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Artificial intelligence (AI) has been defined in many ways. 
Currently, the most accepted definition is the one made by 
Boden:1 the ability to make computers do things that would 
require intelligence if done by humans. It is also not trivial to 
define intelligence. Intelligence is usually defined as a group 
of abilities such as understanding, learning and reasoning to 
make decisions and to solve problems. AI emulates these 
aspects of human intelligence by means of a number of tools. 
The aim of this review is to list and explain the most fre-
quently used AI tools in simple words to facilitate under-
standing. AI methodologies and techniques have been 
applied to medicine and health in general over the past 
decades. Diagnosis, classification, therapy and robotics, 
among others, are common AI medical applications. Among 
the variety of different AI technologies, neural networks2 and 
fuzzy logic (FL) are the most often used ones to date. 
However, there are other techniques and methodologies, 
which have been also selected and included in this review 
due to their relevance. In addition, a glossary of useful terms 
has been included (Table 1) as well as a list of examples of 
the most representative publications on AI applied to diabe-
tes (appendix).

AI Methodologies

Expert Systems in Medicine

Expert systems (ES) correspond to the most common type of 
AI system in routine clinical use. They are defined as sys-
tems with the ability to capture expert knowledge, facts and 
reasoning techniques to help care providers in routine work. 
ES attempt to mimic clinician’s expertise by applying infer-
ence methods to help in decision support or problem solving. 
ES have the ability to manage data to come up with reasoned 
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Abstract
In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin 
pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number 
of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and 
barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful 
for patients and doctors’ decision support. Similar new scenarios have appeared in most medical fields, in such a way that in 
recent years, there has been an increased interest in the development and application of the methods of artificial intelligence 
(AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and 
doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined 
as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related 
journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management 
scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently 
needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain 
in an easy and plane way the most used AI methodologies to promote the implication of health care providers—doctors and 
nurses—in this field.
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conclusions. Uses of ES include image interpretation, diag-
nosis support and alarms generation, among other utilities.

Key features of an ES are:

a) A knowledge acquisition system: The system used to 
gather the knowledge and the rules used by the ES 
to solve the proposed problems. This process can be 
made either through direct input by the expert or the 
knowledge engineer or based on a database of past 
case studies and their results.

b) A knowledge base: It stores the knowledge and rules 
about the specific problem to be solved by the ES.

c) An inference engine: The control system that imple-
ments the knowledge and rules held within the knowl-
edge base to the data, performing the reasoning process.

Rule-based reasoning (RBR), case-based reasoning (CBR), 
and fuzzy systems are the most common ES used in the dia-
betes domain.

RBR. RBR is based on the transfer of knowledge from an 
expert to a computer. As a consequence, the computer has to 
be able to find solutions to problems that otherwise should be 
solved by an expert. Knowledge is represented in statements 
in the form “if-then,” in such a way that the line of reasoning 
can be explained. The process of knowledge acquisition 
starts with a number of interviews between the expert and the 
knowledge engineer who will end up building and testing the 
ES. During these interviews, the domain expert establishes 
all the possible options and the engineer encodes this knowl-
edge to become “computer interpretable.”

CBR. CBR finds solutions to new problems by adapting pre-
viously good solutions to similar problems. Case studies fea-
tures need to be specified to be helpful in retrieving other 
cases. At the same time, features have to be discriminative 
enough to avoid the retrieval of cases studies which could 
lead to wrong solutions because of being too different. 
Unlike RBR, CBR does not require an explicit domain 

Table 1. Glossary of AI Related Useful Terms.

CIG Computer interpretable guidelines (CIGs) are clinical practice guidelines formalized in a computer-
based system.

Data mining Computational process to extract information and knowledge from a large dataset and to transform 
it into an understandable structure.

Defuzzification In FL, defuzzification is the process of converting a combined output of fuzzy rules into a numerical 
values. The input for the defuzzification process is the aggregated set and the output is a single 
number.

Fuzzification In FL, fuzzification is the process of mapping numerical inputs into fuzzy inputs: degree to which the 
inputs belong to the respective fuzzy sets according to a membership function.

Heuristic Exploratory algorithms that shorten the time to find a reasonably good solution that would otherwise 
be excessively time-consuming.

Hybrid systems Systems which integrate a combination of AI techniques; for example, neuro-fuzzy, fuzzy-expert 
systems, etc.

