-ML with
the BCD Bootstrap starting tree.

Running Time
With running times between 4 and 8 s (including GSCM pre-
processing), all BCD variants are much faster than all other
evaluated methods (fig. 1). Note that BCD (including GSCM
preprocessing) is faster than the GSCM implementation used
by SuperFine. SuperFine needs �30 s on an average for one
replicate of this data set; FastRFS need at most 1 min. MRP is
by far the slowest supertree method, with running times of
40 min for scaffold factor 20%, and 8 min for scaffold factor
100%. Local search heuristics for MRP seem to converge faster
for data with large scaffold trees, whereas the increased num-
ber of characters appears to increase the running time of the

Table 1. Overview of the Methods We Compare in Our Evaluation and Their Major Differences.

Method (Implementation) Combination Algorithm Objective Function

GSCM (Swenson et al. 2012) High-Level (Supertree) Deterministic,
polynomial time

None

BCD High-Level (Supertree) Deterministic,
polynomial time

Minimizes the number character deletions in the
matrix representation of the source trees
(complementary to MRC/SFIT).

FastRFS (Vachaspati and Warnow 2016) High-Level (Supertree) Deterministic,
polynomial time

Minimizes the robinson foulds distance to the
source trees (constrained search space).

MRP (Swofford 2002) High-Level (Supertree) Local search heuristic Minimizes the number of character-state changes
in the matrix representation of the source trees.

SuperFine (Swenson et al. 2012) High-Level (Supertree) Local search heuristic Minimizes the number of character-state changes
in the matrix representation of the source trees
(after dividing the problem into subproblems).

CA-ML (Stamatakis 2006) Low-Level (Supermatrix) Local search heuristic Maximizes the likelihood for a given supermatrix.
CA-MP (Swofford 2002) Low-Level (Supermatrix) Local search heuristic Minimizes the number of character-state changes

for a given supermatrix.

FIG. 1. F1 score (left) and running times (right) of the evaluated tree reconstruction methods on the simulated SMIDGen Outgroup (1,000 Taxa)
data set. Running times are on a logarithmic scale. On the x-axis are the different scaffold factors plotted.
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other methods. CA-ML with default starting tree requires be-
tween 2 and 6 days, whereas BCD requires between 4 and 8 s.
Running times of CA-ML decrease with increasing starting tree
accuracy, and CA-ML with BCD starting tree is up to 2 times
faster than CA-ML with default starting tree (see fig. 2).

SMIDGenOG-5500 Results
MRP did not finish in reasonable time; hence, we report its
results after 1 day, 7 days and 14 days of running time. In view
of the small number of replicates, we refrain from reporting
significance.

Accuracy
BCD Branch Length reaches the overall best accuracy, out-
performing all other methods for 10 of 10 replicates. BCD
Bootstrap accuracy is considerably worse, which might be
attributed to the small number of bootstrap replicates, see
the discussion below; it outperforms MRP and SuperFine in 8
of 10 cases. GSCM is consistently outperformed by all other
methods. In all cases, FastRFS shows a lower F1 score than all
methods but BCD Unit Weight with GSCM (for which it is
outperformed in 9 of 10 cases) and GSCM (fig. 3).

Running Time
This data set clearly demonstrates the benefit of polynomial
time algorithms, see figure 3: MRP did not finish after 14 days
of computation, whereas BCD requires�7 h. FastRFS requires
about �12 h. SuperFine needs >2 days, and will fall back to
MRP computation when the GSCM preprocessing is not
effective.

Results on Biological Data Sets
Accuracy
Next, we describe SFN rate and SFP rate results for all bio-
logical data sets, see figures 4 and 5. Recall that low SFN and

SFP rates do not necessarily correspond to a supertree of good
quality, see the Supplementary Material online for details.
Bootstrap values and branch lengths are available for all
supermatrix data sets (bees, saxifragales and legumes).
Further, bootstrap values are available for the primates’
data set, whereas branch length are available for the OMM
data set. All other supertree data sets contain neither boot-
strap values nor branch length, prohibiting the use of BCD
Bootstrap (BCD-BS) and BCD Branch Length (BCD-BL). By
definition, the GSCM tree contains only splits that do not
conflict with any source tree, which results in SFP rate¼ 0 for
all data sets. For the biological data sets the GSCM tree is less
resolved than for the simulated data sets; in addition, reso-
lution varies strongly between biological data sets, see figure 4.
Consequently, we find that SuperFine trees are largely iden-
tical to MRP supertrees, and both methods show comparable
performance. Again, BCD performs best when used in con-
junction with GSCM and bootstrap values. BCD supertrees
and CA-ML trees show higher SFN and SFP rates than
SuperFine and MRP trees. The CA-MP tree of the legumes
data set has lower SFP rate than the SuperFine, MRP and
BCD trees, but the highest SFN rate of all estimated trees.
For the OMM data set, the SuperFine GSCM calculation
did not finish within 1 day, and the GSCM tree used by
BCD did not contain a single clade; hence, no results are
reported for these methods. Findings regarding the MRP-
Score are qualitatively similar to those for SFN and SFP
rates, see supplementary figure S10, Supplementary
Material online.

