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Abstract

Growth rates are an important tool in microbiology because they provide high throughput fitness measurements. The
release of GrowthRates, a program that uses the output of plate reader files to automatically calculate growth rates, has
facilitated experimental procedures in many areas. However, many sources of variation within replicate growth rate data
exist and can decrease data reliability. We have developed a new statistical package, CompareGrowthRates (CGR), to
enhance the program GrowthRates and accurately measure variation in growth rate data sets. We define a metric,
Variability-score (V-score), that can help determine if variation within a data set might result in false interpretations.
CGR also uses the bootstrap method to determine the fraction of bootstrap replicates in which a strain will grow the
fastest. We illustrate the usage of CGR with growth rate data sets similar to those in Mira, Meza, et al. (Adaptive
landscapes of resistance genes change as antibiotic concentrations change. Mol Biol Evol. 32(10): 2707–2715). These
statistical methods are compatible with the analytic methods described in Growth Rates Made Easy and can be used with
any set of growth rate output from GrowthRates.
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Introduction
Growth rates have become increasingly useful in microbiol-
ogy and are often used to quantify phenotypic properties in
microorganisms (Mira, Meza, et al. 2015). Growth rates are
used in a variety of areas; including proteomics (Klumpp and
Hwa 2014), population dynamics (Santos et al. 2014), geno-
mic mutation rates (Raynes and Sniegowski 2014), and math-
ematical modeling (Mira, Crona, et al. 2015). Studies in
experimental evolution use growth rates as a measurement
of fitness (Mira, Meza, et al. 2015) and measure the responses
of microorganisms to various environmental factors (e.g.,
antibiotics) (Ross and McMeekin 1994).

Growth rates are calculated using the natural log of the
optical density (O.D.) of a cell culture over time (Hall et al.
2014). Automatic plate readers that can measure the O.D. of
up to 384 cultures simultaneously have made the collection
of growth rate data very efficient. A software package,
GrowthRates has allowed rapid high throughput analyses of
growth rate data (Hall et al. 2014). GrowthRates has been
used in diverse scientific areas, for example, to create antibi-
otic cycling strategies to combat antibiotic resistance (Mira,
Crona, et al. 2015), to design programs for age phenotyping in
yeast (Jung et al. 2015) and to develop smart food packaging
that helps prevent spoilage (Cavallo et al. 2014) among
others.

The power of modern growth rate experiments comes
from the ability to have many replicate cultures in a plate
reader, and the ability to measure growth under many con-
ditions simultaneously. The conditions may be varied by the

genotype of the organism or by environmental conditions
(nutrient source, antibiotic, inhibitor concentrations, etc.)
or both. The growth rates can then be used to assess fitness
differences. However, a challenge presented by the use of a
plate reader is that while their sensitivity makes it possible to
identify both large and subtle differences, variance in replicate
growth rates can make it difficult to determine the confi-
dence of those comparisons. When growth rates are too sim-
ilar it can be difficult to determine the fittest genotype.

In this study, we have focused on strains that have been
cultured in sublethal concentrations of antibiotics because
the resulting inhibition of growth creates a situation where
variance is a source of concern. We have developed statistical
methods for handling this variation and have automated the
use of those statistics with a series of computer programs.
Here, we present a statistical package for GrowthRates,
CompareGrowthRates or CGR, that can measure the amount
of variation within replicates. CGR is a solution to the problem
of measuring variation and the effect of variation on reliability.

Methods and Results
The purpose of any statistical analysis is to evaluate the con-
fidence we have in the data obtained and in the conclusions
drawn from experiments. Confidence in the reliability of data
is measured by the correlation coefficient, R, of the best fit line
to the natural log of the optical density (ln(O.D.)) over time.
Growth rates are calculated by taking the slope of that line.
Confidence in the conclusions of an experiment depends
upon the variability in the growth rates among members of
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a set of replicate cultures, which we will refer to hereafter as a
set. Variability is measured by the V-score for a set, where the
V-score is defined to be the ratio of the standard error of the
mean to the mean growth rate for that set, V ¼ SE

mean: : The
lower the V-score, the less variable were the growth rates
within the given set.

GrowthRates reports the growth rate and the correlation
coefficient (R) for each culture. R can be interpreted as a
measure of the reliability of the growth rate. For each set of
replicate cultures, CGR reports the mean growth rate, the
mean R and the V-score.

