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People with type 1 diabetes mellitus (T1DM) have to play an 
active role in their own care and need to have the knowledge 
to make decisions adapted to their daily living conditions. 
They need to perform a constant learning process about the 
disease and about how daily conditions (insulin administra-
tion, meals schedule and composition, physical activity, ill-
ness) affect blood glucose (BG) levels. All these elements 
have an impact on the success of metabolic control (avoid-
ance of hyper- and hypoglycemia events).1 In such scenario, 
artificial intelligence (AI) applications make it possible to 
support patients’ decisions in any scenario of their daily liv-
ing and open the door to react at time scales shorter than 
scheduled face-to-face visits.2

In the past decade, the diabetes management  
paradigm has been transformed by the combination of 

continuous glucose monitoring (CGM) and insulin pump 
data.3,4 Real-time CGM systems provide new alternatives of 
care and allow registering changes in glucose levels 24 hours 
a day. Instead, the amount of information available to both 
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Abstract
Background: In type 1 diabetes mellitus (T1DM), patients play an active role in their own care and need to have the 
knowledge to adapt decisions to their daily living conditions. Artificial intelligence applications can help people with type 1 
diabetes in decision making and allow them to react at time scales shorter than the scheduled face-to-face visits. This work 
presents a decision support system (DSS), based on glucose prediction, to assist patients in a mobile environment.

Methods: The system’s impact on therapeutic corrective actions has been evaluated in a randomized crossover pilot 
study focused on interprandial periods. Twelve people with type 1 diabetes treated with insulin pump participated in 
two phases: In the experimental phase (EP) patients used the DSS to modify initial corrective decisions in presence of 
hypoglycemia or hyperglycemia events. In the control phase (CP) patients were asked to follow decisions without knowing 
the glucose prediction. A telemedicine platform allowed participants to register monitoring data and decisions and allowed 
endocrinologists to supervise data at the hospital. The study period was defined as a postprediction (PP) time window.

Results: After knowing the glucose prediction, participants modified the initial decision in 20% of the situations. No 
statistically significant differences were found in the PP Kovatchev’s risk index change (–1.23 ± 11.85 in EP vs –0.56 ± 6.06 
in CP). Participants had a positive opinion about the DSS with an average score higher than 7 in a usability questionnaire.

Conclusion: The DSS had a relevant impact in the participants’ decision making while dealing with T1DM and showed a high 
confidence of patients in the use of glucose prediction.
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patients and clinicians makes decision-making more com-
plex. This scenario raises the need to exploit the information 
in such a way that the users can benefit from decision-mak-
ing tools for both health care professionals5 and patients,6 
from enhanced graphical data visualization7 or from the 
automatic generation of warnings and reminders.8,9

Advances in the area of mobile communication for health 
care (mHealth) have created applications to ease daily moni-
toring of most parameters that affect the disease.10 However, 
the experiences that provide AI-based decision support 
directly to patients are quite limited in number. An early 
example was the DIACRONO portable microcomputer, cre-
ated in the late 1980s to aid patients in ambulatory decision 
making.11 Participants registered self-monitoring data (glu-
cose, insulin, diet, physical activity, and other events) and 
received automated feedback about insulin therapy adjust-
ments. DIACRONO implemented Skyler’s algorithms12 in a 
simplified rule-based system that was updated in real time 
with self-monitoring data to provide patients with real-time 
advice.

In the following years, the availability of commercial por-
table devices and of always-on communications made it pos-
sible to send the data through telemedicine platforms and to 
execute the automatic analysis algorithms13,14 in computer 
servers with significant HW/SW resources. Patients usually 
receive feedback through alarms and/or advice in the form of 
SMS or email messages.15-17 Other experiences that support 
patients’ decision are insulin bolus calculators18-20 and glu-
cose predictors that calculate near-future BG values.21 The 
prediction of glucose from CGM data is useful at different 
scenarios like the artificial pancreas22,23 or the prevention of 
hypoglycemia events.24,25

This article presents a decision support system (DSS) for 
people with type 1 diabetes that is based on a glucose predic-
tor and evaluates its impact on their daily decision making.

Methods

The DSS is designed to help patients in real time while per-
forming therapeutic corrective actions such as (1) adminis-
tration of insulin bolus to correct hyperglycemia or (2) intake 
of carbohydrates in case of hypoglycemia. The DSS, named 
GlucoP, is implemented in a portable device and is executed 
as a stand-alone application. The DSS is connected to a tele-
medicine platform to allow remote supervision by endocri-
nologists at the hospital. Figure 1 shows the architecture of 
the system. The final aim of the system is to improve meta-
bolic control.

