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Type 1 diabetes mellitus (T1DM) is an autoimmune condi-
tion characterized by elevated blood glucose levels due to the 
lack of endogenous insulin production.1 People with T1DM 
require exogenous insulin delivery to regulate glucose. 
Current therapies for T1DM management include the admin-
istration of multiple daily injections (MDI) or continuous 
subcutaneous insulin infusion (CSII) with pumps.

A basal-bolus insulin regimen involves taking a longer 
acting form of insulin to keep blood glucose levels stable 
through periods of fasting and separate injections of shorter 
acting insulin to prevent rises in blood glucose levels result-
ing from meals. Such a regimen attempts to roughly emulate 
how the body of a person without diabetes delivers insulin. 
People with T1DM using insulin pumps are able to prepro-
gram different infusion rates along the day, hence they are 
able to achieve finer control.2 Figure 1 shows an example of 
the insulin profile of a typical CSII basal-bolus regimen.

Several guidelines exist for adjusting insulin doses in 
a basal-bolus regime;3-5 these often require a cumber-
some process of trial and error supported by an expert 
clinician.
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Abstract
Background: People with insulin-dependent diabetes rely on an intensified insulin regimen. Despite several guidelines, they 
are usually impractical and fall short in achieving optimal glycemic outcomes. In this work, a novel technique for automatic 
adaptation of the basal insulin profile of people with diabetes on sensor-augmented pump therapy is presented.

Methods: The presented technique is based on a run-to-run control law that overcomes some of the limitations of previously 
proposed methods. To prove its validity, an in silico validation was performed. Finally, the artificial intelligence technique of 
case-based reasoning is proposed as a potential solution to deal with variability in basal insulin requirements.

Results: Over a period of 4 months, the proposed run-to-run control law successfully adapts the basal insulin profile of a 
virtual population (10 adults, 10 adolescents, and 10 children). In particular, average percentage time in target [70, 180] mg/dl 
was significantly improved over the evaluated period (first week versus last week): 70.9 ± 11.8 versus 91.1 ± 4.4 (adults), 46.5 
± 11.9 versus 80.1 ± 10.9 (adolescents), 49.4 ± 12.9 versus 73.7 ± 4.1 (children). Average percentage time in hypoglycemia 
(<70 mg/dl) was also significantly reduced: 9.7 ± 6.6 versus 0.9 ± 1.2 (adults), 10.5 ± 8.3 versus 0.83 ± 1.0 (adolescents), 
10.9 ± 6.1 versus 3.2 ± 3.5 (children). When compared against an existing technique over the whole evaluated period, the 
presented approach achieved superior results on percentage of time in hypoglycemia: 3.9 ± 2.6 versus 2.6 ± 2.2 (adults), 
2.9 ± 1.9 versus 2.0 ± 1.5 (adolescents), 4.6 ± 2.8 versus 3.5 ± 2.0 (children), without increasing the percentage time in 
hyperglycemia.

Conclusion: The present study shows the potential of a novel technique to effectively adjust the basal insulin profile of a 
type 1 diabetes population on sensor-augmented insulin pump therapy.
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Total basal insulin can be estimated based on the total 
daily dose (TDD) (eg, basal = 0.5 TDD), but requirements 
are rarely constant during the day and tend to be higher in the 
early morning (eg, dawn phenomenon). In addition, insulin 
requirements may significantly change due to perturbations 
such as, physical exercise, psychological stress, hormonal 
cycles and recurrent illness,1 which makes adjusting insulin 
therapy a challenging task. In CSII therapy, different guide-
lines have been proposed to adjust the basal insulin profiles 
along the day, which usually consist of assigning different 
basal rate over different time windows.3

Since it is difficult to adjust basal insulin during the post-
prandial period, people with T1DM are asked to skip one 
meal per day and with the help of a continuous glucose moni-
tor (CGM) or regular capillary self-monitoring are able to 
adjust the corresponding basal profiles. However, this pro-
cess is inconvenient and impractical in many cases.

Meal bolus insulin is usually computed by means of the 
so-called bolus calculator, a simple mathematical formula 
that accounts for the amount of ingested carbohydrates, the 
premeal glucose levels, and the remaining active insulin 
from previous boluses (ie, insulin-on-board).6 Such formula 
is described by

	 B
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where B (U) is the total calculated bolus, CHO (g) is the 
estimated amount of ingested carbohydrates, ICR (g/U) is 
the insulin-to-carbohydrate-ratio, G (mg/dl) is the measured 
glucose at meal time, GT (mg/dl) is the glucose target, ISF 
(mg/dl/U) is the insulin sensitivity factor, and IOB (U) is the 
insulin on board, which represents an estimation of the 
remaining active insulin in the body and which can be calcu-
lated using a linear decay expressed as
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where Bp the previously administered insulin bolus, Tint is the 
elapsed time since the last administered insulin bolus, and 
Tact is the insulin action time, which is subject dependent.