CGR analysis of 45 experiments (supplementary data 2014,
Supplementary Material online) where the culture conditions
were various concentrations of antibiotics showed that when
the mean growth rate was very low, the maximum O.D. and
the mean R were also quite low (R< 0.9). In general, those
low and unreliable growth rates were also highly variable,
resulting in high V-scores. We concluded that the growth
rates were unreliable in wells in which growth was very
slow and maximum O.D.s were very low (supplementary ta
ble 1, Supplementary Material online).

Reliability of a Single Growth Rate Estimate
The GrowthRates program estimates growth rates by identi-
fying the highest slope among all the slopes of five successive
time points (Hall et al. 2014). For that set of points
GrowthRates then, if possible, extends the number of points
while the slope of the extended line remains above 95% of the
slope of the initial highest slope. The reported growth rate is
based on the slope of that extended line. Figure 1, based on
data collected in 2017, illustrates when there is very little
growth over those five points the scatter in the readings
can result in low correlation coefficients.

Figure 1 shows many instances where O.D. did not change
over several successive readings. That pattern is typical when

the sampling interval is too frequent relative to the growth
rate. The solid line shows the regression line through the
points 140 through 220 min; the line that has the highest
slope among all sequential 5-point lines at 20-min intervals.
The slope of that line (growth rate) is 0.00177 min�1, and the
correlation coefficient R¼ 0.866.

Squares show the subset of those points at 60-min inter-
vals, and the dashed line shows the regression line through
those points 300 through 540 min; the line that had the high-
est slope among all sequential 60-min points. The slope of
that line (growth rate) is 0.00068 min�1, and the correlation
coefficient R¼ 0.971.

The CGR program package includes a program,
EditReadingIntervals, that facilitates easy editing of an input
file for GrowthRates so that the input file only includes points
at greater intervals than in the original input file.

To test the hypothesis that reading too frequently can
decrease the reliability of growth rate estimates, we edited
the GrowthRates input files of several experiments to delete
readings so that the remaining readings were at 60-min inter-
vals. We then compared the mean growth rates, mean R, and
V-scores of readings at 20-min intervals with those of readings
at 60-min intervals. Table 1 shows the result of modifying the
reading intervals for one of those 2014 experiments in which
the treatment was cefotetan (CTT) at 0.063 lg/ml.

In each set, a reading interval of 60 min improved the
correlation coefficient R by an average of 0.053 across all
sets. In all but one set, a reading interval of 60 min improved
the V-score, and the average improvement was 2-fold. We
conclude that reading too frequently relative to the growth
rate reduces the reliability of the growth rate estimates and
increases the variability.

We applied CGR to the 45 experiments performed in 2014,
one of which is referenced in table 1. One experiment consists
of growth rates measured from 16 variant genotypes grown
with and without an antibiotic treatment. For each genotype
there were 12 experimental replicate growth rate measure-
ments with one antibiotic at one concentration, and 12 con-
trol replicate growth rate measurements, without treatment.
The 16 genotypes we used were TEM b-lactamase variants
expressed in E. coli K12.

We performed 45 separate experiments in different anti-
biotic treatments. This design requires that we have confi-
dence in the reliability of the mean growth rates of all 16
experimental and control sets in each experiment. We used a
reading interval of 60 min and a minimum mean correlation
coefficient of 0.95 for each set, as a standard for growth rate
reliability. Fourteen of the 45 experiments were acceptable,
meaning that none of the 16 genotypes in any of those 14
experiments had unreliable growth rates either in the pres-
ence or absence of antibiotics. Repetitions in 2017 (supple
mentary data 2017, Supplementary Material online) brought
the number of acceptable experiments up to 29.