Inference engine Key feature of an expert system in charge of the reasoning process whereby the expert system 
reaches a solution based on the expert’s knowledge contained in the rule base and the facts 
contained in the database.

Membership function In FL, a membership function is required to convert input parameters to a fuzzy set. These 
membership functions, can have different shapes. The most common are triangular shape; however 
bell, trapezoidal, sinusoidal, and exponential can be also used.

Metaheurisitc Algorithmic framework that provides a set of strategies to develop heuristic algorithms. GA are 
examples.

Multilayer perceptron (MLP) ANN structure for supervised learning. Neurons in the perceptron are classifiers that aggregate 
inputs and assign a binary value (either 0 or 1).

Naïve Bayes Technique for classification and prediction based on the Bayes theorem. The algorithm constructs 
models that estimate the posterior probability of each class, given a set of input attributes. Bayes’s 
theorem, which allows calculate the probability of A given B, from knowing the probability of 
observing event B given that A is true, and the probabilities of A and B. The term “Naïve” refers to 
the assumption that given a class, all the features or attributes are conditionally independent of each 
other. That premise simplify very much the calculations.

Ontology Describes the objects, concepts and their relationships in a domain of knowledge.
Stochastic A stochastic program operates using probabilistic methods to solve problems
Supervised learning Mathematical algorithm able to learn from a dataset where the desired output is already known. 

It generalizes a function that maps the available inputs to their corresponding desired output. 
Classification and prediction algorithms are supervised learning algorithms.

Unsupervised learning Algorithm devoted to discover relationships or structures in a dataset. The desired output is 
unknown. Examples of unsupervised algorithms are clustering and association.
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model, but just to identify new cases with significant fea-
tures, which is in fact the way CBR “learns.”

CBR procedures are usually explained as the so called 
“CBR working cycle”, which includes five steps: (1) current 
problem description; (2) search for a successful solution of a 
similar case; (3) adaptation and reuse of the solution to the 
new problem; (4) evaluation; and (5) confirmed solution 
storage. The main CBR limitations are related to the need to 
get huge case studies databases, which could include nonrel-
evant information and make the retrieval often excessively 
time-consuming.

FL. Fuzzy ES are used for representing, in a computer-under-
standable way, expert knowledge that uses ambiguous terms. 
Thinking in terms of conventional logic, a blood glucose 
range >180 mg/dl is high and a range <80 mg/dl is low. This 
classification is not particularly useful for making decisions. 
In real life a blood glucose value of 181 mg/dl in most cases 
deserves a different action with respect to 281 mg/dl. In other 
words—in fuzzy words—181 mg/dl is high but almost 
acceptable while 281 mg/dl is very high and far from being 
acceptable. FL expresses this ambiguity assigning a certain 
degree of membership to different categories. In our previ-
ous example, we could say that 181 mg/dl pertains 70% to 
the category of “high” but only 30% to the category of “very 
high.”

Machine Learning

Machine learning (ML) algorithms are characterized by 
the ability to learn over time without being explicitly pro-
grammed. The main features of ML are problem solving 
usually based on a classification of data. There has been 
a gradual switch from heuristic approaches toward ML 
techniques. In the field of data mining, ML algorithms are 
being used to discover valuable knowledge from large 
databases such as in electronic medical records, which 
might include implicit regularities. Also ML can be 
applied to domains where a computer program needs to 
dynamically adapt to changing conditions. For example 
ML algorithms are useful to learn from each patient mon-
itoring data and adapt along time in an artificial pancreas 
system.

ML draws on results from AI, probability and statistics, 
computational complexity theory, control theory, information 
theory, philosophy, psychology, neurobiology, and so on.3

Methods in ML include decision trees (DT), artificial neu-
ral networks (ANN), genetic algorithms (GA), or support 
vector machines (SVM). All of them have been successfully 
applied in the field of diabetes.

ANN. ANN are based on the human brain function, that 
means, interconnected neurons. Each neuron, the simple 
unit, receives several inputs and generates only one 

output. Each connection has assigned a weight related 
with the importance of the output. The neural network 
“learns” by training with known inputs, comparing actual 
output with the known one and using the error to adjust 
weights. Thus, the links which produce right answers are  
strengthened and those which generate wrong answers, 
weakened.