Note that equation (2) is just a particular way to esti-
mate IOB using a linear decay. Other methods to estimate 
IOB have been proposed by different authors (eg, curvilin-
ear decay),7-9 with some of them taking into account time-
varying characteristics such as intraday variability.10 The 
parameters ICR and ISF are also scenario-dependent, and 
guidelines exist to calculate them.11

Seeing the complexity of insulin dosing, there is a need for 
more automated and efficient strategies to adapt such regi-
mens, removing self-management burden and improving out-
comes. Different authors have previously proposed methods 
to automatically adjust the bolus-basal insulin therapy. The 
concept of adaptive bolus calculator was first proposed by 
Owens et al by means of the utilization of run-to-run (R2R) 
control,12 and later clinically tested by Palerm et al.13 Although 
showing some promising preliminary clinical results, this 
approach has the limitation of being very sensitive to meal 
composition and does not account for hyperglycemia. Tuo 
et  al14 proposed a similar technique based on a high order 
R2R control scheme. Similarly to the approach by Owens 
et al, the employed control law by Tuo et al does not account 
for hypoglycemia. Finally, Herrero and colleagues proposed a 
new R2R control law combined with case-based reasoning 
that overcomes some of the previous limitations.15-17

Regarding the adaptation of the basal insulin profile, 
Palerm et al18 proposed an R2R algorithm which is used to 
adjust four basal rates throughout the day using capillary 
measurements taken at the extremes of the selected time 
intervals. One limitation of this method is that it does not 
account for hypoglycemic and hyperglycemic events within 
the time intervals.

Toffanin and colleagues recently introduces an R2R algo-
rithm for adaptation a 24-hour basal insulin injection. Such 
technique is based on the well-stablished glycemic metrics 
of percentage time in euglycemia and hypoglycemia com-
puted from continuous glucose sensor data.19

In the context of an artificial pancreas (ie, hybrid closed-
loop control), different solutions have been proposed to adjust 
the basal insulin and the meal bolus. A method to adapt basal 
therapy based on the value and rate of change of blood glucose 
was proposed by Wang et al.20 Herrero et al proposed an R2R 
technique to automatically adjust the insulin-to-carbohydrate 
ratio of the bolus calculator within a hybrid artificial pancreas 
that uses information from the closed-loop controller.21 Dassau 
et al clinically evaluated an adaptive artificial pancreas where 
basal insulin delivery settings were adapted weekly, and car-
bohydrate ratios were adapted every 4 weeks.22 Finally, an 
R2R approach that adapts the basal insulin delivery during the 
night and the carbohydrate-to-insulin ratio during the day, 
based on glycemic metrics calculated from subcutaneous con-
tinuous glucose sensor data, was proposed by Toffanin et al23 
and was later clinically evaluated.24

Figure 1.  Plasma insulin profile of a typical basal-bolus regimen 
using CSII. Red vertical bars correspond to meal bolus; solid 
green horizontal lines represent the basal insulin profile.
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In this work, we present a novel technique to automati-
cally adjust the 24-hour basal insulin regimen of a person 
with diabetes on sensor-augmented insulin pump therapy. 
The introduced technique uses an enhanced version of the 
R2R algorithm by Palerm et  al18 by taking advantage of 
CGM technology. It also improves on the work proposed by 
Toffanin et al19 by allowing different basal insulin rates along 
the day, as required by insulin pump users.

It is important to remark that previously proposed tech-
niques for automatically adapting the basal-insulin therapy 
do not consider temporary events such as physical exercise, 
illness, and hormone cycle. For this purpose, and following 
the same approach as the work proposed by Herrero et al for 
adapting meal-insulin boluses,15-17 the artificial intelligence 
technique of case-based reasoning25 is proposed as a poten-
tial solution to account for variability on basal insulin 
requirements due to such temporary events.

Methods

Run-to-Run Control

R2R is a control methodology designed to exploit repetitive-
ness in the process that is being controlled.26 Its purpose is to 
enhance performance, using a mechanism of trial and error. 
The simplest formulation of R2R may be,

	 u u K errork k+ = +1
. , 	 (3)

where u is the control action, K is a tuning gain, and error is 
the tracking error defined as the difference between a mea-
surement from the process and a set-point.