Measuring Variation within Growth Rate Replicates
(V-Score)
The first source of variation we consider is variation among
replicates within a single set. We measure that variation using

FIG. 1. Illustration of effects of O.D. readings at 20 versus 60-min
intervals. This example is from a 2017 experiment in which genotype
1110 grew in the presence of 0.1 mg/ml ceftriaxone. See supplemen
tary data 2017, Supplementary Material online, sheet CRO 0.1 rr1, cell
L9 for the 60-min interval growth rate. Filled circles: Readings at
20-min intervals. Open squares: Subset of readings at 60-min inter-
vals. Solid line: Line of best fit to the five consecutive 20-min interval
points that give the highest growth rate. Growth rate-
¼ 0.00177 min�1, and R¼ 0.866. Dashed line: Line of best fit to the
five consecutive 60-min interval points that give the highest growth
rate. Growth rate¼ 0.00068 min�1, and R¼ 0.971.
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a Variability-score, or V-score. The V-score is defined as V ¼
SE

mean where SE is the standard error of the mean. For example,
if the mean growth rate is 0.02 per minute, then a SE of 0.0001
(V¼ 0.005) is considered small and indicates that there is
little variation among replicates. However, if the mean growth
rate is 0.0005 per minute, then a SE of 0.0001 (V¼ 0.2) indi-
cates that there is high variation among replicates. The SE
alone is insufficient to give a clear picture of the extent of the
variation. The lower V-score clearly implies less variation.
Thus, the lower the V-score, the tighter the fit around the
mean growth rate of each data set.

After determining the accepted experiments based on a
minimum correlation coefficient of 0.95, we wanted to deter-
mine a threshold of variation within a group in which we can
use to accept or reject an experiment. We plotted the fre-
quency of control group V-scores from the 2014 experiments
and determined the best fit distribution (fig. 2). Based on the
Kolmogorov–Smirnov test, a statistical test that measures the
fit of a data set to a distribution, the Weibull distribution was
the most significant fit to our data. (It is important to note
that one would need to calculate her own threshold of var-
iation based on her data). Using the Weibull distribution, we

Table 1. Effects of Changing the Reading Interval from 20 to 60 min.

20-Min Reading Interval 60-Min Reading Interval

Set ID Mean Growth Rate (min�1) V-score Mean R Mean Growth Rate (min�1) V-Score Mean R

0000 0.00673 0.0725 0.9768 0.00497 0.0250 0.9964
0000C 0.00931 0.3470 0.9566 0.00490 0.0458 0.9954
1000 0.01275 0.3392 0.9234 0.00505 0.0584 0.9960
1000C 0.01325 0.4109 0.9034 0.00603 0.1912 0.9795
0100 0.01023 0.4195 0.9327 0.00659 0.2496 0.9899
0100C 0.01933 0.3455 0.9197 0.00921 0.2582 0.9730
0010 0.01086 0.3918 0.9546 0.00693 0.2341 0.9900
0010C 0.02202 0.3163 0.8928 0.00745 0.2546 0.9707
0001 0.00378 0.0733 0.9888 0.00358 0.0547 0.9961
0001C 0.00336 0.0687 0.9922 0.00336 0.0493 0.9961
1100 0.00610 0.0853 0.9574 0.00487 0.0401 0.9975
1100C 0.01203 0.3644 0.9105 0.00782 0.2720 0.9757
1010 0.01500 0.2628 0.8896 0.00816 0.2207 0.9668
1010C 0.03121 0.2564 0.8877 0.01068 0.2216 0.9569
1001 0.00566 0.0537 0.9891 0.00470 0.0319 0.9959
1001C 0.00573 0.0928 0.9350 0.00453 0.0504 0.9969
0110 0.00433 0.0790 0.9910 0.00400 0.0444 0.9937
0110C 0.00458 0.0740 0.9878 0.00387 0.0642 0.9947
0101 0.00592 0.0744 0.9793 0.00477 0.0410 0.9973
0101C 0.00469 0.0621 0.9872 0.00437 0.0461 0.9977
0011 0.02788 0.2731 0.9082 0.01040 0.2074 0.9461
0011C 0.01552 0.3288 0.8756 0.00534 0.0456 0.9980
1110 0.02969 0.2085 0.8464 0.00944 0.2541 0.9802
1110C 0.02198 0.2901 0.8942 0.00826 0.2469 0.9821
1101 0.02528 0.2519 0.8675 0.01036 0.2266 0.9731
1101C 0.02032 0.3021 0.8467 0.00822 0.2234 0.9666
0111 0.02463 0.2781 0.8801 0.00779 0.2372 0.9705
0111C 0.00988 0.4363 0.9618 0.00584 0.1963 0.9802
1011 0.01212 0.2989 0.8830 0.00637 0.1738 0.9794
1011C 0.01014 0.3066 0.9103 0.00755 0.2471 0.9709
1111 0.00490 0.0688 0.9828 0.00383 0.0452 0.9966
1111C 0.00505 0.0465 0.9798 0.00383 0.0430 0.9973

NOTE.—Sets ending in “C” are controls. Those not ending in “C” include treatment with the antibiotic cefotetan (CTT) at a concentration of 0.063 mg/ml. Data are from CTT
0.063 in the supplementary data 2014, Supplementary Material online.

