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Artificial intelligence (AI) is a discipline that over the past 
40 years provided important contributions to computer sci-
ence and to many of its application fields.1-3 Although AI 
as a field has not completely fulfilled the expectations 
raised in the 1970s and 1980s, its outputs in knowledge 
representation, modeling, automated reasoning, planning, 
and learning are noteworthy. Recently, a great emphasis 
has been put to the AI branch of machine learning, which 
develops algorithms able to learn patterns and decision 
rules from data.4,5 Some of these algorithms are fully 
attributable to the field, such as neural networks, deep 
learning, classification and association rules, support vec-
tor machines, and the text mining pipelines; others, such as 
decision trees, naïve Bayes, logistic regression, and ran-
dom forests, are taken from the related fields of statistics 
and probability theory. These methods are often embedded 
into analytics pipelines that allow extracting knowledge 
from data, in terms of understandable models and action-
able decision-support advices. The activity of engineer-
ing such pipelines is often referred to as data mining.6,7 
Data mining strategies can be also used to provide new 

predictive models that, starting from already available risk 
prediction calculators, may be fused with the data avail-
able at a single clinical site to effectively support disease 
management and patient care.8

The MOSAIC (Models and simulation techniques for dis-
covering diabetes influence factors) project, funded by the 
European Union in the years 2012 to 2016, has involved the 
application of modern data mining strategies to gain better 
insights on the T2DM management of a specific clinical cen-
ter based on its EHR data. We applied a data mining pipeline 
on the data of nearly 1,000 T2DM patients, collected by the 
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Abstract
One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to 
learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, 
which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC 
project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) 
complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center 
profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing 
data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic 
Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time 
scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered 
variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and 
smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different 
variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical 
practice.
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IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico, 
which means a research hospital), Istituto Clinico Scientifico 
Maugeri (ICSM), Hospital of Pavia, Italy for more than 10 
years to derive hospital-based T2DM complications risk pre-
diction models.

Methods

Following the guidelines proposed for data mining and pre-
dictive modeling for T2DM9 the analysis pipeline has been 
made up of four sequential steps (Figure 1):

1. Center profiling. It is aimed at assessing the hospital 
characteristics in terms of population characteristics 
and care patterns.

2. Predictive model(s) targeting. On the basis of both 
center profiling and literature review it is possible to 
target different modeling strategies to the specific 
data set.

3. Predictive model(s) construction. Once the target 
of the modeling has been selected, it is necessary to 
define a strategy for preprocessing problems (such 
as missing data and class unbalance issues).

4. Predictive model(s) validation. The validation strat-
egy to assess the performance of the proposed 
method.

Center Profiling

The center profiling step is aimed at assessing the hospital 
characteristics in terms of population (eg, number of patients 
with complications; time to diagnosis of the complications) 
and of patterns of care (eg, centers that are used to deal with 
more complex cases, centers performing an initial intensive 
diagnostic program to discover complication early after the 
first visit). This analysis was useful to identify the selection 
bias and to define the prediction problems more amenable to 
ML modeling. Variables to be used as features were defined 
thanks to this initial analysis. For example, a consistent 
amount of patients treated by the hospital were already 

diagnosed with cardiovascular complications, ruling them 
out of our study.

In our application, considered variables include demo-
graphic data (age, gender, time to diagnosis), clinical data 
from the EHR (BMI, Hba1c, lipid profile, smoking habit) 
and administrative data (antihypertensive therapy) of a 
population of 943 T2DM patients in charge of the ICSM 
hospital. These data were enriched with the administrative 
data available in local health care agency, and stored into 
a specialized data warehouse called the i2b2 MOSAIC 
Data Warehouse.10 As clinical data were available only 
after the first visit at the hospital, patients who had already 
developed complications at that time were excluded from 
the analysis.

Predictive Models Training

On the basis both of center profiling and literature review, 
it was possible to target different modeling strategies to 
assess the risk of developing complications. The analysis 
focused on deriving predictive models for microvascular 
complications in the population: nephropathy, neuropathy, 
and retinopathy. The reasons for this choice are that, first, 
in the studied population, microvascular complications 
account for a larger number of cases developed after the 
first visit (20.1% and 79.9% before and after the first visit 
respectively), as compared to macrovascular complications 
(39.4% and 60.6% before and after the first visit respec-
tively). Second, the validated “Progetto Cuore”11 score for 
cardiovascular risk was already in use in the clinical prac-
tice at ICSM.