Glucose Predictor

The glucose predictor is based on an artificial neural network 
(ANN) trained with CGM profiles.24 The network architec-
ture has three layers with a first layer of 10 neurons and a 
second layer of 5 neurons. Layers have a sigmoidal transfer 
function, with totally connected and feed forward neurons. 
The dataset for training and validation includes data from 9 
patients who wore the CGM system intermittently for 72 
hours/week over a 4-week period. The network inputs are the 
recent glucose measurements (up to 20 minutes before the 
current time) and the network output is the glucose predic-
tion for a specific prediction horizon (PH). A Levenberg-
Marquardt back-propagation algorithm was applied for the 
training of the ANN. In general terms, the predictor provided 

Figure 1.  System architecture, DSS, which provides real-time glucose prediction to patients and telemedicine platform to allow 
physicians’ remote supervision.
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a good accuracy (root mean square error [RMSE] of 17.45 ± 
5.44 mg/dl for a PH = 30 minutes and 9.74 ± 2.71 mg/dl for 
a PH = 15 minutes).

In this work we selected a PH = 30 minutes as we consid-
ered that it provides enough anticipation to make corrective 
decisions able to revert hypoglycemia or hyperglycemia risk 
situations.

Mobile DSS

The glucose predictor was integrated in a mobile application 
that was implemented in Java using the Mysaifu virtual 
machine and the Windows Mobile 6.0 Professional operating 
system. The graphical user interface (GUI) allows the patient 
to manually register the last 5 CGM (measurements are 
available every 5 minutes). The application runs the ANN 
algorithm to calculate the glucose prediction and presents it 
to the patient both numerically and graphically (Figure 2).

Once the patient checks the glucose prediction, he or she 
can use this information to make a decision regarding either 
an insulin bolus administration (to correct hyperglycemia 
situations) or a carbohydrate intake (to correct hypoglycemia 
situations). The corrective action is registered by the patient 
in the mobile application (Figure 3). The patient’s decision 
can be retrospectively evaluated both by the patient or the 
physician in charge, so that the patient’s education can be 
reinforced in case it is necessary.

Telemedicine Service

The telemedicine platform receives and stores data associ-
ated to glucose predictions: CGM values, BG readings, and 
insulin/diet corrective actions. A web application allows 
remote supervision by endocrinologists at the hospital 
(Figure 4).

Clinical Evaluation

The DSS was evaluated in a pilot study to analyze if it could 
provide helpful information to improve the patient’s decision 
making. In the pilot study participants had to correct inter-
prandial situations (around 2 hours after lunch or at least 1-2 

hours before dinner) of either hyperglycemia or hypoglyce-
mia. The clinical evaluation was designed as a randomized 
crossover pilot study. We evaluated the impact of knowing 
the glucose prediction in the patient’s corrective decisions, 
its impact in glycemic control, and the DSS GUI usability.

Twelve people with type 1 diabetes (6 male, 6 female) 
with an average age of 41.97 ± 9.30 years (27.12-56.82) and 
16.80 ± 6.63 years of T1DM duration participated in the 
study. Participants had followed a CSII treatment for more 
than 1 year. All of them completed the study.

CGM data were collected with a Guardian® Real-Time 
CGM sensor (Medtronic-Minimed, Northridge, CA) whose 
sampling period is 5 minutes or a Paradigm® Veo™ 
(Medtronic-Minimed, Northridge, CA) for participants who 
had the CSII system. The Animas® 2020™ (Animas corpo-
ration, West Chester, PA) and the Accu-Check® Spirit™ 
(Roche Diagnostics, Indianapolis, IN) were also used to 
retrieve administered insulin bolus. All the participants fol-
lowed a training session where the DSS tool and the experi-
ment protocol were explained. Participants wore the CGM 
monitor during both the experimental (EP) and control (CP) 
phases. Physicians could follow the study and check data 
using the telemedicine service. Participants were randomly 
assigned to CP or EP the first week of the study. After a one-
week washout period, they were assigned to the other phase.

The week before beginning the trial, each patient carried 
a CGM sensor (72 hours). The registered profiles were used 
to validate the ANN prediction model trained in a generic 

Figure 2.  DSS graphical user interface.

Figure 3.  Registration of the patient’s corrective actions.
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way (section 2.A). If the precision (measured in terms of 
RMSE) was lower than 20% of the ANN model precision 
(for PH = 30),24 the ANN was retrained, including the regis-
tered profiles of the particular patient. In most cases (9/12) 
the generic network was used.