Insulin dosing has a repetitive nature. Therefore, R2R 
control can be used to exploit such characteristic. As previ-
ously discussed, R2R control has been extensively used for 
adapting the meal-bolus insulin regimen13,14,16 and single-
dose injection basal-insulin19 and overnight basal-insulin,22,23 
but to less of an extent for adapting the 24-hour basal regi-
men in pump therapy.18

Proposed R2R Algorithm

The proposed R2R algorithm for adapting the 24-hour basal-
insulin regimen of a person with T1DM is based on the 
hypothesis that four time intervals are enough to account for 
the changes in basal insulin requirements due to circadian 
variations. In addition, it assumes that the time of the day-
time when a person is closest to the fasting conditions is just 
before the meals and during the night time (eg, 6 hours after 
dinner). Therefore, the meal-time glucose measurements and 
a nighttime measurement are considered to adjust the basal-
insulin rates between such times (tbreakfast, tlunch, tdinner, tdinner + 
6 h). Note that such time intervals might slightly change 
from day to day. Figure 2 shows a graphical representation of 
the four time intervals defining the basal profile (Basal1, 
Basal2, Basal3, Basal4).

The proposed R2R algorithm is based on the control law 
introduced by Palerm et al,18 which is described as
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where subindex i indicates the time interval (i = [1,2,3,4]), 
index k indicates the iteration (ie, run), k1 and k2 are tuning 
gains, Gstart is the glucose value at the beginning of the inter-
val, Gend is the glucose value at the end of the interval, and GT 
is the glucose target.

This control law was designed to be used with capillary 
measurements and has the limitation of not taking into account 
if hypoglycemic and hyperglycemia events occur between 
measurements. In this work, a new control law that takes 
advantage of CGM technology by accounting for hypoglyce-
mia and hyperglycemia within the considered time intervals is 
proposed. Current CGM technology has been approved by the 
FDA as a nonadjunctive technology, which makes it much 
more user-friendly by significantly reducing the number of 
required capillary measurements (ie, calibration). In addition 

Figure 2.  Graphical representation of the four time intervals defining the basal profile (Basal1, Basal2, Basal3, Basal4). Time points tbreakfast, 
tlunch, tdinner correspond to the meal intake times and G1, G2, and G4 to their corresponding glucose levels.
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to considering variability due to the circadian cycle, the pro-
posed control law allows taking into account the type of day 
(eg, sickness day). The control law is described as
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where subindex i indicates the time interval, the super-
index j represents the type of day (eg, sickness day), k indi-
cates the iteration (ie, run), k1, k2 and k3 are tuning gains, 
Gstart is the glucose value at the beginning of the interval, 
Gmin is the postprandial minimum glucose value calculated 
over a postprandial glucose window from 2 hours postmeal 
to the next meal or 6 hours if the meal does not occur before, 
Gend is the glucose value at the end of the interval, GT is the 
glucose target, and dG is the slope of a linear regression of 
the glucose values Gstart, Gmin, and Gend and their corre-
sponding time instants, and Gavg is the glucose average over 
a postprandial glucose window from 3 hours postmeal to 
the next meal or 6 hours if the meal does not occur before. 
For the overnight time interval (Basal4), Gavg is computed 
over the whole period.

The reason for excluding the initial meal-time glucose 
measurement, and the following 2 hours, in the computation 
of Gmin is because these glucose measurements are not the 
consequence of the basal rate being adapted, but the result of 
the previous basal-insulin rate. Finally, the first 3 hours are 
excluded in the calculation of Gavg within Basal1, Basal2, and 
Basal3 intervals to eliminate the postprandial excursion due 
to the meal intake. Figure 3 shows a graphical representation 
of the variables involved in the proposed R2R control law.

It is worth noting that the proposed R2R controller 
shares some similarities with the one proposed by Toffanin 
and colleagues,19 since both define two different laws based 
on the CGM performance and both put particular emphasis 
on hypoglycemia minimization. However, unlike Toffanin’s 
work, the proposed controller allows one to adapt different 
basal-insulin rates along the day, as required by insulin 
pump users.

To make the proposed control law more robust in front of 
uncertainty and sensor errors, the applied basal rate is 
obtained by computing the average of three consecutive 
adaptations corresponding to same basal rate segment (i) of 
the same day type (j). This is expressed by

avgBasal
Basal k Basal k Basal k

i
j i

j
i
j
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3
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where k represents the run within the same basal rate seg-
ment (i) of the same day type ( j).