FIG. 2. Distribution of mean V-scores of TEM-85 2014 data (supple
mentary data 2014, Supplementary Material online) that has been
accepted based on the correlation coefficient thresholds (R> 0.95).
Data were fit to three distributions; Exponential distribution in a
dashed line (P value 0.007), Weibull distribution in a solid line
(P value 9.1 � 10�5), and normal distribution in a dotted line
(P value 0.0253).
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calculated an upper 95% confidence limit (0.053) and deter-
mined that any experiments with V-scores above 0.053
should be repeated because of high variation within groups.

Based on the V-score threshold from the Weibull distribu-
tion, two of the 14 acceptable experiments needed to be
repeated (table 2).

Although the 2014 experiments in table 2 were acceptable
by the criterion of having all correlation coefficients� 0.95,
they were repeated because the mean V-scores exceeded the
threshold of 0.053. The experiments that were repeated in
2017 had V-scores below the 95% confidence limit threshold.

Based on our 29 reliable experiments, we found that for
control data (no antibiotic present) the mean V-score was
0.0189 60.00099 with a range of 0.0121 to 0.0321. Since the
control conditions involve no antibiotic, we judge that this
level of variation reflects random variation in day-to-day con-
ditions and variation in growth rates for each genotype.

The mean V-score for experimental data (antibiotic pre-
sent) was 0.0293 60.00198 with a range of 0.0124–0.0502.
The presence of an antibiotic (or other growth inhibitor)
significantly increases variability, and hence increases
V-scores.

The experiment shown in table 1 was among those
rejected because of correlation coefficients<0.95. In that ex-
periment the mean V-score (including control sets and ex-
perimental sets) was 0.1437. Table 1 shows that many of the
experimental sets had V-scores between 0.2 and 0.25. Many of
the other rejected experiments had mean V-scores> 0.1 as
well, more than twice of what was seen for the accepted
experiments. This is consistent with the earlier observation
that low correlation coefficients are associated with high
V-scores.

Of the thirty-one 2014 experiments that were rejected
because of correlation coefficients< 0.95, 19 would also
have been rejected on the basis of their V-scores.

Bootstrapping: Confidence Levels When Comparing
Growth Rates
Variation within a set of growth rate replicates also contrib-
utes to uncertainty when sets of growth rates are compared,
for example, when trying to determine the fittest strain or the
optimum condition. When comparing two sets the objective
is to determine which one grows faster. If the growth rates of
all the members of set 1 are greater than the growth rates of
all the members of set 2 (there is no overlap in growth rates)
then we can assume that the cultures in set 1 will always grow
faster than the cultures in set 2. But, if the distributions of
growth rates overlap, we are less confident, and the more the

distributions overlap the less confident we are. If we were to
do another experiment, how likely is it that those cultures in
set 1 will be favored? We could repeat the experiment many
times and count the number of times that the mean growth
rate of set 1 is greater than that of set 2, but that is time
consuming and expensive. Alternatively, we can accomplish
the same objective statistically by bootstrap sampling.

Let’s consider an example in which the two “conditions”
are two different strains of the same species growing in iden-
tical media. Suppose that each set has ten replicate cultures.
We randomly sample, with replacement, ten growth rates
from set 1 to make up a new “bootstrap sample” (Efron
1979). We do the same for set 2. We do this thousands of
times keeping track of how many times set 1 grows faster
than set 2 and vice versa. Let’s assume that set 1 grows faster
in 90% of the bootstrap samples and set 2 grows faster in 10%
of the samples. We can now say with 90% confidence that set
1 cultures grow faster than set 2 cultures. If set 1 grows faster
in only 50.01% of the samples then we might still say that set 1
grows faster than set 2, but our confidence is much lower (i.e.,
only 50.01% confident). It would be more accurate to say that
the growth rates of the two strains are indistinguishable. In
practice, we always use an odd number of bootstrap samples
so that there can never be an exact tie between the two sets.
Thus, we can determine which strain grows faster and the
confidence that supports that statement.