For the supermatrix data sets, we evaluated parsimony and
log-likelihood scores, see figure 6. We find that MRP,
SuperFine, and at least one variant of BCD have better par-
simony scores than the CA-ML/-MP trees. This is despite the
fact that for the legumes data set, the combined analysis tree

FIG. 2. Performance of different supertrees as a starting tree for CA-ML with RAxML regarding F1 score (left) and running times (right) on the simulated
SMIDGen Outgroup (1,000 Taxa) data set. Running times are on a logarithmic scale. On the x-axis are the different scaffold factors plotted.
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has been computed using the parsimony optimization cri-
terion. In all cases, SuperFine obtains the best parsimony
scores. For the saxifragales data set, BCD Unit Weight
(BCD-UW) and BCD-BS have better parsimony scores
than MRP; on the other data sets, BCD produces slightly
worse parsimony scores than MRP. For saxifragales and
bees, CA-ML obtains the best log-likelihood scores, fol-
lowed by SuperFine, MRP, and BCD. For legumes,
SuperFine obtains the best log-likelihood score, followed
by MRP, BCD-BS, and CA-MP.

Running Time
MRP is again the slowest supertree method by far (see fig. 7),
where a variant of BCD is always the fastest. For data with
many input trees compared with the number of taxa (pri-
mates, mammals, OMM, marsupials), using the GSCM tree
does not speed up BCD and SuperFine.

Discussion
Our experiments with simulated data show that BCD can be
an accurate and very fast supertree method. In particular,

FIG. 4. Sum of false negative rates (SFN rate) of supertrees against source trees for the biological supertree data sets. Most of the supertree data sets
contain neither bootstrap values nor branch lengths, prohibiting the use of BCD bootstrap and BCD branch length. CA-ML/-MP cannot be applied
to the supertree instances.

FIG. 3. F1 score (left) and running times (right) of MRP, SuperFine, GSCM, FastRFS and BCD on the simulated SMIDGen Outgroup (5,500 Taxa) data
set. MRP did not finish after 14 days of computation; we report MRP results after 1 day, 7 days and 14 days. Running times are shown on a
logarithmic scale.
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combining Bad Clade Deletion supertree computation with
meta-information such as bootstrap values leads to excellent
results, which are superior to the state-of-the-art supertree
methods MRP and SuperFine. Unlike SuperFine and MRP,
BCD has guaranteed polynomial worst-case running time.
Among three proposed weightings, we find that BCD super-
tree accuracy is usually highest when using bootstrap values,
followed by branch lengths and unit weights. Even with unit
weights, BCD usually outperforms Matrix Representation

with Parsimony for simulated data. Using the Greedy Strict
Consensus Merger as a preprocessing step turned out to be
both robust and effective. We also evaluated the undisputed
sibling reduction as a preprocessing method (Brinkmeyer
et al. 2013), but found that results of this combination
were clearly dominated by BCD with GSCM. We also eval-
uated whether we can replace neighboring clades by a single
joint clade during postprocessing (Bryant 1997; Pe’er et al.
2004; Jansson et al. 2012), but found that the effect on

FIG. 5. Sum of false positive rates (SFP rate) of supertrees against source trees on the biological supertree data sets. Most of the supertree data sets
contain neither bootstrap values nor branch lengths, prohibiting the use of BCD bootstrap and BCD branch length. CA-ML/-MP cannot be applied
to the supertree instances.

FIG. 6. Comparison of GSCM, MRP, SuperFine, BCD and the Combine Analysis (CA-ML/MP) with regards to parsimony scores (top) and log-
likelihood scores (bottom) for the biological supermatrix data sets.
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supertree accuracy are negligible. The 5,500 taxon data set
demonstrates the advantage of a polynomial-time supertree
method: MRP did not finish after 14 days on this data set,
whereas BCD with branch lengths or bootstrap values never
required more than a day of running time. Recall that
SuperFine is identical to MRP when the GSCM tree is fully
unresolved.