Figure 3.  Graphical representation of the proposed R2R control law over a postprandial excursion. Dashed blue line represent the 
CGM measurement; green square, pink diamond, and blue star markers correspond to Gstart, Gmin, and Gend, respectively. Solid red line 
corresponds to the postprandial window [Gstart+3h, Gstart+6h]; horizontal black circled line is the average of Gstart, Gmin, and Gend; horizontal 
crossed blue line is Gavg and inclined circled cyan line is the linear regression of Gstart, Gmin, and Gend.
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Safety constraint are put in place to avoid excessive adap-
tations. A relative constraint to limit the adaptation by ± 30% 
and a global constraint to limit the maximum and minimum 
rates to three times and a third of the original rate, respec-
tively, are implemented.

Stability Analysis

Stability of the control law expressed by equation (5) is 
investigated next. Remark that, for each time interval 
i∈ …{ }1 4, , , Gmin, Gend, Gavg, and dG in (5) are indeed func-
tions of the starting glucose value for that interval, Gstart, and 
the applied basal value, Basali . Thus, the system (5) can be 
expressed as
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Analogously to Toffanin and colleagues,19 a simulation study 
was conducted to identify functions in (7) for a set of starting 
glucose and basal values, fixing all other parameters in the 
simulation, for a postprandial ( i∈{ }1 2 3, , )  and a night period 
( )i = 4 . As a result, a set of quadratic functions for each 
period was obtained:
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The following monotonicity properties hold:

•• h , Gmin , Gavg , and Gend  are monotonically increas-
ing with respect to Gstart .

•• dG  is monotonically decreasing with respect to Gstart .
•• h , Gmin , Gavg , Gend , and dG  are monotonically 

decreasing with respect to Basali
k .

Figure 4 shows, as an illustration, the fitted functions for 
a starting glucose ranging from 60 to 160 mg/dL in the case 
of the postprandial period.

Since (7) is a first-order system, its stability can be derived 
from the phase plot, which depicts Basali

k+1  versus Basali
k  

(curve corresponding to the right-hand side of (7)). Figure 5 
shows the phase plot for a postprandial and night period, and a 
sweep in Gstart , . Denoting as Basal*  the crossing of the 
curve, for a given Gstart ,  with the line Basal Basali

k
i
k+ =1  

(unit slope line), Basal Basal Basal Basali
k

i
k+ − < −1 * *  

must hold for Basal*  to be an equilibrium point, that is, the 
curve must lie inside the ±45 degrees sector with origin 
Basal*,  as it is in our case. For any Gstart , if Basal Basali

k > *,
then the basal will be decreasing toward Basal*  until conver-
gence. If Basal Basali

k < * , then the basal will be increased 
toward Basal*  until convergence. At each time step, Gstart  
will be the value of Gend  for the previously evaluated time 
interval (eg, Gstart  at lunch is Gend  at breakfast), meaning that 
a curve switching in the phase plot will happen. However, these 
are monotonically decreasing with respect to Gstart  and Gend  
is monotonically decreasing with respect to basal, which means 
that the switching will happen in a monotonic way according to 
the direction of basal changes in the previous time interval.

Case-Based Reasoning

The proposed R2R algorithm is able to deal with intraday 
variability in insulin requirements due circadian variations 
by separating the 24-h basal insulin profile into four time 
intervals. It is also able to deal with some degree of interday 
variability due to temporary events such as physical exercise, 
recurrent illness, psychological stress, and menstrual cycle. 
However, when the number of temporary events increases 
(eg, different intensities of exercise or stress) the problem 
might become untreatable. Similar to the work proposed by 
Herrero et al for recommending meal insulin boluses,15 the 
utilization of case-based reasoning is proposed as a potential 
solution to overcome this limitation.

Case-based reasoning (CBR) is an artificial intelligence 
problem solving framework that solves a newly encountered 
problem, based on the information obtained from previously 
solved problems and stored as cases in a case base.25 A 
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Figure 5.  Phase plots of (6) for a postprandial period (left) and night period (right), and a sweep in starting glucose values in the range 
60 to 160 mg/dL.

Figure 4.  Fitted quadratic functions for Gend , Gmin , Gavg , and dG  for a postprandial period and a sweep in starting glucose values in the 
range 60 to 160 mg/dL.
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clinician who diagnoses a patient’s disease by recalling 
another patient who exhibited similar symptoms is using 
CBR.