This same approach can be extended to compare more
than two sets. Using the bootstrap approach we can do all
possible pairwise comparisons in each bootstrap replicate.
We define a group as a group of sets that have some property
in common. Often members of a group are to be compared
in order to determine which set grows fastest. For instance,
among a group of ten sets we might find that set 4 grows
fastest in 45% of the bootstrap replicates, set 7 grows fastest in
35% of the replicates, set 2 grows fastest in 20% of the rep-
licates, and none of the remaining sets ever grow fastest.

Using the “Comparison Score” to Determine the Number of

Bootstrap Replicates to Use
Because of the stochastic element in bootstrap sampling,
different bootstrap runs on the same data are not identical.
CGR does pairwise comparisons of all of the bootstrap runs to
assess their reproducibility. Each bootstrap run determines
the fraction of bootstrap replicates in which each set grew
fastest and saves that information in table 1 of a report file for
that bootstrap run. The comparison score is the sum of the
absolute value of the differences of the values in those tables
of the runs being compared. For instance, if a set grew fastest

Table 2. V-Scores of Acceptable Experiments that Were Repeated because of High V-Scores.

2014 2017
Repeat 1

2017
Repeat 2

Treatment (mg/ml) Control Experimental Control Experimental Control Experimental

CTT 0.125 0.0739 0.1433 0.0195 0.0296 0.0173 0.0249
CXM 3 0.1187 0.0818 0.0209 0.0167 0.0159 0.0166

NOTE.—CTT, cefotetan; CXM, cefuroxime.

Mira et al. . doi:10.1093/molbev/msx255 MBE

3306

Deleted Text:  to 
Deleted Text: nineteen 
Deleted Text: l
Deleted Text: w
Deleted Text: c
Deleted Text: g
Deleted Text: r
Deleted Text: e.g.
Deleted Text: '
Deleted Text: 10 
Deleted Text: 10 
Deleted Text: 10 
Deleted Text: c
Deleted Text: s
Deleted Text: d
Deleted Text: n
Deleted Text: b
Deleted Text: r
Deleted Text: u


in 0.9 of the replicates in one run, but grew fastest in only 0.83
of the replicates in the other run the absolute values of the
differences is 0.07. The comparison score for that pair of runs
is the sum of those differences over all sets. If the results of the
different runs were identical the differences would be zero;
because the values in each table sum to 1.0 the upper limit of
the score is 2.0. Thus, the lower the comparison score the
more similar are the two bootstrap runs being compared.

Because of stochastic variation, the more bootstrap repli-
cates in a run, the more similar are the results of the runs.

Figure 3 shows that as the number of bootstrap replicates per
run increases the comparison score decreases (i.e., the runs
become more similar), but increasing the number of boot-
strap replicates beyond 10,001 results in very little improve-
ment in comparison scores.

The default number of bootstrap replicates per bootstrap
run is 10,001, but the user can increase or decrease that
number on the command line. By default CGR includes ten
independent bootstrap runs, but that number may be
changed by the user as well.

Application of CGR to an Experimental Data Set
In our experimental design each experiment consists of two
groups; an experimental group grown in the presence of an
antibiotic and a control group grown in the absence of the
antibiotic. For the 29 acceptable experiments among all
experiments from 2014 to 2017, the control group V-scores
ranged from 0.0121 to 0.031, with a mean of 0.0181 60.00087
and a median of 0.0159. For the experimental group, the V-
scores ranged from 0.0124 to 0.0502 with a mean of
0.02936 60.00206 and a median of 0.0302.

To get a better understanding of how variance can affect
our conclusions, we used the statistical method of bootstrap-
ping as described above. Table 1 (60-min reading interval)
shows that the genotypes 0101 and 1101 grow faster in the
presence of the antibiotic than in its absence (genotypes
ending in “C”). So, how confident are we that the antibiotic
actually increases the growth rate in those genotypes? The
results of ten independent bootstrap runs with 10,001 boot-
strap samples per run, give us mixed levels of confidence. For
genotype 0101, we are 92% confident that the antibiotic
increases the growth rate relative to the control; for geno-
type1101 we are only 77% confident. Intuitively we expect to
have greater confidence when the difference in growth rates is
large, and less confidence when the difference is small.
Genotype 0101 grows imperceptibly faster (4� 10�4 min�1)
than its control, yet we have 92% confidence that the faster
growth is real. Genotype 1101 grows substantially faster (2.14
� 10�3 min�1) than its control, yet we only have 77% con-
fidence that the faster growth is real. This illustrates the value
of bootstrapping for assessing differences in growth rates.