In literature, predictive models of the microvascular 
complications are reported by of the United Kingdom 
Prospective Diabetes Study.12-14 Unfortunately, it is not 
possible to directly apply these models to the ICSM data-
set. The main impairment is that they all require the data 
to be taken at the diabetes diagnosis, while the ICSM 
data set provides clinical information only from the first 
visit at the hospital. An additional problem is that none 
of these studies present a validation of the models in 

Figure 1. The data mining pipeline.



Dagliati et al 297

terms of its prediction accuracy. Grounding on those 
papers for selecting the variables to be included, a new 
set of models were developed and evaluated on the avail-
able data.

Predictive Models Construction

Given the patient’s health status at the first visit, the aim is 
to predict if the patient will develop microvascular compli-
cations (nephropathy, neuropathy, and retinopathy) in the 
future. Distinct models were built for each complication, 
considering a temporal threshold for risk prediction of 3, 5 
or 7 years. The binary class variable in the models corre-
sponds to whether a patient develops the complications 
within the threshold time.

Microvascular complication onset was assessed and 
collected in the data set by physicians during follow-ups. 
Patients were diagnosed as having nephropathy when 
renal function was reduced, as assessed by a low eGFR 
(<60 mL/min/1.73 m²) or when the presence of microalbu-
minuria (urine albumin-to-creatinine ratio = 30-299 mg/g) 
was found in at least two spot morning urine samples. 
Patients were diagnosed of retinopathy when specific 
lesions were detected at dilated fundoscopy. Neuropathy 
was screened by physical analysis, and its diagnosis 
needed electromyography and/or nerve conduction study 
to be fully confirmed.

The classification models used were logistic regression 
(LR), naïve Bayes (NB), support vector machines (SVMs), and 
random forest (RF). For each model, the analysis was per-
formed on patient subset complying with the following 
criteria:

(i) Patient has a follow-up time longer than the corre-
sponding temporal threshold

(ii) Patient develops the complication after the first visit 
(ie, the complication is not present when the patient is 
admitted at ICSM for the first time)
(iii) Patient’s complication onset date has been 
registered

For LR, a stepwise feature selection based on the Akaike 
information criterion15 was applied.

Data Imputation. The ICSM data set is prone to missing 
features, especially for lipid-related data. In particular, 
the missing data at the first visit were: time to diagnosis 
2.4%; BMI 0.01%; HbA1c 16.9%; total cholesterol 
34.1%; triglycerides 36.2%. Smoking habit, age and gen-
der showed no missing data. For our data imputing 
approach, we examined two simple statistical methods 
(ie, imputing the mean and median of each variable) and 
a random forest (RF) approach. The latter is based on a 
RF imputation algorithm, called missForest.16 To test the 
performance of the imputation strategy, a data-complete 
set was assembled by considering only the instances 
without missing data. The data-complete set was then 
altered by randomly removing records of attributes. In 
particular, the percentage of missing values was calcu-
lated for each attribute on the original data set, and then 
the same percentage was randomly removed from the 
data-complete set, thus creating artificial missing values 
to test the imputing ability.

Removed values were imputed with mean, median and 
missForest. The parameters chosen for missForest imputa-
tion were 100 trees and a maximum of 100 iterations. We 
compared imputation performances by measuring the root 
mean squared error (RMSE) and the normalized root mean 
squared error (RMSEN) on the artificial missing values of 
the data-complete set. (Note that we can calculate RMSE 
only on numerical features and on features presenting miss-
ing values.)
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missForest outperformed imputation with mean or median, 
and therefore was chosen as our data imputing method 
(Table 1).

Considering total cholesterol and triglycerides amount of 
missing data (>30%) and the measured imputation errors are 
significantly higher than other variables, we did not consider 
them in our models.

Table 1. RMSE of Mean, Median and missForest on Numerical 
Features.

RMSE

 BMI Hba1c colTot Triglycerides

missForest 0.57 3.56 22.2 48.04
Mean 3.23 11.51 35.36 72.45
Median 3.23 11.81 35.36 74.47

RMSE
N

 BMI Hba1c colTot Triglycerides

missForest 0.01 0.03 0.07 0.05
Mean 0.09 0.11 0.12 0.08
Median 0.09 0.12 0.12 0.08
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Class Unbalance. Since ICSM data set show a large number 
of patients without complications, the resulting classification 
problems are characterized by an unbalanced distribution of 
the class variable. In the whole observed period, retinopathy 
cases accounted for 12.5%, neuropathy for 13.2%, and 
nephropathy for 12.8% of the patients.