CBR is usually described in four steps: Retrieve the most 
similar cases to the problem to be solved from the case base; 
Reuse the solutions of retrieved cases; Revise the outcome of 
the applied solution to the new problem; and Retain the new 
problem if its solution is considered useful for solving future 
problems. Figure 6 show the four steps of the CBR cycle 
(Retrieve, Reuse, Revise, Retain).

In this work, CBR is used to recall previous scenarios 
where basal insulin requirements were similar to the current 
scenario (eg, dinner after moderate aerobic exercise) and 
then reuse such information to calculate the current basal 
insulin. Due to the significant intersubject variability in type 
1 diabetes, cases are stored in a subject-specific case base.

Changes in insulin requirements along the day due to circa-
dian variations are defined as a context within the case base. 
Cases of the different contexts are not compared against each 
other since they are considered to be too different. Table 1 
shows a context and parameters, together with their potential 
values, considered in this work. Note that these parameters are 
just a subset of the parameter affecting insulin requirements. 
Other parameters that are known to affect insulin sensitivity, 
or affect blood glucose levels, and which could be considered 
in a real-life application of the proposed algorithm are alcohol 

consumption, hours and quality of sleep, traveling across time 
zones, and meal absorption.

Cases are retrieved from the case base (Retrieve step) by 
means of a k-nearest neighbors (KNN) algorithm, that is, 
computing the distance (eg, Euclidian) between the current 
case and all the cases in the case base and by selecting the 
case(s) with the shorter distance.27 In particular the Euclidian 
distance is employed, which is described by

	 Distance w V Vk

j

n

j j
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j
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1
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where k indicates the distance between the current case and 
the case k in the case base, n is the number of parameters 
defining a case, Vj

C is the value of parameter j for the current 
case, Vj

k  is the value of parameter j for a case k in the case 
base, and wj is the weight associated to parameter j. To calcu-
late such distance, the distance between parameters, that is  
(V Vj

C
j− k ), is defined as 0 if the values are equal, 1 if the 

value are adjacent (eg, none versus moderate), or 2 if the 
values are nonadjacent (eg, none versus intense). In this 
work, parameters are weighted equally (ie, w1… wn = 1), but 
these can be tunable in a real-life application.

If the retrieved case k is different from the current case (ie, 
Distancek ≠ 0), its solution (basal rate) needs to be adjusted 
by a percentage before applying it to the current scenario 
(Reuse step). Such percentage ( PT )  is defined as follows,
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where Pj
c  and Pj

R  represent the percentages corresponding 
to parameter j for the current case and the retrieved case, 
respectively. Table 2 shows the applied percentages for each 
one of the values of the selected parameters. Note that in a 
clinical scenario, these values need to be individualized by 
the clinician to fit the needs of a particular person with T1DM.

If the retrieved case is different from the current case (ie, 
Distancek ≠ 0), then, a new case is created with the new 
adapted solution, and it is stored in the case base (Retain 
step). Once the solution of a case has been applied, a retro-
spective revision of the resulting glycemic outcome is carried 
out (Revision step) by means of the proposed R2R control law 
(equation (5)). Note that the solution of a case in the case base 
is only updated after being revised three times (equation (6)).

Figure 6.  CBR cycle (Retrieve, Reuse, Revise, Retain).

Table 1.  Context and Parameters With Their Corresponding 
Values.

Parameter (P)/context (C) Values

Time of day (C) Postbreakfast, postlunch, 
postdinner, night

Aerobic exercise (P) None, moderate, intense
Psychological stress (P) None, mild, severe
Menstrual cycle (P) Menstrual, follicular, ovulation, luteal
Illness (P) None, mild, severe

Table 2.  Applied Percentages on the Basal-Insulin Rate for Each 
One of the Values of the Selected Parameters.

Parameter Value (percentage)

Aerobic exercise None (100%), moderate (50%), intense (20%)
Psychological 

stress
None (100%), mild (140%), severe (170%)

Menstrual cycle None (100%), follicular (150%), luteal (170%)
Illness None (100%), mild (130%), severe (180%)
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Table 3.  Tuning Parameters for the Control Law Proposed by 
Palerm et al18.

Adults Adolescents Children

k1 0.001 0.001 0.0005
k2 0.001 0.001 0.0005

Table 4.  Tuning Parameters for the Proposed Control Law.