We also found that using an accurate supertree as starting
tree for CA-ML can improve its accuracy and reduce the
running time. Using CA-ML with a BCD starting tree pro-
duced the most accurate trees in our evaluation on simulated
data, and also converges faster than CA-ML with the default
starting tree. Hence, BCD supertrees can be a useful prepro-
cessing tool for a combined analysis.

For the biological data sets, assessing accuracy is more
intricate, as we lack an optimality criterion that is known
to correlate reliably with the structural supertree accuracy.
Using branch lengths and bootstrap values does not improve
the accuracy of BCD as much as for the simulated data. This
may be attributed to the fact that the source trees in the
biological data sets have much weaker bootstrap support
than those in the simulated data sets: For example, 40% of
the clades in the saxifragales data set have bootstrap values
<50%. The BCD supertrees contains only clades that are
supported by at least one source tree; consequently, the
BCD algorithm may have to choose from a set of clades which
are all wrong. The performance of SuperFine is similar to MRP
for these data sets; this comes as no surprise, since the GSCM
tree is often largely unresolved, and SuperFine optimization is
identical to the classical MRP optimization in these cases.
Comparing the supertrees against the input trees (SFN and
SFP rates), MRP and SuperFine show considerably better
scores than BCD, but also than the CA-ML/MP, despite
that the CA-ML trees may be assumed to be the most

accurate trees. These results coincide with findings for simu-
lated data evaluating SFN and SFP rates: There, MRP and
Superfine also showed superior SFN and SFP rates compared
with BCD and CA-ML, even when FN and FP rates compared
to the model tree where significantly worse. Therefore, we
cannot safely conclude which method performs best for bio-
logical data.

To the best of our knowledge, BCD is one of the most
accurate supertree methods, and is by far the best of any
supertree method with guaranteed polynomial running
time (Brinkmeyer et al. 2011). But besides having a guaran-
teed polynomial running time, BCD is also very swift in prac-
tice: For example, BCD is always faster than SuperFine which,
in turn, is one of the fastest supertree methods.

In current divide-and-conquer strategies, the decompos-
ition step is computable in polynomial time, whereas the
combination step (i.e., the supertree estimation) is not
(Nelesen et al. 2012). Using BCD supertrees for this step,
which has to be carried out for the complete set of taxa,
can be highly beneficial. Further, a BCD supertree contains
only clades that are supported by at least one of the source
trees. Used as part of a divide-and-conquer approach, this
leaves the estimation of clades to the sequence-based ap-
proach. To this end, we argue that BCD can be the “missing
piece” for a powerful divide-and-conquer strategy, that allows
an accurate ML analysis for large scale phylogeny
reconstruction.

Materials and Methods

Preliminaries
Hereafter, we deal with three types of graph-theoretical
objects: phylogenetic trees, graphs, and networks that we
search for maximum flows. For readability, vertices of a tree

FIG. 7. Running times (in hh:mm:ss) of GSCM, MRP, SuperFine and BCD for all evaluated biological data sets. Running times of SuperFine and BCD-
GSCM include the time of the GSCM preprocessing step.
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will be called nodes, whereas directed edges of a network will
be referred as arcs. Let N(V, E) be a network, with a set of
vertices V and a set of arcs E. Each arc e 2 E has a nonnegative
capacity c : E! R�0, which is the maximal amount of flow
that e can take. Given source s 2 V and target t 2 V, a flow is
a function f : E! R�0 with fðu; vÞ � cðu; vÞ that maps a
nonnegative flow value to each arc e 2 E in N. For each v 2 V
nfs; tg the amount of flow entering v has to be equal to the
amount of flow exiting it. The value of a flow is the amount of
flow entering t; a maximum flow is a flow of maximum value.