Experimental Phase (1 Week).  Every day the participants had to 
use the DSS system at an interprandial moment (Figure 5). In 
this period, the patient had to measure a capillary BG and decide 
whether a corrective action (insulin administration or carbohy-
drates intake) was required if indicated by an altered BG level 
(A decision). After that, the patient had to review the CGM mea-
surements provided by the monitor and check the glucose pre-
diction with the DSS. Due to the unavailability of an automatic 
connection with the CGM monitor, the participants manually 
entered the CGM measurements in the DSS application. Once 
the glucose prediction was known by the patient, he or she had 
to decide either to maintain the initial decision (A decision), or 
to perform a different one (B decision). Participants had to reg-
ister both A and B decisions in the application, so that it could be 
evaluated whether the patient changed his or her initial decision 
after knowing the glucose prediction and the effect of either A or 
B decision in metabolic control.

Control Phase (1 Week).  The protocol is similar to the one fol-
lowed in the EP (see Figure 5), but the patient was requested 
to always execute the initial decision (A). However, for 
safety reasons, the patient had the option to modify the initial 
decision and to perform B decision if he or she considered 
that decision A could mean a health risk.

Methodology of Evaluation

The following parameters were calculated:

−− Percentage of times when the patient modifies his or 
her initial decision.

−− Parameters of glycemic control associated to the 
postprediction (PP) time window, which has been 
defined as the interval from the glucose prediction 
execution up to the next meal intake (and prepran-
dial BG measurement), limited to a maximum dura-
tion of 3 hours. In the PP period, the following 
parameters are considered: (1) average daily glu-
cose; (2) initial CGM value when the PP period 
starts; (3) difference between subcutaneous glucose 
values at the initial and final points of the PP period 

Figure 4.  Web interface for physicians: visualization of monitoring data registered.
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(ΔG); (4) Kovatchev’s risk index26 change (ΔRI) 
calculated for 1 hour before the start and 1 hour 
before the end of the PP.

−− Usability Questionnaire Quis 7.27 This question-
naire allows registering the user’s opinion about 84 
items classified into 9 categories: previous experi-
ence with the system, previous experience with ICT 
technologies, general impression, screen factors, 
terminology and system feedback, learning factors, 
system capabilities, technical manuals, and multi-
media. Each area measures the user’s overall satis-
faction with that facet of the GUI, as well as the 
factors that make up that facet, on a 9-point scale. 
The questionnaire is designed to be configured 
according to the needs of each interface analysis, 
by including only the sections that are of interest to 
the user.

Results

All the participants finished the study. No patient had hypogly-
cemia during the PP period. Five participants have been dis-
carded in the provided results due to errors in the manual 
registration of CGM measurements. The results consider 64 
situations when the patients evaluated their glycemic control 
and registered decisions related to corrective actions before and 
after activating the glucose prediction provided by the DSS.

Average daily subcutaneous glucose was 152.49 ± 60.94 
mg/dl in EP versus 143.68 ± 49.24 mg/dl in CP. The subcuta-
neous glucose at the start of the PP period was 148.00 ± 
61.36 mg/dl in EP versus 141.44 ± 49.00 mg/dl in CP.

After knowing the glucose prediction, the participants 
decided to modify the initial decision (A) in 20% of the situ-
ations (13/64), 46% of the modified decisions (6/13) were 
done in the EP while 54% (7/13) in the CP (see Table 1). 
Even though the participants were instructed to follow deci-
sion A in the CP, in all the cases but one (in the CP), partici-
pants decided to execute the registered postprediction 
decision B (Table 1).

In 6 out of 7 situations when participants in the CP decided 
to change their initial decision, the patients’ actions improved 
their metabolic state and they achieved a normal glucose 
level at the end of the study window. In 4 out of 6 situations 
participants in the EP changed their initial decision and the 
patients’ actions improved their metabolic state (ΔGPP). In 3 
out of 6 situations they achieved a normal glucose level at the 
end of the study window.

There were no statistically significant differences in the 
average subcutaneous glucose during the PP period (142.35 
± 59.28 mg/dl in EP vs 142.02 ± 46.03 mg/dl in CP). The 
average ΔG in both EP and CP was –8.88 ± 53.13 mg/dl, with 
–13.84 ± 54.13 mg/dl in EP versus –3.64 ± 52.29 mg/dl in 
CP. No statistically significant differences were found in the 
Kovatchev’s risk index change ΔRI (–1.23 ± 11.85 in EP vs 
–0.56 ± 6.06 in CP).