It is possible to ignore class unbalance issues and directly 
proceed with learning and testing phases; another option is 
to try to rebalance the cases/controls ratio. We explored both 
options by training the algorithms on the original data set, 
and on a new one balanced by oversampling the minority 
class. This strategy has been applied for LR, SVMs and RF. 
In addition, for NB, while the marginal probabilities are 
estimated on the training sets balanced with oversampling, 
the prior probability of the class is computed on the original 
unbalanced dataset. This strategy adjusted the model poste-
rior probabilities to the real distribution of the classes. It 
could be potentially used to recalibrate the model when 
applied to a new population. We will denote the models 
resulting from the class balancing strategy as LR balanced, 
SVM balanced, RF balanced, and NB balanced + adjusted 
prior; models built on the original dataset are denoted sim-
ply as LR, SVM, RF, and NB.

Predictive Models Validation

The final step was devoted to the validation strategy, 
assessing the performance of the selected methods. Eight 
models were built for the three microvascular complica-
tions (as described in the Predictive Models Training sec-
tion) using three temporal thresholds (as described in the 
Predictive Models Construction section). For each model, 
for each complication, and for each temporal threshold, 
data with or without imputation were considered, as 
shown in Table 2.

The performances of the models were evaluated with a 
leave-one-out (LOO) validation strategy. Sensitivity, speci-
ficity, accuracy, positive predictive value (PPV), negative 
predictive value (NPV), area under the ROC (AUC)17 and 
Matthews correlation coefficient (MCC)18 were measured 
for the selected models.

Sensitivity =
+
TP

TP FN

Specificity =
+
TN

TN FP

Accuracy =
+TP TN

TOT

Results

Results of the leave-one-out validation procedure in terms of 
AUC for each scenario and modeling strategy were consid-
ered, as shown in Table 3.

The ROC curves obtained on the original dataset and 
the ones obtained on datasets balanced by oversampling 
the minority class appear very close in most scenarios. As 
far as the choice of the classification method is concerned, 
AUC values are higher for SVMs and RF when the data 
sets are balanced. However, SVMs and RF models are 
harder to interpret, especially considering that our final 
goal is the model application into clinical practice. We 
also note their superior performance is heavily influenced 
by the unbalance class problem, dropping dramatically 
when the original unbalanced data are utilized. LR, on the 
other hand, provides a clear interpretation of its coeffi-
cients as the odds ratios of the risk factors and let the mod-
els be fully represented graphically through nomograms, 
which are concepts familiar to clinicians. This fact sup-
ports choosing LR as the most suitable classifier for this 
prediction problem.

On the basis of the previously shown results, the final 
retained models were based on LR with rebalanced classes, 
with feature selection based on the Akaike information crite-
rion, as the standard models for use in the clinical practice. 
This allowed to automatically retaining the features (vari-
ables) to be monitored for prediction in clinical practice. LR 
models are easily understandable from a clinical point of 
view, as they offer an intuitive interpretation of the parame-
ters. The complete set of LOO performances of the models 
are provided in Table 4.

LR allows calculating the probability of developing a 
complication within a specific time period, providing a 
way to calculate a risk score for the patients. This is par-
ticularly interesting at the first visit, suggesting to doc-
tors the patients needing particular attention. Moreover, 
LR models support the adoption of nomograms to repre-
sent the results (Figures 2-4). In nomograms, each feature 
value is associated to a standardized point set (in the top-
most part of the figure). The points obtained considering 
the whole feature set of a patient are summed up, thus 
obtaining the total points, which are further transformed 
into logarithms of odds in favor of the complication, and, 
finally into a probability. Let’s also note that, by evaluating 
the performances of the models in terms of MCC, which is 
particularly suitable in case of unbalanced distribution 
among classes,19,20 the 3-year time horizon provides the 

Table 2. List of Explored Options for Feature Extraction and 
Model Design.

Model scenario

Complications Nephropathy Neuropathy Retinopathy

Time horizon 3 years 5 years 7 years
Imputation Yes No
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best results for the retinopathy and neuropathy cases. 
Furthermore, it is of particular interest in the ICSM case, 
where physicians treat patients in advanced stages of the 
disease and 5-year and 7-year horizons might be too far to 
be useful. For these reasons LR and the 3-year horizons 
were the model of choice to be translated into clinical 
practice.

Retinopathy

Nephropathy

Neuropathy

Feature selection is tailored for each complication, and the 
retained features are analyzed in the discussion.

Figure 2. Nomogram for the LR model for retinopathy within 5 
years.