Let VðTÞ be the node set of a rooted phylogenetic tree.
Further,LðTÞVðTÞ is the set of all leaves (nodes of out-degree
zero) in T, corresponding to the set of taxa. All nodes c 2 V
ðTÞn‘ðTÞ are inner nodes. Each inner node v induces a clade
C ¼ LðTvÞ � LðTÞ. Two clades C1 and C2 are compatible if
C1 \ C2 2 fC1; C2;1g. A set of trees compatible if all their
clades are pairwise compatible. A clade C is supported by a
tree T if C0 ¼ C \ LðTÞ is a clade of T (Wilkinson, Pisani, et al.
2005). For a given set of input trees T ¼ fT1; . . . ; Tlg, T is a
supertree of T ifLðTÞ ¼ [Ti2T LðTiÞ. A supertree is called a
consensus tree if for all pairs of input trees Ti; Tj 2 T ; LðTiÞ
¼ LðTjÞ holds. A strict consensus tree of T contains all clades
present in all source trees Ti 2 T .

We use the Baum-Ragan (Baum 1992; Ragan 1992) encod-
ing to transform a set of trees T into an incomplete binary
matrix MðT Þ with elements in f0; 1; ?g: Each row of the
matrix corresponds to one taxon 1; . . . ; n, and each clade
C (except the root) in each tree is encoded in one column of
the matrix. A “1” indicates that the corresponding taxon is
part of C, whereas all other taxa of the tree are encoded
“0”. The state of taxa that are not part of the tree is un-
known, and represented by a question mark (“?”). A bin-
ary matrix (no “?”) has a perfect phylogeny if all matrix
columns are pairwise compatible. Two matrix columns
are compatible, if the corresponding clades are compat-
ible. For a single tree T, the matrix MðTÞ :¼ MðfTgÞ does
not contain “?”-entries. According to the classical directed
perfect phylogeny model (Wilson 1965), T is a (directed)
perfect phylogeny of M(T). In the following, “perfect
phylogeny” always refers to “directed perfect phylogeny”.
An incomplete binary matrix allows for a perfect phyl-
ogeny if we can resolve all “?” to either “1” or “0” so that
the resulting binary matrix has a perfect phylogeny. A tree
T refines T0 if T0 can be reached from T by contracting
internal edges. A supertree T of T1; . . . ; Tl is a parent tree if
TjLðTiÞ refines Ti, for all i ¼ 1; . . . ; l. For trees T; T0 with
identical taxa, T refines T0 if and only if MðT0Þ can be
obtained from M(T) by column deletion (Brinkmeyer
et al. 2013). A collection of trees T has a parent tree if
and only if MðT Þ can be transformed into a perfect phyl-
ogeny by resolving each “?” entry to either “0” or “1”
(Brinkmeyer et al. 2013).

Matrix MðT Þ has size n�m where m is the total number
of nonroot inner nodes in T1; . . . ; Tl. The matrix can be
computed in O(mn) time, using a tree traversal and lists of
taxa. Pe’er et al. (2004) gave an Oðmn polylogðm; nÞÞ-time
algorithm to test whether an instance MðT Þ allows for a
perfect phylogeny by resolving all “?”-entries.

The Bad Clade Deletion Algorithm
Let T be the set of source trees. Assume that the matrix
M :¼ MðT Þ does not allow for a perfect phylogeny; how
can we “correct” the matrix M accordingly? Brinkmeyer
et al. (2013) introduced a top-down heuristic for the
MRF problem, that uses minimum cuts in a graph repre-
sentation of M. This algorithm, in turn, is based on the
method of Pe’er et al. (2004) for deciding the incomplete
perfect phylogeny problem.

Here, we consider a different way of “correcting” the matrix
M: Namely, we remove a minimum number of characters
(columns) from M, so that the resulting matrix allows for a
perfect phylogeny. This formulation allows for an intuitive
phylogenetic interpretation: Instead of removing columns
from the matrix, an equivalent formulation of the problem
is to remove clades from the source trees. The resulting Bad
Clade Deletion supertree algorithm can be considered as the
FLIPCUT algorithm with a particular choice of weights in the
underlying graph (see below). Hence, all algorithmic results
from Brinkmeyer et al. (2013) directly carry over to the BCD
algorithm.

A high-level description of the algorithm is as follows: The
algorithm proceeds in a recursive top-down fashion. In each
recursive call, a subset of taxa and a subset of characters are
provided; the subset of taxa is output as a clade of the super-
tree. A graph is constructed from the input matrix M and the
two subsets, as proposed by Pe’er et al. (2004). If this graph is
disconnected, the algorithm directly recurses on the con-
nected components; otherwise, we search the graph for a
minimum cut and remove the cut before recursing. If mul-
tiple optimal cuts exist, we choose one randomly. Recursion
stops when the subset of taxa contains only a single taxon. For
a Pseudo-code of this algorithm we refer to Brinkmeyer et al.
(2013).