When using a library of existing neural networks, the 
most common is that in the training process we obtain infor-
mation about how the algorithm works in the form of a mean 
square error (MSE). For each example, the ANN evaluates 
the error in all its output neurons, raises each of those num-
bers squared, and finally the average is calculated. Using 
MSE, errors are always positive and the errors of some neu-
rons do not nullify those of others.

Deep learning. Deep learning is a new branch of ML based 
on neuron behavior inside of human brains. It can be consid-
ered and evolution of ANN, it utilizes a hierarchical level of 
ANN to carry out the process of classification. Deep learning 
algorithms are particularly powerful in learning processes 
and provide a high degree of intelligence to systems based on 
them. In deep neural networks, the deep refers to the factor 
that multiple layers of processing transform the input data 
(whether it’s images, speech, or text) into some output useful 
for making decisions.

GA. GA belong to the so called “evolutionary computation” 
and were defined by John Holland almost 50 years ago.4 GA 
simulate natural selection by creating a population of indi-
viduals (solutions) for optimization problems. The new solu-
tions are obtained from operating “genetically” the initial 
population. The chromosome (set of “genes”) is represented 
as a string of 0 s and 1 s.

Once an initial population of chromosomes is gener-
ated, the first step is just to calculate the fitness of each 
chromosome. The fitness function value quantifies the 
optimality of a solution ranking it against the other solu-
tions. If the solution created is not optimal, then a pair of 
chromosomes is selected for exchanging parts (crossover) 
and creates two offspring chromosomes. In the next step, 
a mutation randomly changes at least one gene in the 
chromosomes. The initial population is replaced with the 
new population and a new iteration starts. GA iterations 
end when one of the termination criteria (usually a pre-
defined number of iterations) is satisfied. In the end, the 
more fit chromosomes survive.

DT. DT constitute a graphical representation of a dataset that 
describes the data by tree-like structures, which provides a 
very intuitive way of representing and understanding rules. A 
decision tree is composed of nodes, branches and leaves. A 
node represents a decision while a leaf represents an out-
come. The DT always starts from the root node and grows 
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down by splitting the data at each level into new nodes. DT 
are particularly good at solving classification problems.

DT are most often created based on a learning algorithm 
able to extract the knowledge accumulated in a specific data-
set. After the DT structure has been defined, the knowledge 
can also be represented as sets of if-then rules to improve 
human readability. Some of the most widely used algorithms 
are ID35 and C4.5.6

DT have been successfully applied in diabetes to a broad 
range of tasks such as screening in type 2 diabetes7 and blood 
glucose classification.8

SVM. SVM are currently one of the most popular, flexible 
and powerful ML algorithms used for classification.

SVM are maximum-distance classification algorithms. 
They define an hyperplane to separate two classes above 
and below it, providing the maximal distance between the 
classifying plane and the closest data points. The points that 
are closest to the border are called “support vectors.” In its 
most basic formulation, SVM can only work with binary 
classification problems but, with a relatively simple exten-
sion, they can also solve multiclass classification tasks.

In the field of diabetes, SVM have been used to predict 
prediabetes and diabetes disease9 and in diabetes diagnosis.10

AI Technologies and Diabetes: Areas of 
Application

All the AI technologies explained in section 1 have been 
applied to different areas of diabetes management (see the 
appendix). In this section some examples of these applica-
tions are going to be summarized to improve the overall 
understanding of their utility.

Decision Support for Patients Using CBR

One of the most relevant experiences on the application of 
ES to decision support for patients has been performed by 
researchers from the Imperial College in London. They 
have developed and tested a bolus calculator algorithm 
based on CBR. This system uses continuous glucose moni-
toring data and is implemented in the patients smartphone. 
A pilot feasibility study has been published11 showing the 
potential benefits of this tool over conventional bolus 
calculators.

Closed-Loop Systems Based on FL

Apart from proportional derivative integral (PID) and model 
predictive control (MPC), FL-based algorithms have been 
successfully used for closed-loop studies, even in the ambu-
latory setting.12

One of the first publications including FL for closed-loop 
system was done by Mauseth et al in 2010. The controller 
used as inputs BG and the rate of change of glucose.13 Using 
a matrix the system assigned a coefficient which after defuzz-
ification proposed insulin microbolus. Three years later the 
system was tested in an pilot study with good results.14

Computer Interpretable Guidelines (CIGs) Applied 
to Gestational Diabetes Management

Clinical practice guidelines are worthy instruments for qual-
ity of care improvement. Through formalization as CIGs 
using a complex RBR system, decision-support tools can be 
developed.