Adults Adolescents Children

k1 0.001 0.001 0.0005
k2 0.7 0.7 0.35
k3 0.0001 0.0001 0.00005

Unlike the traditional CBR approach25 where the solu-
tions of the cases in the case base are static, in this work the 
solutions (ie, basal rate) can be adapted if they are found to 
be suboptimal. This strategy partially solves the so-called 
problem of cold start in CBR (ie, insufficient initial cases in 
the case base) by initializing the case base with a small set of 
safe cases (most likely suboptimal) and letting the system 
converge toward an optimal solution while adapting solu-
tions of existing cases and adding new cases to the case base.

When compared to a lookup table-based approach, where 
all the cases resulting from all combinations of parameters 
are independently adapted with the R2R control law, the pro-
posed CBR algorithm is expected to converge swifter to an 
optimal basal-insulin therapy thanks to reusing information 
from similar cases.

Finally, a very important issue which must be accounted 
for in a CBR application is the case-based maintenance. Case-
based maintenance is used to control the size of the case base 
and removes cases that have lost their validity (eg, too old).

It is important to remark that, due to the limited number of 
cases available in the employed simulator, the evaluation of 
the proposed CBR algorithm has not been possible. It is 
important to note that the feasibility of CBR in a clinical set-
ting has already been proven17 in the context of meal-bolus 
adaptation.

In Silico Evaluation Under Intraday and Interday 
Variability

The UVa-Padova T1DM simulator (v3.2)28 was used to eval-
uate the proposed R2R technique against the R2R control 
law proposed by Palerm and colleagues.18

Intraday variability and uncertainty on meal type, meal 
time, carbohydrate estimation, meal absorption, insulin 
absorption, and insulin sensitivity were introduced in the 
simulator as described by Herrero and colleagues.21 In addi-
tion, interday variability was represented by three types of 
days, which were generated multiplying by 1.1 (day 1), 0.5 
(day 2), and 1 (day 3) the insulin sensitivity parameters (Vmx 
and Kp3) in the simulator model.29 Note that the selected 
insulin sensitivity changes are not necessarily physiological 
and their sole purpose is to test the algorithm. In addition, 
two days had an of exercise 60 min at 50% V02 max at 5 pm 
(day 1 and day 2) and one did not (day 3). For this purpose, 
the model of exercise proposed by Schiavon et  al30 was 
included in the simulator. In total, 12 different scenarios 
composed by 4 contexts per day (postbreakfast, postlunch, 
postdinner, night) and 3 types of days were generated. Hence, 
the two R2R control laws were applied on each one of the 12 
different scenarios.

The 10 adult, 10 adolescent, and 10 child subjects avail-
able in the simulator were used for evaluating purposes. The 
initial basal insulin infusion rate for the virtual subjects was 
the one provided by the default insulin therapy of the simula-
tor. The selected CGM to perform the simulations was the 

Dexcom G4 platinum. A virtual pump with no error was 
selected to deliver the insulin. A 17-week scenario was 
employed, with the first week having no adaptation. The 
selected daily pattern of carbohydrate dose intake was 7 am 
(40 g), 1 pm (80 g), and 7 pm (60 g).

The following glycemic metrics, which are widely 
accepted by the diabetes technology community to evaluate 
glucose controllers,31 were selected for comparison pur-
poses: mean blood glucose (BG) in mg/dl; percentage time in 
glucose target range [70,180] mg/dl (% in target); percentage 
time below target (ie, hypoglycemia) (% < target); percent-
age time above target (ie, hyperglycemia) (% > target); risk 
index (RI); low blood glucose index (LBGI); and high blood 
glucose index (HBGI).

Controllers Tuning

Tables 3 and 4 shows the tuning parameters employed for the 
in silico evaluation of the control law proposed by Palerm 
et al18 and the proposed control law, respectively. Note that 
the tuning of the R2R by Palerm et al is significantly differ-
ent from the tuning proposed in the original work (ie, an 
order of magnitude). This might be explained by the differ-
ence between the employed simulators, as the UVa-Padova 
T1DM simulator is a validated software tool accepted by the 
FDA as a substitute to animal trials.

Results

Tables 5-7 show the average results corresponding to the 10 
adults, 10 adolescents, and 10 children at week 1 (no adapta-
tion) and at week 17 after 16 weeks of basal adaptations. 
Note that all the calculated glycemic metrics for the three 
cohorts significantly improve over the 17 weeks.

Tables 8-10 show the comparison of the glycemic out-
comes achieved with the R2R control law by Palerm and 
colleagues18 and by the one the proposed in the current work 
computed over the whole simulation period (17 weeks). 
Note that the proposed approach achieves a superior 
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Table 5.  Average Glycemic Outcomes Corresponding to Week 1 (No Adaptation) and Week 17 for the 10 Adult Subjects.