We now give the details of the BCD algorithm (an example
is given in fig. 8), with reference to Brinkmeyer et al. (2013):
For a subset S � f1; . . . ; ng of taxa and a subset D � f1;
. . . ;mg of characters, G(S, D) is a bipartite graph with vertex
sets S and D, and edges as follows: First, we build a graph such
that an edge {t, c} is present if and only if M½t; c� ¼ 1, for t 2 S
and c 2 D. A character vertex c 2 D is semiuniversal (in S, D)
if M½t; c� 2 f1; ?g holds for all t 2 S. We immediately re-
move all semiuniversal character vertices from the graph
(Pe’er et al. 2004).

The BCD algorithm proceeds as follows: We start with S
 f1; . . . ; ng and D f1; . . . ;mg. We then construct the
graph G(S, D). If this graph is not connected, we recurse on
each connected component S0;D0 of the BCD graph with
jS0j > 1. The sets S0 of taxa computed during the course of
the algorithm form a hierarchy which is transformed into the
desired supertree.

If G(S, D) is connected at some point, the algorithm dis-
connects the graph by means of modifying the input matrix
M. In contrast to the FLIPCUT algorithm, we do not allow edges
to be removed, so all edges in G(S, D) get weight infinity. The
only valid operation to split G(S, D) is deleting a subset of
character nodes from D. For the moment, we assume all
characters c 2 D in G(S, D) to have unit weight w(c):¼ 1.
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The weight of a bipartition of taxon vertices is the minimal
cost of a set of character deletions, such that the two subsets
of taxon vertices lie in separate components of the result-
ing graph. We search for a bipartition of minimal weight.
To efficiently find a minimum bipartition, we fix one
taxon vertex s, and for all other taxa vertices t we search
for a minimum s-t-cut, allowing only character deletions.
Among these cuts, the cut with minimal weight is the
solution to the above problem. To find a minimum s-t-
cut with character deletions, we transform G(S, D) into a
directed network HðS;D0Þ with capacities: Each taxon

vertex t is also a vertex in the network, each character
vertex c is transformed into two vertices c– and cþ plus an
arc (c–, cþ) in the network, and an edge {t, c} in G(S, D) is
transformed to two arcs (t,c–) and (cþ,t) in the network.
Arcs (c–, cþ) have capacity w(c), all other arcs have infinite
capacity. By the generalized min-cut max-flow theorem
(Elias et al. 1956; Ford and Fulkerson 1956), finding a min-
imum cut in G(S, D) is equivalent to computing a max-
imum flow in the network HðS;D0Þ (Ford and Fulkerson
1962). Note that for all taxa s, t, the maximum s-t-flow in
HðS;D0Þ equals the maximum t-s-flow.

FIG. 8. The BCD algorithm: For a subset S of taxa (green) and a subset D of characters (black), G(S, D) is a bipartite graph, where an edge {t, c} is
present if and only if M½t; c� ¼ 1, for t 2 S and c 2 D. A character vertex is semiuniversal if M½t; c� 2 f1; ?g for all t 2 S. For minimum cut
computation, we transform G(S, D) into HðS;D0Þ. Supertree clades have the same colors (red or blue) as their corresponding connected
components.
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Given an input matrix M over f0; 1; ?g for n taxa and
m characters, the BCD algorithm computes a supertree in
O(mn3) time, see Lemma 5 of Brinkmeyer et al. (2013). From
the construction, we infer that each clade in the supertree is
supported by at least one of the source trees: We only ever
remove columns from the matrix; we never modify or add to
the matrix. In particular, none of the clades in the supertree
can be contradicted by all of the source trees. On the other
hand, the reconstructed supertree does not necessarily min-
imize the number of inner nodes among all supertrees that are
consistent with the same matrix columns: BCD supertrees
may contain several clades where a single joint clade would
be sufficient (Bryant 1997; Jansson et al. 2012). Our method
inherited this property from the underlying algorithm of Pe’er
et al. (2004), and shares it with supertree methods that build
on the algorithm by Aho et al. (1981). BCD returns the perfect
phylogeny for a given input matrix if one exists. This is not
guaranteed for the supertree methods that use local search
heuristics (e.g. MRP, MRF, MRL, MRC or SuperFine).

Weighting Strategies
By weighting G(S, D), we can incorporate information about
the “reliability of clades” (characters). Here, we show how
BCD uses branch lengths and bootstrap values:

• Unit weights (UW). All characters in the BCD graph
have weight one. Using unit weights, a minimum cut is
the removal of the smallest set of character vertices that
disconnects the graph.