We are also interested in the question of which experi-
mental genotypes grew fastest. That information, the faster
growing genotype, could be used to predict the outcomes of
competition experiments among all the genotypes in the
presence and absence of an antibiotic. For the experiment
in table 1, in the presence of the antibiotic, genotype 0011
grows fastest with a mean growth rate of 0.0104 60.00216
per minute. However, when bootstrapping was used, geno-
type 0011 grew fastest only 33% of the time, whereas geno-
type 1101 grew fastest 34% of the time and genotype 1110
grew fastest 20% of the time.

Application of CGR to a Set of Experiments Involving
Adaptive Landscapes
An adaptive landscape (fig. 4) is a visualization of the possible
evolutionary trajectories that resistance genes can take in the
presence of an antibiotic (Weinreich et al. 2006). It can also

FIG. 3. Comparison scores as the number of bootstrap replicates per
run increase. Ten runs were done at each number of bootstrap rep-
licates. Experimental data are depicted with filled circles and control
data are depicted by squares. Bootstrap replicates above 10,001 shows
little improvement in comparison score.

FIG. 4. An adaptive landscape estimated from the growth rate means
of 16 variant genotypes within TEM-85. The adaptive landscape was
created using the treatment Cefotetan at the sublethal concentration
of 0.063mg/ml. Arrows point in the direction of the faster growing
genotype, solid arrows represent significant differences between
growth rates (using one-way ANOVA P value< 0.05), dashed arrows
represent insignificant differences between growth rates (using one-
way ANOVA P value> 0.05). The genotype that grew the fastest of all
16 genotypes is shown in bold font.
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provide information about which trajectories are more likely
to occur. Our adaptive landscapes consist of 16 nodes. Each
node represents a different genotype, in comparison to the
TEM allele TEM-1, and is depicted using binary allele code (0,
1) where 0 signifies the absence of an amino acid substitution
and 1 signifies the presence of an amino acid substitution at a
particular position. Genotype 0000 is TEM-1, genotype 1111 is
TEM-85 (Baraniak et al. 2005) and see “b-Lactamase
Classification and Amino Acid Sequences for TEM, SHV,
and OXA Extended-Spectrum and Inhibitor Resistant
Enzymes” http://www.lahey.org/Studies/? D¼http://www.
lahey.org/studies/webt.htm&C¼404. The other genotypes
are intermediates along the evolutionary path from TEM-1

to TEM-85. The edges are represented by arrows and the
arrow direction points toward the node, or genotype, with
the higher mean growth rate. Solid arrows represent signifi-
cant differences between the two mean growth rates they
connect, and dashed arrows represent nonsignificant differ-
ences using one-way ANOVA.

An adaptive landscape (fig. 4) can be estimated by com-
paring the mean growth rates of adjacent genotypes (Mira,
Meza, et al. 2015). A pair of genotypes is adjacent if, and only if
one can be transformed into the other by changing a single
digit in the genotype. For example, 0000 and 0100 are adja-
cent genotypes, as are 1100 and 1101. However, 1001 and
1010 are not adjacent nor are 0101 and 1111.

An alternative method of estimating adaptive landscapes
uses the statistical method of bootstrapping. After complet-
ing 10,001 replicates for each of ten runs, the results were
combined to make a consensus bootstrap landscape (fig. 5).

We then used three metrics to assess the reproducibility of
adaptive landscapes: 1) similarity of arrow direction in land-
scapes based on mean growth rates, 2) similarity of arrow
direction in bootstrap consensus landscapes, and 3) similarity
of rank order of mean growth rates. For rank order, we ranked
each of the 16 genotypes from each experiment 1–16 (1 as
the fastest growing genotype, 16 as the slowest growing ge-
notype). We then took the absolute difference in rank order
in duplicate experiments divided by the number of genotypes
(16) and calculated the percent similarity.