Week BG % in T % < T % > T RI LBGI HBGI TDD

1 138.8 ± 12.9 70.9 ± 11.8 9.7 ± 6.6 19.3 ± 8.6 7.2 ± 3.7 2.7 ± 2.2 4.5 ± 2.3 42.1 ± 9.9
17 128.5 ± 5.3 91.1 ± 4.4 0.9 ± 1.2 7.9 ± 4.5 2.4 ± 0.8 0.4 ± 0.3 2.0 ± 0.7 43.8 ± 9.2
P value P < .05 P < .01 P < .01 P < .01 P < .01 P < .01 P < .01 P < .05

Table 6.  Average Glycemic Outcomes Corresponding to Week 1 (No Adaptation) and Week 17 for the 10 Adolescent Subjects.

Week BG % in T % < T % > T RI LBGI HBGI TDD

1 175.0 ± 24.9 46.5 ± 11.9 10.5 ± 8.3 42.9 ± 9.8 15.8 ± 6.8 4.5 ± 4.3 11.3 ± 4.6 31.9 ± 8.1
17 140.4 ± 12.4 80.1 ± 10.9 0.83 ± 1.0 19.0 ± 10.9 4.4 ± 2.1 0.4 ± 0.2 3.9 ± 2.0 35.4 ± 8.5
P value P < .01 P < .01 P < .01 P < .01 P < .01 P < .05 P < .01 P < .01

Table 7.  Average Glycemic Outcomes Corresponding to Week 1 (No Adaptation) and Week 17 for the 10 Child Subjects.

Week BG % in T % < T % > T RI LBGI HBGI TDD

1 169.6 ± 16.9 49.4 ± 12.9 10.9 ± 6.1 39.7 ± 9.3 14.9 ± 6.0 4.6 ± 3.6 10.3 ± 3.6 16.7 ± 3.6
17 144.6 ± 10.3 73.7 ± 4.1 3.2 ± 3.5 23.1 ± 6.3 6.1 ± 1.0 1.2 ± 1.2 5.0 ± 1.4 18.2 ± 3.8
P value P < .01 P < .01 P < .01 P < .01 P < .01 P < .01 P < .01 P < .01

Table 9.  Comparison Between Glycemic Control Achieved With the R2R Control Law by Palerm et al Against the Control Law 
Proposed in the Current Work.

BG % in T % < T % > T RI LBGI HBGI TDD

Palerm et al 149.3 ± 15.5 70.8 ± 10.1 2.9 ± 1.9 26.4 ± 9.9 7.1 ± 2.8 1.1 ± 0.7 5.9 ± 2.8 32.2 ± 7.8
Proposed 150.5 ± 15.1 72.1 ± 9.9 2.0 ± 1.5 25.9 ± 10.0 6.6 ± 2.6 0.8 ± 0.6 5.7 ± 2.6 32.4 ± 7.8
P P < .05 P < .01 P < .01 P = .1 P < .01 P < .01 P < .05 P < .05

Results correspond to the 10 adult subjects in the simulator.

Table 10.  Comparison Between Glycemic Control Achieved With the R2R Control Law by Palerm et al Against the Control Law 
Proposed in the Current Work.

BG % in T % < T % > T RI LBGI HBGI TDD

Palerm et al 151.3 ± 12.2 67.5 ± 6.2 4.6 ± 2.8 27.9 ± 7.3 8.1 ± 2.1 1.6 ± 0.9 6.5 ± 2.0 16.8 ± 3.4
Proposed 153.5 ± 10.7 68.6 ± 6.3 3.5 ± 2.0 27.9 ± 6.9 7.7 ± 1.9 1.2 ± 0.7 6.4 ± 1.8 16.8 ± 3.5
P P < .05 P < .01 P < .01 P = .8 P < .01 P < .01 P = .3 P = .9

Results correspond to the 10 adult subjects in the simulator.

Table 8.  Comparison Between Average Glycemic Control Achieved With the R2R Control Law by Palerm et al Against the Control 
Law Proposed in the Current Work.

BG % in T % < T % > T RI LBGI HBGI TDD

Palerm et al 129.0 ± 6.5 84.6 ± 5.1 3.9 ± 2.6 11.5 ± 4.8 3.8 ± 1.2 1.2 ± 0.7 2.6 ± 0.9 40.9 ± 8.9
Proposed 131.6 ± 6.0 85.9 ± 5.3 2.6 ± 2.2 11.5 ± 4.7 3.4 ± 1.2 0.8 ± 0.7 2.6 ± 0.8 40.7 ± 8.9
P P < .01 P < .01 P < .01 P = .9 P < .01 P < .01 P = .3 P = .06

Results correspond to the 10 adult subjects in the simulator.
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performance over the three cohorts regarding the percentage 
time in hypoglycemia, without increasing the percentage 
time in hyperglycemia.