• Branch lengths (BL). Brinkmeyer et al. (2013) found that
a clade that stems from a long branch is more stable (and,
therefore, more likely to be correct) than a clade with a
short branch. The weight of a character c is set to

wBLðcÞ :¼ lðeÞ
lmax

, where l(e) is the length of the branch e

in the source tree that generated clade/character c, and
lmax the longest branch of all source trees.

• Bootstrap values (BS). If available, we can use bootstrap
values to weight the BCD graph. A bootstrap value tells us
how sure we are about a clade. The weight of a character
c is set to wBSðcÞ :¼ bðvÞ

100 , where b(v) is the bootstrap
value of the node v in the source tree corresponding to c.

• Tree weight. In addition to the weightings above, it is
possible to modify the weights for source trees independ-
ently. For this, we multiply any of the above scores with a
factor individually given for each source tree. This is not
used in our evaluations.

GSCM Preprocessing
Since BCD is a greedy heuristic, restricting the search space in
a sensible way will help to improve its accuracy. One way to
do so, is to use a set of reliable clades, for which it is highly
likely that they are part of the correct supertree. To use reli-
able clades for BCD, we add them to the matrix M, and give
each corresponding character vertex infinite weight.
Therefore, reliable character vertices cannot be deleted during
minimum cut computations; they are only deleted from G(S,
D) when they become semiuniversal, implying that they are
already part of the supertree. Therefore, all taxon vertices t1

. . . tn in G(S, D) that are connected to the same reliable
character vertex have to end up in the same connected com-
ponent of G(S, D), and can be merged into a single taxon
vertex. We then delete all trivial character vertices, each of
which is connected to exactly one taxon vertex. This reduces
the number of vertices in G(S, D) without changing its min-
imum cut, see figure 9.

We estimate the reliable clades by the Greedy Strict
Consensus Merger (GSCM) supertree method. The GSCM
supertree is conservative in the sense that it contains only
clades that do not conflict with any of the source trees. The
Strict Consensus Merger (SCM) generalizes the strict consen-
sus tree problem for two trees to a supertree problem
(Huson, Vawter, et al. 1999; Roshan et al. 2003). It restricts
the two input trees to the subtrees of their common taxa, and
calculates a strict consensus tree of these restricted input
trees. Afterwards, it re-inserts previously removed taxa into
this strict consensus tree. The GSCM algorithm is the gener-
alization of SCM for more than two input trees. It combines
the set of input trees by greedily applying the SCM algorithm
to two of the remaining trees, until only one (super-)tree is
left. The GSCM method is sensitive to the order in which the
input and intermediate trees are merged. Therefore, the scor-
ing for selecting the tree pairs has high influence on the
supertree quality. The unrooted GSCM implementation of
SuperFine uses overlap scoring (Swenson et al. 2012). The
rooted GSCM implementation of BCD applies an improved
scoring function: Namely, the unique clades lost scoring, which
outperformed other known scorings but scales quadratically
instead of linearly with the number of input trees (Fleischauer
and Böcker 2016).

Merging Characters
The most time-consuming part of the BCD algorithm is
searching for minimum cuts of G(S, D). Using the GSCM

FIG. 9. Data reduction of G(S, D) using GSCM clades. Taxon vertices (S) displayed in green, character (D) vertices in black. Character vertices
induced by the GSCM tree are blue.
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tree can strongly reduce running times of this step; here, we
describe another algorithm engineering trick we use to fur-
ther improve running times. To reduce the size of matrix M, it
is common practice to merge identical matrix columns, sum-
ming up their weights. Identical matrix columns occur only
rarely in the input matrix, as this requires input trees with
identical taxon sets. (Recall that our method allows the user
to define an individual weight for each input tree.) But when
searching for minimum cuts in G(S, D), “0” and “?” entries in
M are treated identical, which allows us to merge characters
corresponding to trees with different taxon sets. Hence, we
merge all character vertices in G(S, D) that are adjacent to the
same set of taxon vertices, and sum up their weights. This can
vastly reduce the number of vertices in G(S, D) without
changing the minimum cut.

Software
The BCD command line tool and its source code are
available at https://bio.informatik.uni-jena.de/software/bcd/
(last accessed July 7, 2017).

Data
All data sets are available online at https://bio.informatik.uni-
jena.de/data/ (last accessed July 7, 2017).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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