We considered four antibiotic treatments in which there
were three acceptable replicate experiments (table 3). We
were interested in the relationship, if any, between the
mean V-scores of the experiments and reproducibility.
Table 3 shows for each experiment the mean V-score for
that experiment. Table 4 shows the reproducibility in pairwise
comparisons of repeated experiments based on the three
criteria of reproducibility described above.

For all four treatments, experiment 1 was rejected because
of one or more low correlation coefficients, and experiments
2 and 3 were repeated experiments in which the correlation
coefficients were improved and the experiment was accepted.
Experiments were consistently more similar when both
experiments were accepted than when one of the two experi-
ments was rejected (table 4). Rejecting experiments with
unreliable data improves reproducibility.

Table 3. Mean V-Scores of Accepted Experiments.

Treatment
(mg/ml)

2014 2017
Repeat 1

2017
Repeat 2

CAZ 0.125 0.0260 6 0.00113 0.0141 6 0.00057 0.0172 6 0.00236
CRO 0.5 0.0258 6 0.00152 0.0169 6 0.00189 0.0183 6 0.00164
CRO 0.25 0.0308 6 0.00236 0.0158 6 0.00084 0.0148 6 0.00090
ZOX 0.0156 0.0319 6 0.00195 0.0147 6 0.00076 0.0145 6 0.00067

NOTE.—CAZ, ceftazidime; CRO, ceftriaxone; ZOX, ceftizoxime.

Table 4. Reproducibility of Adaptive Landscapes for the Accepted Experiments Shown in Table 3.

Arrow Direction
Mean Growth Rate

Arrow Direction
Bootstrap Consensus

Rank Order

Treatment
(mg/ml)

Exp1
versus
Exp2 (%)

Exp1
versus
Exp3 (%)

Exp2
versus
Exp3 (%)

Exp1
versus

Exp2 (%)

Exp1
versus
Exp3 (%)

Exp2
versus

Exp3 (%)

Exp1
versus
Exp2 (%)

Exp1
versus
Exp3 (%)

Exp2
versus
Exp3 (%)

CAZ 0.125 53.1 40.6 56.2 53.1 37.5 56.3 64.84 67.19 71.09
CRO 0.05 37.5 28.1 71.9 37.5 31.3 75 56.25 53.91 82.81
CRO 0.025 43.8 34.4 68.8 50 40.1 78.1 60.94 55.47 89.06
ZOX 0.0156 53.1 59.4 93.8 56.3 56.3 87.5 75.78 75.78 94.53

NOTE.—CAZ, ceftazidime; CRO, ceftriaxone; ZOX, ceftizoxime. Exp1¼ 2014, Exp2¼ 2017 repeat one, Exp3¼ 2017 repeat two.

FIG. 5. Consensus bootstrap adaptive landscape for the treatment
Cefotetan at 0.063 mg/ml. Solid arrows signify a probability> 0.90,
dashed arrows represent probability< 0.90. The genotype that
grew the fastest of all 16 genotypes in every bootstrap run is shown
in bold font.
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Conclusions
Growth rates may vary for several reasons, including human
error (such as pipetting error), random biological variation
due to environmental or drug responses, contamination of
controls caused by splashing or shaking of the plate and
much more. A major function of CGR is to assist in judging
what constitutes excessive variation in a data set.

We have developed a statistical package for the
GrowthRates program called CompareGrowthRates (CGR),
that allows users to evaluate the reliability of growth rates
and to measure the amount of variation within their growth
rate data sets. Even on a data set consisting of 384 individual
growth rates, CGR requires <3 min to complete its analysis
on a mid-2011 iMac with an Intel i7 processor and 16 GB of
RAM.

The program CGR provides a broader view of the popu-
lation dynamics of a set of coexisting and competing geno-
types than does just examination of the mean growth rates of
the individual sets. That broader view is likely to provide more
realistic understanding of experimental outcomes.

CGR is freely available as a package for Mac OS X, Linux,
and Windows at https://sourceforge.net/projects/growth
rates/, last accessed September 2017, the same site that pro-
vides the GrowthRates program itself. The package includes
the CGR executable for all three platforms, a detailed User
Guide, the python source code, and an example folder.

