Table 13.
iCDf | Ph-CNN | LSVM | ||||
---|---|---|---|---|---|---|
p | MCC | min CI | max CI | MCC | min CI | max CI |
62 | 0.704 | 0.655 | 0.753 | 0.534 | 0.484 | 0.583 |
124 | 0.702 | 0.642 | 0.760 | 0.414 | 0.346 | 0.482 |
186 | 0.680 | 0.614 | 0.738 | 0.662 | 0.605 | 0.718 |
247 | 0.681 | 0.614 | 0.739 | 0.561 | 0.507 | 0.621 |
MLPNN | RF | |||||
p | MCC | min CI | max CI | MCC | min CI | max CI |
62 | 0.679 | 0.622 | 0.739 | 0.787 | 0.746 | 0.831 |
124 | 0.690 | 0.634 | 0.743 | 0.811 | 0.766 | 0.854 |
186 | 0.685 | 0.630 | 0.742 | 0.791 | 0.741 | 0.836 |
247 | 0.708 | 0.652 | 0.764 | 0.775 | 0.730 | 0.820 |
The performance measure is MCC, with 95% studentized bootstrap confidence intervals (min CI, max CI). Models are computed for p={25%,50%,75% and 100%} of total number of features for each task. Comparing algorithms are linear Support Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)