Figure 7 shows a comparison between Palerm et al R2R 
and the new R2R of the weekly evolution for three of the 
evaluated glycemic metrics (% in T, % < T, and % > T) for 
the adult cohort. Note that despite oscillations due to the 
interday variability, the algorithm converges after approxi-
mately 10 weeks. Figure 8 shows the glucose profile of adult 
1 over the 17-week simulation together with the correspond-
ing glycemic metrics (% in T, % < T, and % > T). Figure 9 
displays the evolution of the 12 basal rates over time corre-
sponding to Figure 8. Note that basal levels for different days 
differ up to 100%.

Discussion

In a virtual T1DM population (10 adults, 10 adolescents, 
10 children) over a 17-week scenario with intraday and 
interday variability, the presented basal insulin adaptation 
technique based on R2R control significantly improves all 
the evaluated glycemic metrics. When compared against 
an existing technique by Palerm et al18 the proposed algo-
rithm outperforms the former in the three studied cohorts 
by reducing the time in hypoglycemia, increasing the time 
in target while not increasing the time in hyperglycemia. 
A marginal increase in mean glucose (ie, <2 mg/dL) is 
observed.

When analyzing the weekly evolution of the evaluated 
glycemic metrics, it can be observed that glycemic metrics 
take about 10 weeks to converge to a relatively steady state. 
This convergence rate could be increased by using a less con-
servative strategy when saturating/filtering the adaptations, 
but at the expenses of losing robustness.

Although the robustness of the proposed algorithm has 
been tested to some degree by introducing significant intra-
subject and intersubject variability in the in silico study, 
which might be not too far from a real-life scenario, a sys-
tematic robustness analysis is still desirable. This can be con-
sidered a limitation of the current work, and a complete 
robustness evaluation is planned as future work. Such analy-
sis should evaluate the ability of the algorithm to adjust basal 
insulin rates in case of systematic variations in bolus calcula-
tor parameters. In addition, it would be interesting to evalu-
ate possible compensations between bolus calculator 
parameters and basal insulin infusion, as could appear in real 
life. An additional challenge that could be added to further 
test the robustness of the algorithm would be the misclassifi-
cation of the type of day.

One important aspect that has not been considered in this 
work, and which it is essential in a real-life scenario, is the 
need to take into account hypo-treatments and/or insulin 
correction boluses since they can have a significant input 
on the glycemic outcomes. One solution to this problem is 
to discard these scenarios from the adaptations when such 
information is available. This was the approach followed 

Figure 7.  Weekly evolution of the average percentage time in target (% in T), percentage time below target (% < T), and percentage 
time above target (% > T) corresponding to the adult cohort corresponding the original R2R controller (dashed red line) and the new 
R2R controller (solid blue line). Error bars represent the standard deviation.
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by Reddy and colleagues in the evaluation of an adaptive 
meal bolus calculator.17

It is important to remark that the effectiveness of the CBR 
algorithm could not be evaluated due to the limitations of the 

employed simulator. To prove the efficacy of the CBR algo-
rithm, a clinical trial is required. Note that the clinical feasi-
bility of CBR in the context of meal bolus calculations has 
been proved by Reddy et al.17

Figure 8.  Glucose profile for adult 1 over the 17-week simulation (upper graph) together with the corresponding glycemic metrics 
(lower graphs).

Figure 9.  Temporal evolution of the 12 basal rates corresponding to Figure 8. Breakfast, lunch, dinner, and night indicate the context 
and the accompanying number represents the day type.
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Once the technology has been validated in a pivotal study 
and has gone through the corresponding regulatory approv-
als, this could be implemented on a sensor-augmented insu-
lin pump with Internet connectivity (eg, Cellnovo System, 
Pencoed, UK), which would allow remote adaptation and 
supervision by expert clinicians. Future work also includes 
the evaluation of the presented technique in combination 
with a meal bolus adaptation technique such as the one pro-
posed by Herrero and colleagues.16

Conclusion

Based on the presented in silico study, the proposed basal 
insulin adaptation technique has the potential to effectively 
adjust the 24-hour basal insulin profile of a type 1 diabetes 
population on sensor-augmented insulin pump therapy. 
Further clinical studies are required to evaluate its effective-
ness in a real scenario.
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