Figure 3. Nomogram for the LR model for nephropathy within 
5 years.

Figure 4. Nomogram for the LR model for neuropathy within 5 
years.

Table 4. Model Performances.

Retinopathy

Year Accuracy Sensitivity Specificity PPV NPV MCC AUC

3 0.777 0.820 0.730 0.771 0.785 0.552 0.808
5 0.743 0.790 0.685 0.758 0.723 0.478 0.769
7 0.666 0.606 0.745 0.760 0.587 0.348 0.726

Nephropathy

3 0.647 0.652 0.642 0.680 0.613 0.293 0.701
5 0.693 0.750 0.616 0.723 0.649 0.368 0.734
7 0.686 0.714 0.643 0.750 0.600 0.353 0.721

Neuropathy

3 0.746 0.783 0.707 0.743 0.750 0.490 0.799
5 0.680 0.667 0.697 0.725 0.635 0.362 0.714
7 0.727 0.688 0.780 0.807 0.652 0.463 0.769
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Discussion

This work describes the application of a modern data min-
ing pipeline, combining a variety of approaches to exploit 
clinical data to extract a risk calculator of microvascular 
T2DM complication. It provides a multivariate index of the 
patients’ conditions. AI-based strategies were used to handle 
missing data and to address class imbalance. Models were 
created considering different prediction horizons and vali-
dated by state-of-art data science principles. Finally, LR and 
nomograms was selected as the instrument to deliver the pre-
dictive models to the users.

The developed pipeline allowed developing models tai-
lored on the population characteristics, which are specific of 
the T2DM patients treated by the ICSM hospital. The LR 
model on the entire dataset, after RF imputation, identified 
individual risk factors for the onset of the three microvascu-
lar complications and their relative odds ratios.

Hba1c, as the standard measure for blood glucose moni-
toring in diabetic patients, was found to be a risk factor for all 
complications. As the developed models take into account 
measurements at the first visit near the hospital, HbA1c 
might be affected by some bias due to poor metabolic control 
at the referral. However, this bias is mitigated by the very 
nature of the measure, which takes into account a 3-month 
period before the visit. In fact, HbA1c values mean (SD) of 
62.42 (21.05) mmol/mol are comparable to the average val-
ues of the Italian T2DM patients.21,22 Duration of diabetes 
(T2DM) and BMI were found to be important risk factors for 
both retinopathy and neuropathy, while hypertension was 
found as a risk factor for both retinopathy and nephropathy. 
As regards of retinopathy, these results can be supported by 
other studies and literature reviews,23 where is shown that the 
main risk factors for retinopathy prevalence increasing are 
HbA1c and diabetes duration.

Regarding nephropathy, a recent study24 applied a data 
mining framework to predict renal failure in T2DM on a time 
horizon of 5 years. The described models are based on a 
larger cohort and include albuminuria and creatinine values, 
which were not available in our analysis. The results in terms 
of metabolic control are comparable. Although AUC values 
are higher for nephropathy on a 5-year horizon, they are not 
significantly different from the 3-year ones, which we choose 
to deliver for clinical practice (as shown in table 3). the 
missed opportunity to include albumin-creatinine ratio indi-
cators, which have been demonstrated to be cardiovascular 
risk factors,25-27 is one of the main limitations of the pre-
sented work.

Models performances were evaluated in terms of MCC, 
which is instead dependent on the decisional threshold, 
which relates to how close the predicted outcome is to the 
actual outcome. MCC values were more informative when 
evaluating the impact of strategies to address the class imbal-
ance problem: if no such strategy was adopted, the models 

assigned almost all examples to the majority class, leading to 
poor MCC results. While small differences are noticeable 
among resampling approaches, in general none of the pro-
posed strategies contributed to significantly improve the 
AUC performances with respect to the baseline model nor 
achieved better MCC.

Conclusions

This work shows how data mining and computational meth-
ods can be effectively adopted in clinical medicine to derive 
models that use patient-specific information to predict an 
outcome of interest. Predictive data mining methods may be 
applied to the construction of decision models for procedures 
such as prognosis, diagnosis and treatment planning, 
which—once evaluated and verified—may be embedded 
within clinical information systems. Developing predictive 
models for the onset of chronic microvascular complications 
in patients suffering from T2DM could contribute to evaluat-
ing the relation between exposure to individual factors and 
the risk of onset of a specific complication, to stratifying the 
patients’ population in a medical center with respect to this 
risk, and to developing tools for the support of clinical 
informed decisions in patients’ treatment.
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