Clinical experience with gestational diabetes CIGs used 
for patients and doctors decision support is shown in another 
article included in this special section of the journal.15 In 
brief, a pilot study shown a high degree of patients’ satisfac-
tion and higher compliance with blood glucose monitoring 
in comparison with usual care based on face-to-face visits.

Retinopathy Detection Using ANN

Recently, deep learning ANN has shown to identify dia-
betic retinopathy or diabetic macular edema in retinal fun-
dus images with high sensitivity and high specificity.16 
The authors have developed an algorithm that computes 
diabetic retinopathy severity from the intensity of the pix-
els in a fundus picture. The function was trained with a 
large set of images and then evaluated at one operating 
point selected for high specificity and a second operating 
point for high sensitivity obtaining very high scores.

Conclusion

Diabetology needs to suffer an adaptation process to incor-
porate new tools for diabetes management. Technology 
and particularly sensors and computer applications have 
become a key instrument in diabetes management for 
health care providers and patients. Although modern dia-
betes care units should include a diabetes technologist17 
for dealing with technology, doctors and nurses cannot 
ignore the basics to better find solutions to each patient 
circumstances. Knowledge on insulin pumps and more 
recently on glucose sensors has been increasing progres-
sively; however, comprehension about AI and smart appli-
cations performance remains largely inadequate. This 
article provides a general overview of the elementary con-
cepts, definitions, and terminology frequently used in 
AI-related applications as well as a list of relevant publica-
tions of AI applied to diabetes.



Rigla et al 307

Appendix

Examples of the Most Representative Publications on AI Applied to Diabetes.

Method Application Journal

RBR Decision support Artif Intell Med18

+FL Automated control Diabetes Technol Ther19

CBR Bolus calculator Diabetes Technol Ther11

 Insulin dose recommendation J Biomed Inform20

 Type 2 DM treatment suggestions Comput Methods Programs Biomed21

 BG pattern detection in pump users J Diabetes Sci Technol22

J Diabetes Sci Technol23

 Risk of complications Methods Inf Med24

+FL DM diagnosis Artif Intell Med25

FL Automated control Diabetes Obes Metab12

J Diabetes Sci Technol26

Diabetes Technol Ther19

N Engl J Med27

Diabetes Technol Ther14

J Med Eng Technol28

 Peripheral neuropathy assessment Gait Posture29

 Albuminuria screening Comput Biol Med30

 Diabetes diagnosis Comput Methods Programs Biomed31

Australas Phys Eng Sci Med32

 Hypoglycemia detection Artif Intell Med33

 Decision support IEEE Trans Syst Man Cybern B Cybern34

IEEE Trans Biomed Eng35

 Blood glucose classification AIME36

+ANN Renal failure prediction Comput Math Methods Med37

 Retinopathy assessment Med Biol Eng Comput38

 Glucose prediction Med Biol Eng Comput39

 Hypoglycemia detection Conf Proc IEEE Eng Med Biol Soc40

ANN Liver cancer prediction in type 2 DM Comput Methods Programs Biomed41

 GFR prediction J Transl Med42

 PreDM/DM screening Comput Math Methods Med43

Australas Phys Eng Sci Med44

Diabetes Res Clin Pract45

Diabetes Technol Ther46

 Prediction of DM regression after 
surgery

Obes Res Clin Pract47

 Retinopathy detection JAMA16

Technol Health Care48

J Med Eng Technol49

J Med Syst50

Diabet Med7

 Foot ulcers risk Biomed Res Int51

 Glucose prediction Diabetes Technology & Therapeutics52

 Bone mineral density prediction in 
type 1 DM

Diabetes Care53

GA Diabetic retinopathy detection Comput Med Imaging Graph54

Med Biol Eng Comput55

IEEE Trans Med Imaging56

 Estimation of model parameters Stud Health Technol Inform57

J Diabetes Sci Technol58

Int J Numer Method Biomed Eng59

Comput Biol Med60

Clin Sci61

(continued)
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AI, artificial intelligence; ANN, artificial neural network; CBR, case-
based reasoning; CIG, computer interpretables guidelines; DT, decision 
trees; ES, expert systems; FL, fuzzy logic; GA, genetic algorithms; ML, 
machine learning; MLP, multilayer perceptron; MSE, mean square 
error; RBR, rule-based reasoning; SVM, support vector machines.
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