The usability questionnaire was filled by 7 participants. 
Figure 6 shows the results grouped into categories. Patients 
had a positive opinion about the tool with average score 
higher than 7 in all the categories. The “general impression” 
category had the higher score (8.48): participants declared to 
have a pleasant experience while using the DSS. They posi-
tively assessed aspects such as the GUI design and the for-
mat and screen sequences. Regarding the terminology used 
in the application (messages, warnings, and general informa-
tion provided in the GUI), the participants considered that 
they achieved the expected purpose. Answers by patients 
related to learning factors show that the application is easy to 
learn and use. The category with a lower score was the sys-
tem’s capacity (7.10), but it also obtained a high score. The 
assessment of technical manuals regarding utility and read-
ing comprehension was positive. The quality of graphical 
design (images and colors) was also positive.

Figure 5.  (a) Study design. (b) User actions according to the 
study phase.
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Discussion

One limitation of this study is that the participants had to man-
ually register CGM measurements in the DSS application. 
This caused several transcription errors, and we had to elimi-
nate data from 5 patients in the final results. The errors could 
have been avoided with an automatic CGM reading and data 
entering to the glucose prediction algorithm integrated in the 
DSS. For this reason it is considered that the DSS utility is 
conditioned to the availability of the automatic CGM reading.

The participants decided to modify their initial decision in 
a relevant number of situations after knowing the glucose 
prediction (20%). This means that the DSS provides useful 
data to improve patients’ decision making while managing 

T1DM. The patients had a positive subjective assessment of 
the tool.

The changes in glycemic control between the EP and the 
CP are not statistically significant, which might be explained 
by the small number of patients who participated in the clini-
cal study and also by the fact that, in several cases, partici-
pants decided to execute the postprediction decision B in the 
CP phase. In 10 out of 13 cases the patients achieved better 
control (Table 1). In view of these results, it can be said that 
knowing the glucose prediction has a positive effect on 
patients’ corrective actions and is able to improve their gly-
cemic control. Six changes in the initial decision were car-
ried out in the CP. These changes contributed to improve the 
average of glycemic control during the control phase and 

Table 1.  Situations When the Participants Decided to Modify the Initial Decision After Knowing the Glucose Prediction

Phase BG (t) CGM (t) PANN (t+30)

Initial decision (A)
Postpredicction 

decision (B)
Executed 
decision

Changes in metabolic 
state (CGM)

Bolus (ui) Intake (gr) Bolus (ui) Intake(gr) ΔGPP GiniPP GfinPP

CP 89 106 97 0 40 0 60 B 142 Normal Hyper
CP 145 172 177 0 10 1 0 B −62 Normal Normal
CP 72 93 92.8 0 0 0 10 B −11 Normal Normal
CP 227 205 202.7 2 0 4 0 A −75 Hyper Normal
CP 246 230 229.4 2.65 0 2.35 0 B −56 Hyper Normal
CP 189 182 189.8 0 0 0.95 0 B −52 Hyper Normal
CP 277 220 211 1.5 0 1.8 0 B −52 Hyper Normal
EP 222 186 190.5 2 0 3 0 B −20 Hyper Normal
EP 152 191 190.5 0 0 1 0 B 53 Hyper Hyper
EP 188 232 248.6 2 0 3 0 B 26 Hyper Hyper
EP 176 180 192.6 0 0 1 0 B −62 Hyper Normal
EP 288 282 276.7 1 0 2.5 0 B −60 Hyper Hyper
EP 190 144 137.8 1.25 0 1.75 0 B −60 Normal Normal

BG, glucose meter value at time t; PANN, predicted glucose at t + 30; ΔG: increment of glucose in the PP time window. Metabolic state: hypoglycemia G 
≤ 70; normal 70 < G < 180; hyperglycemia G ≥ 180.

Figure 6.  Usability questionnaire results.
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justify that no significant differences appear between the two 
groups.

We consider that the DSS based on a glucose prediction 
algorithm is an interesting tool to create a proactive sys-
tem. The use of automatic CGM readings for 24 hours 
without patient intervention would allow implementing an 
automatic alarm system triggered when the glucose predic-
tion anticipates glucose levels out of the defined normal 
range.

We expect that a prediction model that includes exog-
enous variables such as meal information and adminis-
tered insulin boluses will improve the model precision. 
However, the use of additional parameters, such as meals, 
would increase the patients’ workload significantly and 
could generate typing errors, causing undesirable side 
effects.

Proactivity and prediction accuracy could be increased by 
integrating other physiological parameters (ie, heart rate, 
sleep quality, physical activity, etc) that have a close relation-
ship with metabolic control and start to be available in com-
mercial wearable devices that register them in a seamless 
way.

Conclusion

The DSS had a relevant impact on patients’ decision making 
while dealing with type 1 diabetes. Patients’ confidence in 
the glucose prediction was high, and they had a positive sub-
jective assessment of the tool. No clear benefit in glucose 
control was found, but no hypoglycemic events were 
observed.
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