The correlation coefficient is an effective way to measure
the reliability of mean growth rates of a set. We used a min-
imum mean correlation coefficient of 0.95 to consider the
mean growth rate of a set of replicate cultures to be reliable.
Other investigators may well use different minimum correla-
tion coefficients. Our experimental design required us to re-
ject an experiment if any of the sets of replicates fell below
that minimum of R< 0.95. That will certainly not always be
the case. Many designs will permit rejection and replication of
just those sets that are unreliable.

The V-score metric is an effective way to measure the
amount of variation within a set of replicate growth rate
data points. We find that even when the data are reliable,
high mean V-scores reduce the reproducibility of experiments
(table 4). High V-scores are often associated with low corre-
lation coefficients, but that is not always the case. Excessive
variation can also arise from other unknown factors. The
V-score metric is a descriptive statistic, but it can also be
used as a criterion for rejecting and repeating experiments
that are acceptable on the basis of correlation coefficients.

In the laboratory, and in the real world, there is no way to
completely account for random biological variation. By read-
ing O.D.s at intervals appropriate to the slowest growth rates,
we were able to increase correlation coefficients of

slow-growing sets. By using CGR, and rejecting experiments
with unreliable data or excessive variation, we were able to
lower the variability in our results and as a consequence,
increase the reliability of our interpretations. By using a boot-
strap statistic, it becomes possible to compute the robustness
of our interpretations of data.

We recommend that users of the GrowthRates program
use this statistical package to assess the quality of their data
and to assist in their interpretations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgment
This work was supported by the National Institutes of Health
(01-R41-AI122740_01A1).

References
Baraniak A, Fiett J, Mrowka A, Walory J, Hryniewicz W, Gniadkowski M.

2005. Evolution of TEM-type extended-spectrum beta-lactamases in
clinical Enterobacteriaceae strains in Poland. Antimicrob Agents
Chemother. 49(5): 1872–1880.

Cavallo JA, Strumia MC, Gomez CG. 2014. Preparation of a milk spoilage
indicator adsorbed to a modified polypropylene film as an attempt
to build a smart packaging. J Food Eng. 136: 48–55.

Efron B. 1979. Bootstrap methods: another look at the jackknife. Inst
Math Stat. 7(1): 1–26.

Hall BG, Acar H, Nandipati A, Barlow M. 2014. Growth rates made easy.
Mol Biol Evol. 31(1): 232–238.

Jung PP, Christian N, Kay DP, Skupin A, Linster CL. 2015. Protocols and
programs for high-throughput growth and aging phenotyping in
yeast. PLoS One 10(3): e0119807.

Klumpp S, Hwa T. 2014. Bacterial growth: global effects on gene expres-
sion, growth feedback and proteome partition. Curr Opin Biotechnol.
28: 96–102.

Mira PM, Crona K, Greene D, Meza JC, Sturmfels B, Barlow M. 2015.
Rational design of antibiotic treatment plans: a treatment strategy
for managing evolution and reversing resistance. PLoS One 10(5):
e0122283.

Mira PM, Meza JC, Nandipati A, Barlow M. 2015. Adaptive landscapes of
resistance genes change as antibiotic concentrations change. Mol
Biol Evol. 32(10): 2707–2715.

Raynes Y, Sniegowski PD. 2014. Experimental evolution and the dynam-
ics of genomic mutation rate modifiers. Heredity (Edinb) 113(5):
375–380.

Ross T, McMeekin TA. 1994. Predictive microbiology. Int J Food
Microbiol. 23(3–4): 241–264.

Santos SB, Carvalho C, Azeredo J, Ferreira EC. 2014. Population dynamics
of a Salmonella lytic phage and its host: implications of the host
bacterial growth rate in modelling. PLoS One 9(7): e102507.

Weinreich DM, Delaney NF, Depristo MA, Hartl DL. 2006. Darwinian
evolution can follow only very few mutational paths to fitter pro-
teins. Science 312(5770): 111–114.

Statistical Package for Growth Rates Made Easy . doi:10.1093/molbev/msx255 MBE

3309

Deleted Text: less than 
Deleted Text: utes
Deleted Text: -
https://sourceforge.net/projects/growthrates/
https://sourceforge.net/projects/growthrates/
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx255#supplementary-data

	msx255-TF1
	msx255-TF2
	msx255-TF3
	msx255-TF4

